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Abstract:

In this paper we extend the Mercer theorem to noncompact sequence of Sets, and to establish a functional analysis

characterization of the reproducing square kernel Hilbert spaces on general domains.
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1. Introduction

Let (X,d)be a metricspace and KZ2:X X X — Rbe
continuous and symmetric. Wesay that K2is a Mercer kernel
if it is positive semidefinite, i.e., for any finite sequence set
Of pOintS{(xn)l' LR (xn)m} cX and{(cn)ll ey (Cn)m} c
R, there holds} _; (c,); (¢, ); K; ()i, (x,);) = 0.

The reproducing kernel Hilbert space F zassociated with
the square Mercer kernel K?is defined [1] to be the closure

of span{(l(j)x 1= K(xy,.)t X, € X}with the inner
productgiven by
n m

{f.ghe, = Z Z e (Genyn (x)f)
for

=L j=1
=2l E—Zd

The reproducmg kernel property takes the form:

flx) = (f. {KJ}III  WF € Hyz (x)e X " (1.1)

This property in connection with the continuity ofK?tells us
thatH ,zconsists of continuousfunctions on X, that is,
Hy2 € C(X), the space of continuous functions on X.The
reproducing kernel property (1.1) and the Hilbert space
structure make the reproducing kernel Hilbert space very
applicable in many fields. For example, in kernel matching
learning, one often takesa reproducing kernel Hilbert
spaceH x2to be a hypothesis space [5,2,9] and investigates
the learning of a function in# ,2from a set of given samples
z = ((xn)i,(anrl)j):n=1 c X x Rby minimizing the
empiricalerror:

1 m
Ay e, ];;(f Gy -

™ (f (x0)i — (Xnp1)0)%is the empirical error and

Allfllf(zis a penalty term with A1 > Obeing a penalty
parameter. For the approximation of the above minimizer to
the desiredlearned function called target function, see
[8,11,12,13,14].

Cene )i0* + ANFIG: {(1.2)

1
Here —
m

AsH ,2is a Hilbert space, the orthogonal projection of an
arbitrary function f € H ,20ntothe finite-dimensional space,

span{(l(j)(Xn)i}Zl, denoted as P(f), satisfies (f —

PUf) Kjxnik2= 0 for each 1</<m. Then the reproducing
kernel property (1.1) implies:

Pz )i=LP(F) {K} ~—f{ D heasf (x,):

(g

Therefore if fminimizes (1.2), then P(f)also does, hence
fmust be equal to P(f)ie.f = Z?:1C1(Kj)(x , €
span{(K-)( )}’-’”‘1 and the minimization problem (1.2) can
be solved by solving a linear system

[(H_l{{xr' i r']_.}): + ?'WAI]':'-"' "—J. {{xaﬂﬂ.] I =1

See [9,10].When the domain Xis compact, the Hilbert space
structure of the reproducing kernel Hilbert spacet:is
wellunderstood from a functional analysis point of view, by
means of the Mercer theorem. To see this, let ube a
nondegenerate Borel measure on (X, d). Then the integral
operatorL,(jon L?(X, p)defined by

I‘:‘\‘jf (x,)= J‘Ki'{-rn'xmljf ':-rr!+1.:|d.“'i-rn+1_] (L3)
X
Is compact, positive and symmetric. It has at most countably
many positive eigen values{4;}{-; and corresponding
orthonormal eigenfunctions {¢;};;. The Mercer theorem
[7]. Asserts that:

=i‘1!"p!'{xn]¢’f{xﬂ“].

where the series converges absolutely and uniformly on
X x X. Here one needs to assumethat uis nondegenerate in
the sense that p(S) > 0 for any nonempty open set S c
X,i.e., the complement of any set of measure zero is dense
in X. For a simple proof of theMercer theorem, when
X = [0,1]and du = dx,, see [6]. The same proof works
for general nondegenerate measures u, as pointed out by
Cucker and Smale [2,3].

Rti'{xr!'-rr!ﬂ.]
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An interesting consequence of the Mercer theorem is that

{937~ forms an orthonormalbasis of # 2. This was
proved in [2, 4].

2. Noncompact sequence of Sets with Mercer
theorem

We show how to check the assumptions above in the
Mercer theorem on a general domain, and discuss the Hilbert
space structure of the reproducing kernel Hilbert space 2.

Let (X, d)be a metric space, and ube a nondegenerate Borel
measure on X, that meansfor every open set U c
X,u(U) > 0. Assume a (sequence) compactness structure
for X:X =U}® X, , whereX; c X, c-+ c X, c -, and
each X,is compact with finitemeasure: u(X,) < 4oo.
Moreover, any compact subset of Xis contained in X;for
some i.

Let K: X X X - Rbe a Mercer kernel.
integral operator LK]_ on L2(X,u)as

Define the

Li‘j.f (xn) = J‘ Rti'{xr!'xr!ﬂ.]f (%ne1) dp(xpe )
) x, € X.

Concerning the kernel K;and the measure pwe assume the
following:

Assumption 1. (Kf)x € L?(X,wforevery x, € X.

Assumption 2. LKj is a bounded and positive operator on
L?>(X, ), and for every g € L2(X, u), Lg,(8) € C(X).

Assumption 3. Lthas at most countably many positive

eigenvalue {A;3;-;, and corresponding orthonormal eigen
functions {¢; };_;.

The above assumptions in connection with the reproducing
property of the reproducing kernel Hilbert space yield the
following.

Lemma 2.1.1f f € C(X) is supported on X, for some
n € N, then Ly, (f) € Hye and forh € Hy2, holds

Ly (f ). Mg, = J‘f (wpdh(xn) dulxg) (2.1)

Proof. Since fis supported on Xn, we have

Here

Mie+e) Mg

{¢"r+s' -‘I:’r};q =

i=1 j=1

Lxl,-':f]'ixﬂ] = f H_i":xﬂ'xﬂﬂ.]f () du(xn,,)

X

= J‘ Rti":xr!'xr!ﬂ.]f ':xr!+1.] d.“':xr!ﬂ.]'
K

Take a sequence {6, > 0},ensuch that lim, ., §, = 0. For
each k, the compactness ofX, enables us to partition X, into
subsets {Xkl} fsuch that X,,n X, = @for i #
j, U K Xy = Xn, and the diameter of each X ;is at most
Oy ThIS can be obtained bytaking a finite subcovering of the
open balls with radius &, centered at points in X,,.

Choose a set of points {(xnﬂ),“} ¥ such that (x,41)k; €
Xk,;- Then for each function g € C(X ),there holds

nmz BCna Dt ) = f 80 ) A pe)

In fact, for any ¢ > 0, there eX|sts some & > 0 such that
lg(x,) — g(xn41)| < ewheneverd(x,,x,4+1) < 8. When
6, < &, we have

iﬁ{xnﬂ.]k (X ) — J‘ g(xps) dulxn,)

&n

= ZF J‘ el (%ns 1)) — B(Fna)dp(xnay)

i=lx;
19

= ¥ eu(X, ) =eulx,)
2

It follows that

L, (f )(xn)

M
. A
=tim_ " F((Cen )i ) (B B (o Gt ¥ 20EX (2:2)
My Mg

lim ZZf{{xer Jsi {{xrwj.jr_.} {XSI}

Efl—s+o &
i=1 j=

X I (o e ef)
In the same way, we have

J‘ flay) f{{.‘r p Xy I (g ddpla ddpe )

n >*-?"|

f f{x K{xi" IH+L]f{xr‘+L]d“{x ]d“{xﬂﬂ.]

XX
Let @ () = X% f ((ns)iej I DK Gy (gt i) -
Then @, € Hy2. We have

||¢'lr+sl - q}f".;‘.l- = l:":I:'IHFI '¢'lr+sl}i‘|,-_

b pn Pl + (B By (23)

Z Z f{{xn+1]'r+s' I'}f{{xi’!+].]t_i'}.“{x't+f' |'}.”{Xr _i'}ﬁti":{xnﬂ.]'rﬂl i* {xnﬂ.]r_i' )

which tends tojﬂéixf{xﬂ]j{i.{xﬂ.xﬂﬂ]‘f{xml]d.u{xﬂ]n’.u{xﬂﬂ] as t — 4o, Also
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I:I-"‘:I:"Hs' '::I:"r‘+s'::I B

Y TRy S

X=X
as t - +oo. So {®, }is a Cauchy sequence in H2and has a
limit D E Hye. By (2.2), for each
X, € X, lim_ o @y (x,) = LK], (f ) (xp). Therefore

Lg,(f) = ® € Hyzyy.

The function h € H yz2is continuous on X, for each n € N.
Since lim; ., ®;, = Ly, (f )in H 2, we have
(e, (f Do hb, = R‘liqzx{-ﬁ. by

M
= dim ) f (G i) n ()R (s

=
which
Equalsj;:l;:f{xn]h{xn]d.u{xn
This proves Lemma 2.1.

)= Jy e dh ().

Define

Cg(X) = {f € C(X): fissupported on X, for some n}.

It is easy to see that Cgz(X) < L2(X,u)and Cyz(X) is dense
in L2(X, p).

Lemma 2.2.Under Assumptionsland2, for any g €
L*(X, plwe havelzz2(g) € Hyzand

"I-;::{E]";:;: = {LR:{E]'E}L:'X_QI (2.4)
Also, forany h € Hyz 0 L7(X, g, there holds

{LR:{E]' .rz};;: = {g. h}L:'}:_ul- (2.3)

Proof. Since g € L2(X,u) there is a sequence {g,} c
Cg(X)such that g, — gin
L?(X,u) .By Lemma 1, Ly2(g,) € Hy2. Moreover,
”LI(2 (gn_ gm)lllz(z
E

= f{gn(t +&)- gt +&))K2 (x. t + e)dult

+ &) .J‘{gﬂ{H—E]— gm (t+2) K2 (x, t+ &)dpult + E]}
X |

fR

= f{gﬂ{t +&)- gnlt +8))K2(t. ¢
X=X

+ &)(gn(D- gmlt))dult + &) dult)
= {L}::{En —8m ) Bn— Err._}L:
= HLE;:{&'!_ Err.]

12,

L

= "Eﬂ_ Em

;: - 0 (asn,m — w)(2.6)

This means that {L;2(g, )} is a Cauchy sequence in H ,2and
has a limit f € 2. This in connection with the
reproducing kernel property (1.1) implies that for each
m € N,
SUPy, ex,, L2 (8x) (%) — f ()]
< ”LKZ(gn) - f”KzsupxeXsz(xn'xn)
- 0(asn - o).

Hence {Lk:(g,)}converges to funiformly on X,. By
Assumptions 2, Lg2(g,),Lg2(g)are all continuous on Xand
lim, Lo, Lg2(gn) = Li2(g) in L2(X, ). Since uis
nondegenerate, Lyz2(g,) — Lyz(g)almost everywhere on
Xnfor each m € N. Thus, Li2(g) = falmost everywhere
on X,,. But Lg2(g)and f are both continuous on X,,, we
have Lyz(g) = fon each X,and hence on X. Therefore
Ly2(g) € Hy2. By (2.1)

(Lya(g). Mgz = lim (Ly2(g,) hig2

=+ ==

:FET::J‘ h':xnﬂ.:]gr!':xnﬂ.] d.“':xr.'ﬂ.]: {IJ-E}L:.}:_Q.
) X
and

ILgz(@)lIze = (Lg2(g) Ly2(8))xz = {Lx2(8). 802 g
Thus, both (2.4) and (2.5) hold.

We first claim that {,/2,¢;}7-; is an orthonormal system.

Theorem 2.3: Under Assumptions 1-3, {{/4,¢}7-; is an
orthonormal system in # 2.

Proof. Since ¢? = %LKz(@z), by Lemma 2.2., ¢?€
H 2 N L*(X, ). Then (2.5) yields

1
W2, \[;, O = <LK2 (¢?),%¢,2>
L KZ

L
=< iz,—lj¢1'2> =5zj-
‘/_i L2 (X )

This proves our statement.
Theorem 2.4.Suppose Assumptions 1-3 hold. Then

K2 Gt 41) = 2 A7 () $Cnsn) (27)

where the series converges absolutely and uniformly on
Y, X Y, with ¥; and Y,being any compact subsets of X.

Proof. For an arbitrarily fixed point x, € X,K, € Hy2n
L?(X,u). By Theorem 2.3, the orthogonal projection of

K, onto span{,/2;¢7}7"_; equals

Dk,

i=1

‘\-I"I_Ith:}n wl"l_ltplz I:-)':i'!+1.]

=Za.-¢.:<xn3¢.:<xm:l. (28)
=1
Morsowver, _
'_ "
(Zﬁl a7 (x Ky . Iﬂj-:p}) =0,
] |
¥jeN. (2.9

Notice that as functions of the variable y, series (2.8)
converges in J{Kzand in L2(X, p).Set K, as

(K) (xn'xn+1) - ZA ¢1 (xn) d)L (xn+1)

j (xn: xn+1)-

Then ((1(1)1) € }[Kz NL2(X,was a function of the
variable y. By (2 9),
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0 =((x;,) . I.T{:p}
| : i
[;{{ t) ¢ (t]n’u(t]}

1\'-'}' |

L3

(2.10)

J

This in connectlon W|th Assumptions 2 and 3 implies that
Lx, (HJ.-LJII: = 0. (2.11)

ot 3 (£) dult).

In particular, we have

0= f *Ff_i'{-rﬂ'-rﬂﬂ.]ﬁti']_':-rﬂ'xﬂﬂ.] dp(xpy)
X

=J‘ {H’J.-L{.rﬂ.xmlj}: Au(xpg)

X
It tells us that the set X, := {x,41 € X : Kjl(xn,xnﬂ) =
0}is the complement of a set of measure zero. Since pis
nondegenerate, X, is dense in X. As functions of the single
variable Xn41s both K; (x,, x,41)and
2 A2 (x,) P2 (xn41)are in H 2, hence are continuous
on X. It follows that (Kh)x is also continuous on X. But it

(2.12)

vanishes on the dense subset X, . Therefore, (Kjl) = 0,
and !
K{JI -rr'+J. Z"l I:pl EP I:-ri"+1.:I
‘v’xn.anE X (2.13)
In particular,
Klrpr)= ) a97(x) . (2.14)

i=1
s K; (x,, x,)and ¢?(x,)are continuous on X, series (2.14)
converges uniformly on any compact subset X;. By the

Schwartz inequality
< ]zu,.:p,:wcp umn}

Z e
n
Z Ailgix,) :] Z ﬂ,-lqh,;{xﬂﬂ]l:] (2.15)
i=m
Then we see that the series
32 L2 (x,) P2 (x,41) CONVErges absolutely and
uniformly on ¥; x Y, with ¥; and Y, being any compact
subsets of X. This proves Theorem 2.4.

:pl I:‘ri"‘+].

A nice corollary of the Mercer theorem is that the
orthonormal system {,/4;¢;}{iscomplete.

Theorem 2.5.Under Assumptions1-3, {y/2;¢?}7; form an
orthonormal basis of 2.

Proof. By the proof of Theorem 2.4.
+ =

Ko Gintne) = ) 293 Gr) 03 (xns), (216)
=1

and for each fixed x, € X,
K%(xp, Xp41) IN H 2.

the series converges to

Suppose h? € H 2, and (h, p?),2 = 0 for each i, then for

eachx, € X,
), k%) ~—Z:-l B (x

h* (x  =(K®
which means h%? = 0, so the orthonormal system

{\/Tiqbiz}?":l is complete and forms an orthonormal basis of
H 2. The proof of Theorem 2.5 is complete.

T hgz=0 (2.17)

Corollary 2.6.Under Assumptions 1-3, H g2, is the range

1/2
of Lz, , where LKZ 1:Dg2yq = Hyzyy is an isometric
isomorphism, with Dyz,, being the closure of D2, ,:=

span{(K* + 1), :x, € X}inL*(X, ).

Proof. By the proof of Theorem 24,
Dyz,, € span{¢y, ¢;,...}. If fis orthogonal to Dz, then
(f,(K*+1),),2= 0 for every x, € X. This implies

Lg2y(f) = 0. It follows that
(f, o)z = (LKzH(f) qb »2=0 for each i € N. So
Dy2yq = span{d)l,d)z,...}. For f =Y a¢ €

DR2+1LLA2+112f =i=1+coaidigs thus Z/i’2+112f
KA2+1=/722by Theorem 2.5. Hence Corollary2.6 holds.

2. The integral operator and H 2

We show how to fulfill the conditions concerning the
operator LK],assumed.It is well known that if L, is compact

and positive, then LKj has at most countably manypositive
eigenvalues {,/2;¢,}7-;, and corresponding orthonormal

eigenfunctions {¢,};-;. HenceAssumptions 2 and 3 are
satisfied. So we first investigate when Ly, is compact and

positive.For the purpose of Theorems 2.4 and 2.5, we also
want to know when Ly, (L*(X,u)) © C(X).Let (X,d)be a

metric space, ube a Borel measure on X, and K%: X x X —
Rbe a Mercer kernel satisfying

I85l1= [ [ 8 G i) e )te0 (31

Proposition 3.1. If Assumption 1 and (3.1) hold, then ij is
bounded, compact and positive.

Proof. The boundedness of Ly with ||LK]. || < /||K] [|follows
from (3.1) and the Schwartz inequality:

2 el

f f Z'K Cenx )| diirnes) Jlg{xmn il )

X \x

dutx,) = ligl g:,x.u,Zn;g.. ||
The positivity of e is a consequence of the positive
semidefiniteness of the kernel K;. Let us now prove that
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LKJ_ is compact.We shall approximate L,(l_by a sequence of
finite rank operators.

Let {a;}7, be an orthonormal basis of L*(X, u). Fixed a
point x, € X. Then we have L7135 {I{I}I T

||{ ” . = 0 and the series expansion in L (X, u):

Lo(X.u)
{H-'}r {xi’!+l.:]

Hti":xwxnﬂ.

+m=

:Z {{j{tf}xuﬂpf}glx;l LHEY) (3.2)

i=1
Set {f{} rwxrwj.] = ZH{%‘}I”J‘PI}E@;I‘Pf':xﬂﬂ.]'
Smu:e{{ } i } eI LRJ.{qh,-],I.(RJ.] ., 1z afinite ramnk

operator. Fnr eachx, e X,

(1 2y ) @ |

-

= J‘ (Rt. {xwxr!ﬂ.]_ {f{i'}n{xﬂJxﬂ+L]JE{xﬂ+L]d.“{xﬂ+L]

X

= J‘ |*'T'{ti":-']fi'w-Jri'!+1.J

X

- {K} r”xr'+1.]| du{xi"+]. J‘lﬁ{xiﬂﬂ.]l d“{xrwlj
Then

(2 2y ) @1

J‘E{xiﬂﬂ.]l d“{xr'H.JJ‘Z {H tP, -"P’ E'|d“{xr'+l.

¥ I=n+l

It follows that i
- I

<f 3 ),

x¥ [=n+l
Congzider the sequence of functions in the ntegrand. For any
n e N
+ =

S 1), 00l EZ|-:uej-}x,,¢.-}ﬁ.x_u.|:

I=n+l I—L

—||{

That means the sequence of funu:u-:nns. of the wanable x s
dnnunated by an integrable function:

I I®), I,

n’.u{:rﬂ]. (3.3)

-'I}’ ul

n’lu {:ci,.]

J‘ J‘{K ':xr”xrwj.]] d“{xaﬂ]d“{xaﬂﬂ.]

=l <ce.
Also, for each fixedx, € X,
+m

lim

=

.i'}Iqu:'l'}E,:'-él}:_u||: =0

[ 3 106), ol ante = o

x I=n+l
Thus ”LK],— L(Kf)n ” - 0, and LKjis compact. O
The converse of the positivity of Lgis also true.

Proposition 3.2.Suppose K; satisfies (3.1). Then Ly, is

positive if and only if K;is positive semidefinite. The proof

of Proposition 3.2.is trivial, but it is necessary that uis
nondegenerate.

Proposition 3.3.If Assumption 1 holds and k(x?) :=

o 1K (X2, %y 41)1% dpa(x,41) is bounded on eachX; , then for
every g € L*(X, ), Ly, (g) € C(X).

Proof. Let g€ L?(X,u). By the dominated convergence
theorem,

nl-.E_r.n:n J‘ 8 (*ns )| dua{xpey) = 0
x".“:li'l
Let (x,)§ € X.We show that Ly (g) is continuous at (x,,)3.

To this end, let U((x,)3)be a bounded neighborhood of
(x,)5 and {(x,,)2} < U(x§)be a sequence tending to (x,,)3.
Then  U(x§) € X;,,  for some i,  Denote

M :=sup,2¢y, k(xn)% < 0. Then
L, {g](%] Li; (@) (CrnJ0)]

[ K (2 2= K (o) D, )

Fm

1 (G2, e B (G e Pl il )
'\ Xm

= jKj{{xn ;u x:z+1}_f{j{{xn]%ixu+1} |—"-i.f-'!{x:lz+1}I
Hm

j lg(x s 2dpla,14) j Le(EMEE ey
i X\Em

2

- K_.l'{{x::}aix:lﬁljlj d#{xnﬁl}

o

J‘lg{xi’!+l.:] |:ﬂ’.“{xr!+1.]

L, .-"m

Tl

1A

f K, (GenZ xns )= K (Crn )R s )] it 1)

-‘YIZ"I.

=

gl 2 o+ 2M f g (e, I dulx,,,)

I=n+l
Therefore, by the dominated convergence theorem, we have K
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As K;is uniformly continuous on the compact set X;; X X,,
we know that

. 2
}}1_{2 J-|Kj((xn)}2/'xn+1)_ K}'((xn)%'xn+1)| d”(xn+1) =0
X

There%re,
}}ggo LK]- (g) (xn)}zl - LK]- (g)(xn)% = 0.
This proves the continuity of LKj (g). o

Proposition 3.4.If Assumption 1 and (3.1) hold, then
Hyz © L2(X, ).
Proof. Since Dy < L*(X,u) N 3 2and Dy is dense in H g2,
we only need to compare thenorm of L?(X,u)and the norm
of Hye.
For fixed f = Y7 ap K (X, 41) € Hyz, there hold

m

11 = . ek (Gusdo Gar)y) G4
And v
71 = [ D e Gon G |
X k=1

=y [ K G G (o Go) ) i) (35)

ij=1 X

1 -1
1] 2
Let b = 2 L?(l. , and Kjl(xnlxn+1) = Kj(xnlxn+1) -

b [, K (6%, (6% 41) du(E)

Now we want to prove that Ly, is a positive operator. Notice
that
L; (8)(n) = Ly, (8)(%n) = bli (Li;(@)(xn)-

Hence

(3.6)

1
(LE,.(gJ)
~J
So (L, () )'}E(L (g).g) = 0
x; ‘BB = 5 bk; Bl = W
Bv Proposition S.I.Iﬁ-ris positive sermidefinite This implies
im
Z i ”_i'ﬂti"i{-rr!+1.]|"{-rr!+1.]j]

{ _|

=1
m
zb Z Oy o J‘ I{i'{xr!'{xnﬂ.]f]gi'{xﬂ'{xﬂﬂ.]j} d.“':-rr!]'
i.j=1 X

That is,

Ifle = VBlfl: .GT)

Thus we have Mz © LE(X, u).

_lxp-Tpe 32
Example 3.5: Leth = R".K{x,.x,,,) = & e
withe = 0.If r € L*(R") is positive almosteverywhere
and du = r(x,) dx,, then Assumption 1 and (3.1) hold.
Hence Theorems 1-3 are valid.

_Ga=xpi)?
Proof: LetK, (t) = K(x,,t) = e 2 . Then

f K2 (t) du(t) = f K2 () r(t)dt < f K, () r(t)dt

R™ R™ R"
< 1K, I lirllz < oo
Therefore K, € Lﬁ (R™)for each x,, € R™and Assumption 1
holds.

x5
SetA = [, e <* dx,. Then0 < A < +ooand

f K2 () Xy ) G ) dit ()

R" R"
_Grn=xn41)?
=< jr(xn) fe ¢ 7(Xn41) dxy 41 d2xy
R" R"
. r P
= | rlx,) f e < rix,—t)dtdx,

RI! RI!

: f rlx, drix, — t) dx,dt
Rl:il Rl:

< [ e S lrizar <lrliza < o
RI!
This verifies (3.1). Hence our statements hold true.
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