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1. Introduction 
 

Let (𝑋,𝑑)be a metricspace and 𝐾2: 𝑋 ×  𝑋 →  𝑹be 

continuous and symmetric. Wesay that 𝐾2is a Mercer kernel 

if it is positive semidefinite, i.e., for any finite sequence set 

of points  𝑥𝑛 1 , . . . ,  𝑥𝑛 𝑚   ⊂  𝑋 and  𝑐𝑛 1, . . . ,  𝑐𝑛 𝑚  ⊂
 𝑹, there holds  𝑐𝑛 𝑖 𝑐𝑛 𝑗𝐾𝑗 ( 𝑥𝑛 𝑖 ,  𝑥𝑛 𝑗 )𝑚

𝑖 ,𝑗=1  ≥ 0. 

 

The reproducing kernel Hilbert space ℋ𝐾2 associated with 

the square Mercer kernel 𝐾2is defined [1] to be the closure 

of span  𝐾𝑗  𝑥𝑛
: =  𝐾𝑗 (𝑥𝑛 , . ) ∶  𝑥𝑛 ∈  𝑋 with the inner 

productgiven by 

 
for 

 
The reproducing kernel property takes the form: 

 
 

This property in connection with the continuity of𝐾2tells us 

thatℋ𝐾2consists of continuousfunctions on 𝑋, that is, 

ℋ𝐾2 ⊂  𝐶(𝑋), the space of continuous functions on 𝑋.The 

reproducing kernel property (1.1) and the Hilbert space 

structure make the reproducing kernel Hilbert space very 

applicable in many fields. For example, in kernel matching 

learning, one often takesa reproducing kernel Hilbert 

spaceℋ𝐾2 to be a hypothesis space [5,2,9] and investigates 

the learning of a function inℋ𝐾2from a set of given samples 

𝒛 =    𝑥𝑛 𝑖 ,  𝑥𝑛+1 𝑗  𝑖=1

𝑚
⊂  𝑋 ×  𝑹by minimizing the 

empiricalerror: 

 

Here 
1

𝑚
  𝑓  𝑥𝑛 𝑖 −   𝑥𝑛+1 𝑖 

2𝑚
𝑖=1 is the empirical error and 

𝜆 𝑓 𝐾2
2 is a penalty term with 𝜆 > 0being a penalty 

parameter. For the approximation of the above minimizer to 

the desiredlearned function called target function, see 

[8,11,12,13,14]. 

 

Asℋ𝐾2 is a Hilbert space, the orthogonal projection of an 

arbitrary function 𝑓 ∈ ℋ𝐾2ontothe finite-dimensional space, 

span  𝐾𝑗   𝑥𝑛  𝑖
 
𝑖=1

𝑚

, denoted as 𝑃(𝑓), satisfies  𝑓 −

𝑃(𝑓),𝐾𝑗𝑥𝑛𝑖𝐾2= 0 for each 1≤𝑖≤𝑚. Then the reproducing 

kernel property (1.1) implies: 

 
 

Therefore if 𝑓minimizes (1.2), then 𝑃(𝑓)also does, hence 

𝑓must be equal to 𝑃 𝑓 ,i.e.,𝑓 =  𝑐𝑖 𝐾𝑗   𝑥𝑛  𝑖
𝑛
𝑖=1 ∈

 span{ 𝐾𝑗   𝑥𝑛  𝑖
}𝑖=1 
𝑚 and the minimization problem (1.2) can 

be solved by solving a linear system 

 
 

See [9,10].When the domain 𝑋is compact, the Hilbert space 

structure of the reproducing kernel Hilbert spaceℋ𝐾2 is 

wellunderstood from a functional analysis point of view, by 

means of the Mercer theorem. To see this, let 𝜇be a 

nondegenerate Borel measure on (𝑋,𝑑). Then the integral 

operator𝐿𝐾𝑗 on 𝐿2(𝑋, 𝜇)defined by 

 
Is compact, positive and symmetric. It has at most countably 

many positive eigen values{𝜆𝑖}𝑖  =1
∞  and corresponding 

orthonormal eigenfunctions {𝜙𝑖}𝑖 =1
∞ . The Mercer theorem 

[7]. Asserts that: 

 
where the series converges absolutely and uniformly on 

𝑋 ×  𝑋. Here one needs to assumethat 𝜇is nondegenerate in 

the sense that 𝜇(𝑆)  >  0 for any nonempty open set 𝑆 ⊂
 𝑋,i.e., the complement of any set of measure zero is dense 

in 𝑋. For a simple proof of theMercer theorem, when 

𝑋 =  [0, 1]and 𝑑𝜇 =  𝑑𝑥𝑛 , see [6]. The same proof works 

for general nondegenerate measures 𝜇, as pointed out by 

Cucker and Smale [2,3]. 
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An interesting consequence of the Mercer theorem is that 

{ 𝜆𝑖𝜙𝑖}𝑖  =1
∞  forms an orthonormalbasis of ℋ𝐾2 . This was 

proved in [2, 4]. 

 

2. Noncompact sequence of Sets with Mercer 

theorem 
 

We show how to check the assumptions above in the   

Mercer theorem on a general domain, and discuss the Hilbert 

space structure of the reproducing kernel Hilbert spaceℋ𝐾2 . 

 

Let (𝑋,𝑑)be a metric space, and 𝜇be a nondegenerate Borel 

measure on 𝑋, that meansfor every open set 𝑈 ⊂
 𝑋, 𝜇(𝑈)  >  0. Assume a (sequence) compactness structure 

for 𝑋:𝑋 =  𝑋𝑛
+∞
𝑛=1  , where 𝑋1 ⊂  𝑋2 ⊂ ⋯  ⊂  𝑋𝑛 ⊂ ⋯, and 

each 𝑋𝑛 is compact with finitemeasure: 𝜇(𝑋𝑛)  < +∞. 
Moreover, any compact subset of 𝑋is contained in 𝑋𝑖for 

some 𝑖. 
 

Let 𝐾 ∶  𝑋 ×  𝑋 →  𝑹 be a Mercer kernel. Define the 

integral operator 𝐿𝐾𝑗 on 𝐿2(𝑋, 𝜇)as 

 
Concerning the kernel 𝐾𝑗 and the measure 𝜇we assume the 

following: 

 

Assumption 1.  𝐾𝑗  𝑥𝑛
∈  𝐿2(𝑋, 𝜇)for every 𝑥𝑛 ∈  𝑋. 

 

Assumption 2. 𝐿𝐾𝑗 is a bounded and positive operator on 

𝐿2 𝑋, 𝜇 , and for every 𝑔 ∈ 𝐿2(𝑋, 𝜇), 𝐿𝐾𝑗 (g)  ∈  𝐶(𝑋). 

 

Assumption 3. 𝐿𝐾𝑗has at most countably many positive 

eigenvalue {𝜆𝑖}𝑖  =1
∞ , and corresponding orthonormal eigen 

functions {𝜙𝑖}𝑖  =1
∞ . 

 

The above assumptions in connection with the reproducing 

property of the reproducing kernel Hilbert space yield the 

following. 

 

Lemma 2.1.If 𝑓 ∈  𝐶(𝑋) is supported on 𝑋𝑛  for some 

𝑛 ∈  𝑵, then 𝐿𝐾𝑗 (𝑓 )  ∈  ℋ𝐾2  and for ∈  ℋ𝐾2 , holds 

 
Proof. Since 𝑓is supported on 𝑋𝑛 , we have 

 
Take a sequence {𝛿𝑘 >  0}𝑘∈𝑵such that lim𝑘→∞ 𝛿𝑘 =  0. For 

each 𝑘, the compactness of𝑋𝑛enables us to partition 𝑋𝑛 into 

subsets {𝑋𝑘 ,𝑖}𝑖=1
𝑚𝑘 such that 𝑋𝑘 ,𝑖 ∩  𝑋𝑘 ,𝑗 =  ∅for 𝑖 ≠

 𝑗 , 𝑋𝑘 ,𝑖
𝑚𝑘
𝑖=1 = 𝑋𝑛 , and the diameter of each 𝑋𝑘 ,𝑖 is at most 

𝛿𝑘 . This can be obtained bytaking a finite subcovering of the 

open balls with radius 𝛿𝑘centered at points in 𝑋𝑛 . 
 

Choose a set of points {(𝑥𝑛+1)𝑘 ,𝑖}𝑖=1
𝑚𝑘 such that (𝑥𝑛+1)𝑘 ,𝑖 ∈

 𝑋𝑘 ,𝑖 . Then for each function g ∈  𝐶 𝑋𝑛 ,there holds 

 
In fact, for any 𝜀 >  0, there exists some 𝛿 >  0 such that 

|g(𝑥𝑛)  −  g(𝑥𝑛+1)|  <  𝜀whenever𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛿. When 

𝛿𝑘 ≤ 𝛿, we have 

 

 

 
In the same way, we have 

 
Let Φ𝑘(𝑥𝑛)  =  𝑓 ((𝑥𝑛+1)𝑘 ,𝑗  )𝜇(𝑋𝑘 ,𝑗 )𝐾𝑗 (𝑥𝑛 , (𝑥𝑛+1)𝑘 ,𝑗 )

𝑚𝑘
𝑗=1  . 

Then Φ𝑘 ∈  ℋ𝐾2 . We have 

 
Here 
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as 𝑡 → +∞. So {Φ𝑘}is a Cauchy sequence in ℋ𝐾2and has a 

limit Φ ∈  ℋ𝐾2 . By (2.2), for each 

𝑥𝑛 ∈  𝑋, lim𝑘→∞ Φ𝑘(𝑥𝑛) =  𝐿𝐾𝑗 (𝑓 )(𝑥𝑛). Therefore 

𝐿𝐾𝑗 (𝑓 )  =  Φ ∈  ℋ𝐾2+1. 

 

The function  ∈ ℋ𝐾2 is continuous on 𝑋𝑛 for each 𝑛 ∈  𝑵. 

Since lim𝑘→∞ Φ𝑘 =  𝐿𝐾𝑗 (𝑓 )in ℋ𝐾2 , we have 

 
which  

 
This proves Lemma 2.1.  

 

Define 

𝐶𝐵(𝑋)  =  {𝑓 ∈  𝐶(𝑋) ∶  𝑓is supported on 𝑋𝑛 for some 𝑛}. 

It is easy to see that 𝐶𝐵(𝑋)  ⊂  𝐿2(𝑋, 𝜇)and 𝐶𝐵(𝑋) is dense 

in 𝐿2 𝑋, 𝜇 . 
 

 
 

Proof. Since g ∈ 𝐿2 𝑋, 𝜇  ,there is a sequence {gn}  ⊂
CB(X)such that g𝑛 →  gin 

𝐿2 𝑋, 𝜇  .By Lemma 1, 𝐿𝐾2 (g𝑛)  ∈ ℋ𝐾2 . Moreover, 

 𝐿𝐾2 g𝑛–  g𝑚   𝐾2
2  

 

 
This means that {𝐿𝐾2(g𝑛)} is a Cauchy sequence in ℋ𝐾2 and 

has a limit 𝑓 ∈  ℋ𝐾2 . This in connection with the 

reproducing kernel property (1.1) implies that for each 

𝑚 ∈  𝑵, 

sup𝑥𝑛∈𝑋𝑚 |𝐿𝐾2 (g𝑛)(𝑥𝑛) −  𝑓 (𝑥)|

≤  𝐿𝐾2(g𝑛)  −  𝑓 𝐾2sup𝑥∈𝑋𝑚𝐾
2(𝑥𝑛 , 𝑥𝑛)  

→  0 (as 𝑛 → ∞). 

Hence {𝐿𝐾2 (g𝑛)}converges to 𝑓uniformly on 𝑋𝑚 . By 

Assumptions 2, 𝐿𝐾2(g𝑛), 𝐿𝐾2 (g)are all continuous on 𝑋and 

lim𝑛→∞ 𝐿𝐾2 (g𝑛) =  𝐿𝐾2 g   𝑖𝑛 𝐿2(𝑋,𝜇). Since 𝜇is 

nondegenerate, 𝐿𝐾2(g𝑛)  →  𝐿𝐾2 g almost everywhere on 

𝑋𝑚 for each 𝑚 ∈  𝑵. Thus, 𝐿𝐾2 (g)  =  𝑓almost everywhere 

on 𝑋𝑚 . But 𝐿𝐾2 (g) and 𝑓 are both continuous on 𝑋𝑚 , we 

have 𝐿𝐾2 (g)  =  𝑓on each 𝑋𝑚and hence on 𝑋. Therefore 

𝐿𝐾2 (g)   ∈ ℋ𝐾2 . By (2.1) 

 

 
and 

 
Thus, both (2.4) and (2.5) hold. 

We first claim that { 𝜆𝑖𝜙𝑖}𝑖  =1
∞  is an orthonormal system. 

 

Theorem 2.3: Under Assumptions 1–3, { 𝜆𝑖𝜙𝑖
2}𝑖 =1
∞  is an 

orthonormal system in ℋ𝐾2 . 

 

Proof. Since 𝜙𝑖
2 =  

1

𝜆𝑖
𝐿𝐾2 (𝜙𝑖

2), by Lemma 2.2., 𝜙𝑖
2 ∈

ℋ𝐾2 ∩ 𝐿2(𝑋, 𝜇). Then (2.5) yields 

  𝜆𝑖𝜙𝑖
2, 𝜆𝑗𝜙𝑗

2 𝐾2 =  𝐿𝐾2(𝜙𝑖
2),

 𝜆𝑗

 𝜆𝑖
𝜙𝑗

2 

𝐾2

=  𝜙𝑖
2,
 𝜆𝑗

 𝜆𝑖
𝜙𝑗

2 

𝐿2(𝑋 ,𝜇)

= 𝛿𝑖𝑗 . 

This proves our statement.  

 

Theorem 2.4.Suppose Assumptions 1–3 hold. Then 

𝐾2 𝑥𝑛 , 𝑥𝑛+1 =  𝜆𝑖𝜙𝑖
2 𝑥𝑛 

∞

𝑖=1

𝜙𝑖
2 𝑥𝑛+1    (2.7) 

where the series converges absolutely and uniformly on 

𝑌1 ×  𝑌2 with 𝑌1 and 𝑌2being any compact subsets of 𝑋. 

 

Proof. For an arbitrarily fixed point 𝑥𝑛 ∈  𝑋,𝐾𝑥𝑛 ∈ ℋ𝐾2 ∩

 𝐿2(𝑋, 𝜇). By Theorem 2.3, the orthogonal projection of 

𝐾𝑥𝑛onto span      { 𝜆𝑖𝜙𝑖
2}𝑖 =1
∞  equals 

 

 
Notice that as functions of the variable 𝑦, series (2.8) 

converges in ℋ𝐾2and in 𝐿2 𝑋, 𝜇 .Set 𝐾1 as 

 𝐾𝑗  1
 𝑥𝑛 , 𝑥𝑛+1 =  𝜆𝑖𝜙𝑖

2 𝑥𝑛 

∞

𝑖=1

𝜙𝑖
2 𝑥𝑛+1 − 𝐾𝑗  𝑥𝑛 , 𝑥𝑛+1 . 

Then   𝐾𝑗  1
 
𝑥𝑛
∈ ℋ𝐾2 ∩ 𝐿2 𝑋, 𝜇 as a function of the 

variable 𝑦. By (2.9), 
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This in connection with Assumptions 2 and 3 implies that 

 
In particular, we have 

 
It tells us that the set 𝑋𝑥𝑛 : =  {𝑥𝑛+1 ∈  𝑋 ∶  𝐾𝑗 1

(𝑥𝑛 , 𝑥𝑛+1)  =

 0}is the complement of a set of measure zero. Since 𝜇is 

nondegenerate, 𝑋𝑥𝑛 is dense in 𝑋. As functions of the single 

variable 𝑥𝑛+1, both 𝐾𝑗  𝑥𝑛 , 𝑥𝑛+1 and 

 𝜆𝑖𝜙𝑖
2 𝑥𝑛 

∞
𝑖=1 𝜙𝑖

2 𝑥𝑛+1 are in ℋ𝐾2 , hence are continuous 

on 𝑋. It follows that  𝐾𝑗 1
 
𝑥𝑛

is also continuous on 𝑋. But it 

vanishes on the dense subset 𝑋𝑥𝑛 . Therefore,  𝐾𝑗 1
 
𝑥𝑛
≡  0, 

and 

As 𝐾𝑗  𝑥𝑛 , 𝑥𝑛 and 𝜙𝑖
2 𝑥𝑛 are continuous on 𝑋, series (2.14) 

converges uniformly on any compact subset 𝑋1. By the 

Schwartz inequality 

 
Then we see that the series 

 𝜆𝑖𝜙𝑖
2 𝑥𝑛 

∞
𝑖=1 𝜙𝑖

2 𝑥𝑛+1  converges absolutely and 

uniformly on 𝑌1 × 𝑌2 with 𝑌1 and 𝑌2 being any compact 

subsets of 𝑋. This proves Theorem 2.4. 

 

A nice corollary of the Mercer theorem is that the 

orthonormal system { 𝜆𝑖𝜙𝑖}𝑖  =1
∞ iscomplete. 

 

Theorem 2.5.Under Assumptions1–3, { 𝜆𝑖𝜙𝑖
2}𝑖 =1
∞  form an 

orthonormal basis ofℋ𝐾2 . 

 

Proof. By the proof of Theorem 2.4. 

 

and for each fixed 𝑥𝑛 ∈  𝑋, the series converges to 

𝐾2(𝑥𝑛 , 𝑥𝑛+1) in ℋ𝐾2 . 

 

Suppose 2 ∈  ℋ𝐾2 , and  ,𝜙𝑖
2 𝐾2 =  0 for each 𝑖, then for 

each 𝑥𝑛 ∈  𝑋, 

 
which means 2 =  0, so the orthonormal system 

{ 𝜆𝑖𝜙𝑖
2}𝑖 =1
∞  is complete and forms an orthonormal basis of 

ℋ𝐾2 . The proof of Theorem 2.5 is complete.  

 

Corollary 2.6.Under Assumptions 1–3, ℋ𝐾2+1 is the range 

of 𝐿
𝐾2+1

1/2
 , where 𝐿

𝐾2+1

1/2
: 𝐷 𝐾2+1 →  ℋ𝐾2+1 is an isometric 

isomorphism, with 𝐷 𝐾2+1 being the closure of 𝐷𝐾2+1: =
 span{ 𝐾2 + 1 𝑥𝑛 : 𝑥𝑛 ∈  𝑋} in𝐿2 𝑋, 𝜇 . 

 

Proof. By the proof of Theorem 2.4, 

𝐷 𝐾2+1 ⊆  span      {𝜙1,𝜙2, . . . }. If 𝑓is orthogonal to 𝐷 𝐾2+1, then 

 𝑓,  𝐾2 + 1 𝑥 𝐿2 =  0 for every 𝑥𝑛 ∈  𝑋. This implies 

𝐿𝐾2+1(𝑓 )  =  0. It follows that 

 𝑓,𝜙𝑖 𝐿2 =   𝐿𝐾2+1 𝑓  ,
1

𝜆𝑖
𝜙𝑖 𝐿2 = 0 for each 𝑖 ∈  𝑵. So 

𝐷 𝐾2+1 =  span      {𝜙1,𝜙2, . . . }. For 𝑓 =  𝛼𝑖𝜙𝑖 ∈
+∞
𝑖=1

𝐷𝐾2+1,𝐿𝐾2+112𝑓 =𝑖=1+∞𝛼𝑖𝜆𝑖𝜙𝑖, thus 𝐿𝐾2+112𝑓 
𝐾2+1=𝑓𝐿2 by Theorem 2.5. Hence Corollary2.6 holds.  

 

2. The integral operator and 𝓗𝑲𝟐  
 

We show how to fulfill the conditions concerning the 

operator 𝐿𝐾𝑗 assumed.It is well known that if 𝐿𝐾𝑗 is compact 

and positive, then 𝐿𝐾𝑗 has at most countably manypositive 

eigenvalues { 𝜆𝑖𝜙𝑖}𝑖  =1
∞ , and corresponding orthonormal 

eigenfunctions {𝜙𝑖}𝑖 =1
∞ . HenceAssumptions 2 and 3 are 

satisfied. So we first investigate when 𝐿𝐾𝑗 is compact and 

positive.For the purpose of Theorems 2.4 and 2.5, we also 

want to know when 𝐿𝐾𝑗 (𝐿
2(𝑋, 𝜇))  ⊂  𝐶(𝑋).Let (𝑋,𝑑)be a 

metric space, 𝜇be a Borel measure on X, and 𝐾2: 𝑋 ×  𝑋 →
 𝑹be a Mercer kernel satisfying 

 
Proposition 3.1. If Assumption 1 and (3.1) hold, then 𝐿𝐾𝑗  is 

bounded, compact and positive. 

Proof. The boundedness of 𝐿𝐾𝑗 with  𝐿𝐾𝑗 ≤   𝐾𝑗 follows 

from (3.1) and the Schwartz inequality: 

 

 
The positivity of 𝐿𝐾𝑗 is a consequence of the positive 

semidefiniteness of the kernel 𝐾𝑗 . Let us now prove that 
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𝐿𝐾𝑗 is compact.We shall approximate 𝐿𝐾𝑗by a sequence of 

finite rank operators. 

 

 

 
Then 

 

 
Therefore, by the dominated convergence theorem, we have 

 

Thus  𝐿𝐾𝑗 –  𝐿 𝐾𝑗  𝑛
 →  0, and 𝐿𝐾𝑗 is compact.  □ 

The converse of the positivity of 𝐿𝐾 is also true. 

 

Proposition 3.2.Suppose 𝐾𝑗  satisfies (3.1). Then 𝐿𝐾𝑗  is 

positive if and only if 𝐾𝑗 is positive semidefinite. The proof 

of Proposition 3.2.is trivial, but it is necessary that 𝜇is 

nondegenerate. 

 

Proposition 3.3.If Assumption 1 holds and 𝑘(𝑥𝑛
2) ∶=

 |𝐾𝑗 (𝑥𝑛
2, 𝑥𝑛+1)|2

𝑋
𝑑𝜇(𝑥𝑛+1) is bounded on each𝑋𝑖  , then for 

every g ∈ 𝐿2 𝑋, 𝜇 , 𝐿𝐾𝑗 (g)  ∈  𝐶(𝑋). 

 

Proof. Let g ∈ 𝐿2 𝑋, 𝜇 . By the dominated convergence 

theorem, 

 
Let  𝑥𝑛 0

2 ∈  𝑋.We show that 𝐿𝐾𝑗 (g) is continuous at  𝑥𝑛 0
2. 

To this end, let 𝑈( 𝑥𝑛 0
2)be a bounded neighborhood of 

 𝑥𝑛 0
2 and { 𝑥𝑛 𝛾

2}  ⊂  𝑈(𝑥0
2)be a sequence tending to  𝑥𝑛 0

2. 

Then 𝑈(𝑥0
2)  ⊆  𝑋𝑖0  for some 𝑖0. Denote 

𝑀 ∶= sup𝑥2 ∈𝑋𝑖0
𝑘 𝑥𝑛 

1

2 < ∞. Then 
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As 𝐾𝑗 is uniformly continuous on the compact set 𝑋𝑖0 ×  𝑋𝑚 , 

we know that 

lim
𝛾→∞

  𝐾𝑗   𝑥𝑛 𝛾
2 , 𝑥𝑛+1 –  𝐾𝑗   𝑥𝑛 0

2, 𝑥𝑛+1  
2
𝑑𝜇 𝑥𝑛+1 

𝑋𝑚

=  0. 

Therefore, 

lim
𝛾→∞

𝐿𝐾𝑗 (g)  𝑥𝑛 𝛾
2 −  𝐿𝐾𝑗 (g) 𝑥𝑛 0

2 =  0. 

This proves the continuity of 𝐿𝐾𝑗 (g). □ 

 

 

Proposition 3.4.If Assumption 1 and (3.1) hold, then 

ℋ𝐾2 ⊂  𝐿2(𝑋, 𝜇). 
Proof. Since 𝐷𝐾 ⊂  𝐿2(𝑋,𝜇) ∩ℋ𝐾2and 𝐷𝐾  is dense in ℋ𝐾2 , 

we only need to compare thenorm of 𝐿2(𝑋, 𝜇)and the norm 

of ℋ𝐾2 . 

For fixed 𝑓 =  𝛼𝑘𝐾 𝑥𝑛+1 𝑘
𝑚
𝑘=1 ∈ ℋ𝐾2 , there hold 

 𝑓 𝐾
2 =  𝛼𝑖

𝑚

𝑖 ,𝑗=1

𝛼𝑗𝐾𝑗   𝑥𝑛+1 𝑖 ,  𝑥𝑛+1 𝑗          (3.4) 

And 

 𝑓 𝐿2
2 =    𝛼𝑘

𝑚

𝑘=1

𝐾𝑗  𝑥𝑛 ,  𝑥𝑛+1 𝑘  𝑑𝜇 𝑥𝑛 

𝑋

 

                                                       

=  𝛼𝑖

𝑚

𝑖 ,𝑗=1

𝛼𝑗  𝐾𝑗  𝑥𝑛 ,  𝑥𝑛+1 𝑖 𝐾𝑗  𝑥𝑛 ,  𝑥𝑛+1 𝑗  

𝑋

𝑑𝜇 𝑥𝑛  (3.5) 

Let 𝑏 =  
1

2
 𝐿𝐾𝑗

1

2  

−1

, and 𝐾𝑗 1
(𝑥𝑛 , 𝑥𝑛+1)  =  𝐾𝑗 (𝑥𝑛 , 𝑥𝑛+1)  −

 𝑏  𝐾𝑗 (𝑡, 𝑥𝑛)𝐾𝑗 (𝑡, 𝑥𝑛+1) 𝑑𝜇(𝑡)
𝑋

 . 

 

Now we want to prove that 𝐿𝐾1
 is a positive operator. Notice 

that 

 

 

 

Proof: Let 𝐾𝑥𝑛 (𝑡)  =  𝐾(𝑥𝑛 , 𝑡)  =  𝑒
−

(𝑥𝑛−𝑥𝑛+1)2

𝑐2  . Then 

 𝐾𝑥
2 (𝑡) 𝑑𝜇(𝑡)

𝑹𝑛

=  𝐾𝑥
2 (𝑡) 𝑟(𝑡)𝑑𝑡

𝑹𝑛

≤  𝐾𝑥𝑛  (𝑡) 𝑟(𝑡)𝑑𝑡

𝑹𝑛

≤  𝐾𝑥𝑛  2
 𝑟 2 < ∞ . 

Therefore 𝐾𝑥𝑛 ∈  𝐿𝜇
2 (𝑹𝑛)for each 𝑥𝑛 ∈ 𝑹𝑛and Assumption 1 

holds. 

Set 𝐴 =  𝑒
−
𝑥𝑛

2

𝑐2
𝑹𝑛

  𝑑𝑥𝑛 . Then 0 <  𝐴 < +∞and 

  𝐾2 𝑥𝑛 , 𝑥𝑛+1 𝑑𝜇 𝑥𝑛+1 

𝑹𝑛𝑹𝑛

𝑑𝜇 𝑥𝑛 

≤  𝑟 𝑥𝑛  𝑒
−
 𝑥𝑛−𝑥𝑛+1 

2

𝑐2

𝑹𝑛

𝑟 𝑥𝑛+1 

𝑹𝑛

𝑑𝑥𝑛+1𝑑𝑥𝑛  

 
This verifies (3.1). Hence our statements hold true.  
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