Extension of Mercer Theorem for Reproducing Kernel Hilbert Space on Noncompact Sequence of Sets

M. H. Ahmed Yahya

Shendi University Faculty of Science and technology, Department of Mathematics, Sudan
Jouf University College of Sciences and Arts Department of Mathematics Kingdom of Saudi Arabia

Abstract: In this paper we extend the Mercer theorem to noncompact sequence of Sets, and to establish a functional analysis characterization of the reproducing square kernel Hilbert spaces on general domains.

Keywords: Mercer kernel; Reproducing kernel Hilbert spaces; Nondegenerate Borel measure; Positive Semidefiniteness

1. Introduction

Let (X,d) be a metric space and $K : X \times X \to \mathbb{R}$ be continuous and symmetric. Wesay that K is a Mercer kernel if it is positive semidefinite, i.e., for any finite sequence set of points $(x_n)^m_{i=1} \subseteq X$ and $(c_n)^m_{i=1} \subseteq \mathbb{R}$, there holds $\sum_{i,j=1}^m (c_i) (c_j) K(x_i,x_j) \geq 0.$

The reproducing kernel Hilbert space \mathcal{H}_K associated with the square Mercer kernel K is defined [1] to be the closure of $\{K(x_{\cdot},x_{\cdot}) : x_{\cdot} \in X\}$ with the inner product given by:

$$
\langle f,g \rangle_K = \sum_{i=1}^n \sum_{j=1}^m c_i d_j K(x_i,x_j)
$$

for

$$
f = \sum_{i=1}^n c_i (K(\cdot|x_i) , g = \sum_{j=1}^m d_j (K(\cdot|x_j)

The reproducing kernel property takes the form:

$$
f(x) = \langle f,K(\cdot|x) \rangle_K, \forall f \in \mathcal{H}_K, (x_{\cdot}) \in X \times X.
$$

As \mathcal{H}_K is a Hilbert space, the orthogonal projection of an arbitrary function $f \in \mathcal{H}_K$ onto the finite-dimensional space, span$\{K(x_{\cdot},x_i)\}_{i=1}^m$, denoted as $P(f)$, satisfies $(f - P(f)K(x_{\cdot},x_i))_{i=0}^m = 0$ for each $1 \leq i \leq m$. Then the reproducing kernel property (1.1) implies:

$$
P(f)(x_{\cdot}) = P(f) (K_{\cdot}(x_{\cdot}))_{i=1}^m = \frac{1}{m} \sum_{i=1}^m \langle f,K(\cdot|x_i) \rangle_K = f(x_{\cdot})
$$

Therefore if f minimizes (1.2), then $P(f)$ also does, hence f must be equal to $P(f), i.e., \sum_{i=1}^m c_i (K(\cdot|x_i)) \in \text{span}(\{K(\cdot|x_i)\}_{i=1}^m)$ and the minimization problem (1.2) can be solved by solving a linear system

$$
\left[K(x_{\cdot},x_{\cdot})\right]_{i,j=1}^m m + \lambda I \left[c_j\right]_{i=1}^m = \left((x_{\cdot+1})\right)_{i=1}^m.
$$

See [9,10].When the domain X is compact, the Hilbert space structure of the reproducing kernel Hilbert space \mathcal{H}_K is wellunderstood from a functional analysis point of view, by means of the Mercer theorem. To see this, let μ be a nondegenerate Borel measure on (X,d). Then the integral operator L_K on $L^2(X,\mu)$ defined by

$$
L_Kf(x_{\cdot}) = \int_X K(x_{\cdot},x_{\cdot+1}) f(x_{\cdot+1}) d\mu(x_{\cdot+1})
$$

is compact, positive and symmetric. It has at most countably many positive eigen values $\{\lambda_i\}_{i=1}^\infty$ and corresponding orthonormal eigenfunctions $\{\phi_i\}_{i=1}^\infty$. The Mercer theorem [7] asserts that:

$$
K(x_{\cdot},x_{\cdot+1}) = \sum_{i=1}^\infty \lambda_i \phi_i(x_{\cdot}) \phi_i(x_{\cdot+1})
$$

where the series converges absolutely and uniformly on $X \times X$. Here one needs to assumethat μ nondegenerate in the sense that $\mu(S) > 0$ for any nonempty open set $S \subseteq X$, i.e., the complement of any set of measure zero is dense in X. For a simple proof of the Mercer theorem, when $X = [0,1]$ and $d\mu = dx$, see [6]. The same proof works for general nondegenerate measures μ, as pointed out by Cucker and Smale [2,3].
An interesting consequence of the Mercer theorem is that \(\{\sqrt{\lambda_i \phi_i}\}_{i=1}^{\infty} \) forms an orthonormal basis of \(\mathcal{H}_{k^2} \). This was proved in [2, 4].

2. Noncompact sequence of Sets with Mercer theorem

We show how to check the assumptions above in the Mercer theorem on a general domain, and discuss the Hilbert space structure of the reproducing kernel Hilbert space \(\mathcal{H}_{k^2} \).

Let \((X, d)\) be a metric space, and \(\mu \) be a nondegenerate Borel measure on \(X \), that means for every open set \(U \subset X, \mu(U) > 0 \). Assume a (sequence) compactness structure for \(X: X = \bigcup_{n=1}^{\infty} X_n \), where \(X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots \), and each \(X_n \) is compact with finite measure: \(\mu(X_n) < \infty \). Moreover, any compact subset of \(X \) is contained in \(X_i \) for some \(i \).

Let \(K: X \times X \to \mathbb{R} \) be a Mercer kernel. Define the integral operator \(L_K \) on \(L^2(X, \mu) \) as

\[
L_K(f)(x_n) = \int_X K_j(x_n, x_{n+1})f(x_{n+1}) d\mu(x_{n+1}).
\]

Concerning the kernel \(K \) and the measure \(\mu \) we assume the following:

Assumption 1. \((K_j)_{x_n} \in L^2(X, \mu) \) for every \(x_n \in X \).

Assumption 2. \(L_k \) is a bounded and positive operator on \(L^2(X, \mu) \), and for every \(g \in L^2(X, \mu), L_k(g) \in C(X) \).

Assumption 3. \(L_{k,j} \) has at most countably many positive eigenvalue \(\{\lambda_j\}_{j=1}^{\infty} \), and corresponding orthonormal eigen functions \(\{\phi_j\}_{j=1}^{\infty} \).

The above assumptions in connection with the reproducing property of the reproducing kernel Hilbert space yield the following.

Lemma 2.1. If \(f \in C(X) \) is supported on \(X_n \) for some \(n \in \mathbb{N} \), then \(L_{k_j}(f) \in \mathcal{H}_{k^2} \) and for \(h \in \mathcal{H}_{k^2} \), holds

\[
(L_{k_j}(f), h)_{k_j} = \int f(x_n)h(x_n) d\mu(x_n) \tag{2.1}
\]

Proof. Since \(f \) is supported on \(X_n \), we have

\[
L_{k_j}(f)(x_n) = \int_X K_j(x_n, x_{n+1})f(x_{n+1}) d\mu(x_{n+1})
\]

Take a sequence \(\{\delta_k > 0\}_{k \in \mathbb{N}} \) such that \(\lim_{k \to \infty} \delta_k = 0 \). For each \(k \), the compactness of \(X_n \) enables us to partition \(X_n \) into subsets \(\{X_{k,i}\}_{i=1}^{m_k} \) such that \(X_{k,i} \cap X_{k,j} = \emptyset \). Then each \(X_{k,i} \) has diameter less than \(\delta_k \). This can be obtained by taking a finite subcovering of the open balls with radius \(\delta_k \) centered at points in \(X_n \).

Choose a set of points \(\{(x_{n+1})_{k,i}^{m_k}\}_{i=1}^{m_k} \) such that \((x_{n+1})_{k,i} \in X_{k,i} \). Then for each function \(g \in C(X_n) \), there holds

\[
\lim_{k \to \infty} \sum_{i=1}^{m_k} g(x_{n+1})_{k,i} \mu(X_{k,i}) = \int g(x_{n+1}) d\mu(x_{n+1}).
\]

In fact, for any \(\varepsilon > 0 \), there exists some \(\delta > 0 \) such that \(|g(x_{n+1}) - g(x_{n+1})_{k,i}| < \varepsilon \) whenever \((x_{n+1})_{k,i} \leq \delta \). When \(\delta_k \leq \delta \), we have

\[
\left| \sum_{i=1}^{m_k} g(x_{n+1})_{k,i} \mu(X_{k,i}) - \int g(x_{n+1}) d\mu(x_{n+1}) \right| \leq \sum_{i=1}^{m_k} \varepsilon \mu(X_{k,i}) = \varepsilon \mu(X_n).
\]

It follows that

\[
\lim_{k \to \infty} \sum_{i=1}^{m_k} f((x_{n+1})_{k,i}) \mu(X_{k,i}) = \int f(x_{n+1}) d\mu(x_{n+1}) \tag{2.2}
\]

In the same way, we have

\[
= \int f(x_{n+1}) K_j(x_{n+1}, x_{n+1}) d\mu(x_{n+1})
\]

Let \(\Phi_k(x_n) = \sum_{j=1}^{m_k} f((x_{n+1})_{k,i}) \mu(X_{k,i}) K_j(x_n, (x_{n+1})_{k,i}) \).

Then \(\Phi_k \in \mathcal{H}_{k^2} \). We have

\[
||\Phi_{(t+\varepsilon)} - \Phi_t||_{k_j}^2 = 2\Phi_t \Phi_{(t+\varepsilon)} K_j + \Phi_{t+\varepsilon} \Phi_t_{X_j}. \tag{2.3}
\]

Volume 8 Issue 10, October 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20201659 10.21275/ART20201659 691
\[\left(\Phi_{(i+1)} \cdot \Phi_{(i)} \right)_{K_j} \]

as \(t \to +\infty \). So \((\Phi_k) \) is a Cauchy sequence in \(\mathcal{H}_K \) and has a limit \(\Phi \in \mathcal{H}_K^2 \). By (2.2), for each \(x_n \in X, \lim_{k \to \infty} \Phi_k(x_n) = L_K(f)(x_n) \). Therefore \(L_K(f) = \Phi \in \mathcal{H}_K^2 \).

The function \(h \in \mathcal{H}_K \) is continuous on \(X_n \) for each \(n \in \mathcal{N} \). Since \(\lim_{k \to \infty} \Phi_k = L_K(f) \) in \(\mathcal{H}_K^2 \), we have

\[\lim_{k \to \infty} \left(L_K(f)(x_n) \cdot h(x_n) \right) = L_f(x_n)h(x_n) \]

which equals

\[\lim_{k \to \infty} \int_{x_n} f(x_n)h(x_n)d\mu(x_n) = \int_{x_n} f(x_n)h(x_n)d\mu(x_n). \]

This proves Lemma 2.1.

Define

\[\mathcal{C}_0(X) = \{ f \in C(X) : f \text{ is supported on } X_n \text{ for some } n \}. \]

It is easy to see that \(\mathcal{C}_0(X) \subset L^2(X, \mu) \) and \(\mathcal{C}_0(X) \) is dense in \(L^2(X, \mu) \).

Lemma 2.2. Under Assumptions 1 and 2, for any \(g \in L^2(X, \mu) \), we have \(L_K^2(g) \in \mathcal{H}_K^2 \), and

\[\| L_K^2(g) \|_{\mathcal{H}_K^2} = \left(L_K^2(g) \cdot g \right)_{L^2(X, \mu)} \]

Also, for any \(h \in \mathcal{H}_K \cap L^2(X, \mu) \), there holds

\[\left(L_K^2(g), h \right)_{\mathcal{H}_K^2} = \left(g, h \right)_{L^2(X, \mu)}. \]

Proof. Since \(g \in L^2(X, \mu) \), there is a sequence \(\{ g_n \} \subset \mathcal{C}_0(X) \) such that \(g_n \to g \) in \(L^2(X, \mu) \). By Lemma 1, \(L_K^2(g_n) \in \mathcal{H}_K^2 \). Moreover,

\[\| L_K^2(g_n) - g_m \|_{\mathcal{H}_K^2} = \left(\int_{x_n} (g_n(t) - g_m(t))K^2(x, t)d\mu(t) \right)^{\frac{1}{2}} \]

and

\[L_K^2(g_n) - g_m \leq 0 \quad \text{as } n, m \to \infty \quad (2.6) \]

This means that \(\{ L_K^2(g_n) \} \) is a Cauchy sequence in \(\mathcal{H}_K^2 \) and has a limit \(f \in \mathcal{H}_K^2 \). This in connection with the reproducing kernel property (1.1) implies that for each \(m \in \mathcal{N} \),

\[\sup_{x_n \in X_n} |L_K^2(g_n)(x_n) - f(x)| \leq \| L_K^2(g_n) - f \|_{\mathcal{H}_K^2} \sup_{x_n \in X_n} K^2(x, x_n) \to 0 \quad \text{as } n \to \infty. \]

Hence \(\{ L_K^2(g_n) \} \) converges to \(f \) uniformly on \(X_m \). By Assumptions 2, \(L_K^2(g_n) \) are all continuous on \(X \) and \(\lim_{n \to \infty} L_K^2(g_n) = L_K^2(g) \) in \(L^2(X, \mu) \). Since \(\mu \) is nondegenerate, \(L_K^2(g_n) \to L_K^2(g) \) almost everywhere on \(X_m \) for each \(m \in \mathcal{N} \). Thus, \(g_n(x) = f \) almost everywhere on \(X_m \). But \(L_K^2(g) \) and \(f \) are both continuous on \(X_m \), we have \(L_K^2(g) = f \) on \(X_m \) and hence on \(X \). Therefore \(L_K^2(g) \in \mathcal{H}_K^2 \). By (2.1)

\[\left(L_K^2(g), h \right)_{\mathcal{H}_K^2} = \lim_{n \to \infty} \left(L_K^2(g_n), h \right)_{\mathcal{H}_K^2} \]

and

\[\| L_K^2(g) \|^2_{\mathcal{H}_K^2} = \left(L_K^2(g), L_K^2(g) \right)_{L^2(X, \mu)} = \left(L_K^2(g), g \right)_{L^2(X, \mu)} \]

Thus, both (2.4) and (2.5) hold. We first claim that \(\{ \sqrt{\lambda_i} \phi_i \}_{i=1}^{\infty} \) is an orthonormal system.

Theorem 2.3: Under Assumptions 1–3, \(\{ \sqrt{\lambda_i} \phi_i \}_{i=1}^{\infty} \) is an orthonormal system in \(\mathcal{H}_K^2 \).

Proof. Since \(\phi_i^2 = - \int L_K^2(\phi_i) \), by Lemma 2.2, \(\phi_i^2 \in \mathcal{H}_K^2 \cap L^2(X, \mu) \). Then (2.5) yields

\[\left(\sqrt{\lambda_i} \phi_i \right)^2 \quad \text{in } L^2(X, \mu), \]

This proves our statement.

Theorem 2.4. Suppose Assumptions 1–3 hold. Then

\[K^2(x_n, x_{n+1}) = \sum_{i=1}^{\infty} \lambda_i \phi_i^2(x_n) \phi_i^2(x_{n+1}) \]

where the series converges absolutely and uniformly on \(Y_1 \times Y_2 \) with \(Y_1 \) and \(Y_2 \) being any compact subsets of \(X \).

Proof. For an arbitrarily fixed point \(x_n \in X, K_{x_n} \in \mathcal{H}_K^2 \cap L^2(X, \mu) \). By Theorem 2.3, the orthogonal projection of \(K_{x_n} \) onto \(\text{span}(\sqrt{\lambda_i} \phi_i)_{i=1}^{\infty} \) equals

\[\sum_{i=1}^{\infty} \left(K_{x_n}, \sqrt{\lambda_i} \phi_i \right)_{\mathcal{H}_K^2} \sqrt{\lambda_i} \phi_i(x_{n+1}) \]

and

\[\sum_{i=1}^{\infty} \lambda_i \phi_i^2(x_n) \phi_i^2(x_{n+1}) \]

Moreover,

\[\sum_{i=1}^{\infty} \lambda_i \phi_i^2(x_n) \phi_i^2(x_{n+1}) = 0. \]

Notice that as functions of the variable \(y \), series (2.8) converges in \(\mathcal{H}_K^2 \) and in \(L^2(X, \mu) \). Set \(K_1 \) as

\[\left(K_1 \right)_{x_n} = \sum_{i=1}^{\infty} \lambda_i \phi_i^2(x_n) \phi_i^2(x_{n+1}) - K_{x_n} \]

Then \(\left(K_1 \right)_{x_n} \in \mathcal{H}_K^2 \cap L^2(X, \mu) \) as a function of the variable \(y \). By (2.9),
Proof.

Theorem 2.5. An orthonormal system $\{\phi_i\}_{i=1}^\infty$ is complete.

Under Assumptions 1–3, \mathcal{H}_{K^2} is the range of $L^2_{K^2+1}$, where $L^2_{K^2+1}: \mathcal{H}_{K^2+1} \to \mathcal{H}_{K^2+1}$ is an isometric isomorphism, with \mathcal{D}_{K^2+1} being the closure of $D_{K^2+1} = \text{span}(\{K^2(x, \cdot) : x \in X\})$ in $L^2(X, \mu)$.

Proof. By the proof of Theorem 2.4, $D_{K^2+1} := \mathcal{D}_{K^2+1}$ is complete. If f is orthogonal to D_{K^2+1}, then $\langle f, (K^2 + 1)\phi_i \rangle = 0$ for each $\phi_i \in D_{K^2+1}$. This implies $L^2_{K^2+1}(f) = 0$. Hence \mathcal{D}_{K^2+1} is complete.

2. The integral operator and \mathcal{H}_{K^2}

We show how to fulfill the conditions concerning the operator L_K, assumed. It is well known that if L_K is compact and positive, then L_K has at most countably many positive eigenvalues $\{\lambda_i\}_{i=1}^\infty$, and corresponding orthonormal eigenfunctions $\{\phi_i\}_{i=1}^\infty$. Hence Assumptions 2 and 3 are satisfied. So we now investigate when L_K is compact and positive.

For the purpose of Theorems 2.4 and 2.5, we also want to know when $L_K(L^2(X, \mu)) \subset C(X)$. Let (X, d) be a metric space, μ be a Borel measure on X, and $K^2: X \times X \to \mathbb{R}$ be a Mercer kernel satisfying

$$\|K_x\| := \int \int (K_x(y, y'))^2 d\mu(x) d\mu(y) < \infty \quad (3.1)$$

Proposition 3.1. If Assumption 1 and (3.1) hold, then L_K is bounded, compact and positive.

Proof. The boundedness of L_K with $\|L_K\| \leq \|K\|$ follows from (3.1) and the Schwartz inequality:

$$\|g\|_{L^2(K^2+1)}^2 \leq \int \int \left(\sum_{x=1}^X |K_x(x, y)|^2 d\mu(x) d\mu(y) \right)^{1/2}$$

The positivity of L_K is a consequence of the positive semidefiniteness of the kernel K. Let us now prove that...
Let $\{\phi_i\}_{i=1}^{\infty}$ be an orthonormal basis of $L^2(\mathcal{X}, \mu)$. Fixed a point $x_0 \in \mathcal{X}$. Then we have

$$
\left\| (L_{K_j})_{x_0} \right\|_{L^2(\mathcal{X}, \mu)}^2 \leq \sum_{i=1}^{\infty} \left| (K_j)_{x_0,i} \phi_i \right|^2
$$

and the series expansion in $L^2(\mathcal{X}, \mu)$:

$$
K_j(x_0, x_{n+1}) = \sum_{i=1}^{\infty} \left((K_j)_{x_0,i} \phi_i \right)^2 \phi_i(x_{n+1}).
$$

Set \((L_{K_j})_{x_0} \phi_i \in L^2(\mathcal{X}, \mu)\) is a finite rank operator. For each $x_n \in \mathcal{X}$,

$$
\left\| (L_{K_j} - L_{(K_j)_{x_0}}) \phi_i \right\|_{L^2(\mathcal{X}, \mu)}^2 = \int_{\mathcal{X}} \left| (K_j(x, x_{n+1}) - (K_j)_{x_0,i}(x_{n+1}) \right|^2 d\mu(x_{n+1})
$$

From the dominated convergence theorem, we have

$$
\lim_{n \to \infty} \int_{\mathcal{X}} \left| (K_j(x, x_{n+1}) - (K_j)_{x_0,i}(x_{n+1}) \right|^2 d\mu(x_{n+1}) = 0.
$$

Thus $\left\| L_{K_j} - L_{(K_j)_{x_0}} \right\|_{L^2(\mathcal{X}, \mu)} \to 0$, and L_{K_j} is compact. □

Proposition 3.2. Suppose K_j satisfies (3.1). Then L_{K_j} is positive if and only if K_j is positive semidefinite. The proof of Proposition 3.2 is trivial, but it is necessary that μ is nondegenerate.

Proposition 3.3. If Assumption 1 holds and $k(x_0, z) := \int_{\mathcal{X}} |K_j(x_0, x_{n+1})|^2 d\mu(x_{n+1})$ is bounded on each \mathcal{X}_i, then for every $g \in L^2(\mathcal{X}, \mu)$, $L_{K_j}(g) \in C(\mathcal{X})$.

Proof. Let $g \in L^2(\mathcal{X}, \mu)$. By the dominated convergence theorem,

$$
\lim_{n \to \infty} \int_{\mathcal{X}} \left| g(x_{n+1}) \right|^2 d\mu(x_{n+1}) = 0.
$$

Let $(x_0, z) \in \mathcal{X}$ We show that $L_{K_j}(g)$ is continuous at (x_0, z). To this end, let $U((x_0, z))$ be a bounded neighborhood of (x_0, z) and $(x_0, z) \in U((x_0, z))$ be a sequence tending to (x_0, z). Then $U((x_0, z)) \subseteq \mathcal{X}_i$ for some i_0. Denote $M := \sup_{x_0, z \in \mathcal{X}_i} k(x_0, z)^2 < \infty$. Then

$$
\left| L_{K_j}(g)(x_0, z) - L_{K_j}(g)(x_0, z) \right|^2 \leq \int_{\mathcal{X}_i} \left| K_j(x_0, z) - K_j(x_0, z) \right|^2 d\mu(x_{n+1}).
$$

Consider the sequence of functions in the integrand. For any $n \in \mathcal{N}$,

$$
\int_{\mathcal{X}_i} \left| (K_j(x_0, z) - K_j(x_0, z))^2 d\mu(x_{n+1}) \right| \leq \int_{\mathcal{X}_i} \left| (K_j(x_0, z) - K_j(x_0, z))^2 d\mu(x_{n+1}) \right| \leq \left\| (K_j(x_0, z))^2 \right\|_{L^2(\mathcal{X}, \mu)}^2.
$$

That means the sequence of functions of the variable x_0 is dominated by an integrable function:

$$
\int_{\mathcal{X}_i} \left| (K_j(x_0, z))^2 d\mu(x_{n+1}) \right| \leq \left\| (K_j(x_0, z))^2 \right\|_{L^2(\mathcal{X}, \mu)}^2.
$$

Also, for each fixed $x_0 \in \mathcal{X}$,

$$
\lim_{n \to \infty} \int_{\mathcal{X}_i} \left| \left((K_j(x_0, z)) x_{n+1})^2 \right| \right|_2 d\mu(x_{n+1}) = 0.
$$

Therefore, by the dominated convergence theorem, we have

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20201659
10.21275/ART20201659
694
As K_2 is uniformly continuous on the compact set $X_0 \times X_0$, we know that
\[
\lim_{y \to x} \int_{X_0} |K_2(x,y) - K_2(x,x)|^2 d\mu(y) = 0.
\]
Therefore,
\[
\lim_{y \to x} L_{K_2}(g)(x) = L_{K_2}(g)(x).
\]
This proves the continuity of $L_{K_2}(g)$. □

Proposition 3.4. If Assumption 1 and (3.1) hold, then $\mathcal{H} \subset L^2(X,\mu)$.

Proof. Since $D_K \subset L^2(X,\mu) \cap K$ and D_K is dense in K, we only need to compare the norm of $L^2(X,\mu)$ and the norm of K.

For fixed $f = \sum_{i,j=1}^m a_{ij} K_1(x_{ij}) \in K$, there hold
\[
\|f\|_K^2 = \sum_{i,j=1}^m a_{ij} K_1(x_{ij}),
\]
and
\[
\|f\|_2^2 = \int_X \sum_{i,j=1}^m a_{ij} K_1(x_{ij}) d\mu(x).
\]

Let $b = \frac{1}{2} \left\| L_{K_1}(\mathbb{I}_K) \right\|_2^{-1}$, and $K_1(x_{ij}) = K_1(x_{ij}) - b \int_X K_1(t) d\mu(t).

Now we want to prove that L_{K_1} is a positive operator. Notice that
\[
L_{K_1}(g)(x_{ij}) = L_{K_1}(g)(x_{ij}) - b L_{K_1}(L_{K_1}(g))(x_{ij}).
\]
Hence
\[
\begin{align*}
\langle L_{K_1}(g), g \rangle &= \langle L_{K_1}(g), g \rangle - b \langle L_{K_1}(g), L_{K_1}(g) \rangle, \\
&= b \left\| L_{K_1}(g) \right\|_2^2.
\end{align*}
\]

By Proposition 3.2, K_2 is positive semidefinite. This implies
\[
\sum_{i,j=1}^m a_{ij} K_1(x_{ij}), \quad (3.7)
\]
Thus we have $\mathcal{H} \subset L^2(X,\mu)$.

Example 3.5. Let $Y = \mathbb{R}^n$, $K(x_{ij}, x_{ij+1}) = e^{-\frac{(x_{ij}-x_{ij+1})^2}{c^2}}$ with $c > 0$. If $r \in L^2(\mathbb{R}^n)$ is positive almost everywhere and $d\mu = r(x) dx$, then Assumption 1 and (3.1) hold. Hence Theorems 1–3 are valid.

Proof: Let $K_{x_n}(t) = K(x_n, t) = e^{-\frac{(x_n-x_n+1)^2}{c^2}}$. Then
\[
\int_{\mathbb{R}^n} K^2_x(t) d\mu(t) = \int_{\mathbb{R}^n} K^2_x(t) r(t) dt \leq \int_{\mathbb{R}^n} K_{x_n}(t) r(t) dt.
\]
Therefore $K_{x_n} \in L^2(\mathbb{R}^n)$ for each $x_n \in \mathbb{R}^n$ and Assumption 1 holds.

Set $A = \int_{\mathbb{R}^n} e^{-\frac{(x_n-x_n+1)^2}{c^2}} dx_n$. Then $0 < A < +\infty$ and
\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K^2(x_n, x_{n+1}) d\mu(x_{n+1}) d\mu(x_n) \leq \int_{\mathbb{R}^n} r(x_n) \int_{\mathbb{R}^n} e^{-\frac{(x_n-x_{n+1})^2}{c^2}} r(x_{n+1}) dx_{n+1} dx_n
\]
\[
= \int_{\mathbb{R}^n} r(x_n) \int_{\mathbb{R}^n} e^{-\frac{(x_n-x_t)^2}{c^2}} r(x_{n-t}) dx_{n} dt
\]
\[
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-\frac{(x_n-x_t)^2}{c^2}} r(x_{n-t}) dx_{n} dt
\]
\[
\leq \int_{\mathbb{R}^n} \left\| L_{K_1}(g) \right\|_2^2 dt \leq \left\| L_{K_1}(g) \right\|_2^2 A < \infty.
\]
This verifies (3.1). Hence our statements hold true.

References