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1. Introduction 
 

The purpose of this paper is to present the essential features 

of two terms Boolean valued rings and Boolean metric 

spaces. These has been a continuing interest in abstract 

metric spaces in which the distances are elements of a set 

bearing an algebraic structure less restricted than that of the 

real numbers. The geometric properties and Boolean 

valuations are discussed in this paper. 

 

Definition 2.1: An ordered triple (S,B,d) is a Boolean metric 

space where S is an abstract set, B is a Boolean algebra, and 

d is a mapping from SxS into B satisfying the following 

conditions: 

a) 𝑑 𝑥, 𝑦 =0 if and only if 𝑥 = 𝑦, 

b) 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥  
c) 𝑑 𝑥, 𝑧  ⊆ 𝑑 𝑥, 𝑦  ∪ 𝑑 𝑦, 𝑧  for 𝑥 , 𝑦, 𝑧 in S 

 

Here B is called the distance algebra, the set S is called the 

ground set of the space, and the mappind d is called the 

distance function or metric. The subset of B consisting of the 

function values taken on by d is called the distance set. 

 

Definition 2.2:  An ordered triple (R,B,∅) is a Boolean  

valued ring, where R is a ring, B is a Boolean algebra, and ∅ 

is a mapping from R into B satisfying the following 

conditions: 

a) ∅ 𝑥 = 0  iff 𝑥 = 0 

b) ∅ 𝑥 + 𝑦  ⊆ ∅ 𝑥 ∪ ∅(𝑦) 

c) ∅ 𝑥𝑦 ⊆ ∅ 𝑥 ∩ ∅(𝑦) 
 

Definition 2.3:  A strong Boolean valued ring is an  ordered 

triple(R,B,∅) ,where R is a ring, B is a Boolean algebra, and 

∅  is a mapping from R into B satisfying the following 

conditions: 

a) ∅ 𝑥 = 0  iff 𝑥 = 0 

b) ∅ 𝑥 + 𝑦 ⊆  ∅ 𝑥 ∪ ∅(𝑦) 

c) ∅ 𝑥𝑦 = ∅ 𝑥 ∩ ∅(𝑦) 
 

Definition 2.4:  A weak  Boolean valued ring is an  ordered 

triple(R,B,∅) ,where R is a ring, 

B is a Boolean algebra, and ∅ is a mapping from R into B 

satisfying the following conditions: 

a) ∅ 𝑥 = 0  iff 𝑥 = 0 

b) ∅ 𝑥 + 𝑦 ⊆  ∅ 𝑥 ∪ ∅(𝑦) 

c) ∅ 𝑥 = ∅ −𝑥  

 

The ring is called a weak  Boolean valued ring. In general a 

Boolean valued ring need not be a weak Boolean valued 

ring. 

 

Example 2.5: Let R be an ordered integral domain and B a 

Boolean algebra with more than two elements. Let 𝑅′ be the 

ring obtained from R by defining all products to be zero. 

Let b be an element in B such that 0 ≠ 𝑏 𝑎𝑛𝑑 1 ≠ 𝑏 

 

For 𝑥 ∈ 𝑅′  

set ∅ 𝑥 = 1 if 𝑥 is negative in R  

and ∅ 𝑥 = 𝑏 if 𝑥 is positive in R 

Let ∅ 0 = 0. 
 

Then (𝑅′, B,∅) is a Boolean valued ring which is not a weak 

Boolean valued ring. 

 

The relationship between the various kinds of Boolean 

valued rings and the Boolean metric spaces which they 

generate 3.1: 

 

Theorem 3.2: Let (R,B,𝑑) be a Boolean metric space in 

which all translations 𝑥 → 𝑥 + 𝑎  are motions.Then there 

exists a weak Boolean valuation ∅ for R such that ∅ 𝑎 −
𝑏=𝑑(𝑎,𝑏) 

 

Proof: Let (R,B,𝑑) be a Boolean metric space in which R is a 

ring and in which translations are motions. 

Let ∅ 𝑥 = 𝑑(0, 𝑥) 

Then ∅ 0 = 𝑑 0,0 = 0 

and if x≠ 0,.then ∅ 𝑥 = 𝑑 0, 𝑥 ≠ 0 

 

Since translations are motions 

𝑑 −𝑥, 0 = 𝑑 −𝑥 + 𝑥, 0 + 𝑥 = 𝑑 0, 𝑥 = 𝑑(𝑥, 0) 

So that ∅ 𝑥 = ∅ −𝑥  

 

From the triangle inequality  

𝑑(𝑥 + 𝑦, 0)  ⊆ 𝑑 𝑥 + 𝑦, 𝑥 ∪ 𝑑(𝑥, 0) 

But 𝑑 𝑥 + 𝑦, 𝑥 = 𝑑 𝑥 + 𝑦 − 𝑥, 𝑥 − 𝑥 = 𝑑 𝑦, 0  
 

Since translations are motions 

𝑑(𝑥 + 𝑦, 0)  ⊆ 𝑑 𝑥, 0 ∪ 𝑑(𝑦, 0) 

and  ∅ 𝑥 + 𝑦 ⊆  ∅ 𝑥 ∪ ∅(𝑦) 
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Hence 𝑑 𝑥, 𝑦 = 𝑑 𝑥 − 𝑦, 𝑦 − 𝑦 = 𝑑 𝑥 − 𝑦, 0 = ∅(𝑥 −
𝑦) 

 

Thus (R,B,𝑑) is the  Boolean metric space obtained from 

(R,B,∅) by setting  𝑑(𝑎, 𝑏)=∅ 𝑎 − 𝑏  
Where ∅ is a weak valuation  
 

Theorem 3.3: Let (R,B,∅) be a weak Boolean valued ring 

.Distance defined as 𝑑(𝑎, 𝑏)=∅ 𝑎 − 𝑏 , then (R,B,𝑑) is  a 

Boolean metric space in which translations are motions. 

 

Proof: Suppose that (R,B,∅) be a weak Boolean valued ring. 

Set 𝑑(𝑥, 𝑦)=∅ 𝑥 − 𝑦  

Then 𝑑 𝑎, 𝑎 = ∅ 𝑎 − 𝑎 = ∅ 0 = 0 

If 𝑎 ≠ 𝑏, then 𝑎 − 𝑏 ≠ 0 and 𝑑 𝑎,𝑏 = ∅(𝑎 − 𝑏) ≠ 0 

Also  𝑑(𝑥,𝑦)=∅ 𝑥 − 𝑦 = ∅ 𝑦 − 𝑥 =  𝑑(𝑦, 𝑥) 

And 𝑑(𝑥, 𝑦)=∅ 𝑥 − 𝑦 =  ∅ 𝑥 − 𝑧 + 𝑧 − 𝑦 ⊆  ∅ 𝑥 − 𝑧 ∪
∅ 𝑧 − 𝑦 = 𝑑(𝑥, 𝑧) ∪ 𝑑(𝑧, 𝑦) 

So the triangle inequality is satisfied and (R,B,𝑑 ) is  a 

Boolean metric space. 

To show that translations are motions 

𝑑 𝑥 + 𝑧, 𝑦 + 𝑧 = ∅ 𝑥 + 𝑧 − 𝑦 − 𝑧 = ∅ 𝑥 − 𝑦 = 𝑑(𝑥, 𝑦) 

 

Theorem 3.4: If  (R,B,𝑑) is a Boolean metric space, R a ring  

in which all translations are motions, the following are 

equivalent 

a) Ring multiplication decrease distances from the origin 

(𝑑 𝑥𝑦, 0 ⊆ 𝑑 𝑥, 0 , 𝑑 𝑥𝑦, 0 ⊆ 𝑑 𝑦, 0  for all 𝑥, 𝑦 in R ) 

b) There exists a Boolean valuation ∅  for R such that 

𝑑(𝑎, 𝑏)=∅ 𝑎 − 𝑏  

c) Ring multiplication are contraction mappings 

i.e 𝑑(𝑥𝑧, 𝑦𝑧)  ⊆ 𝑑(𝑥, 𝑦) 

𝑑(𝑧𝑥, 𝑧𝑦)  ⊆ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦, 𝑧 in R 

 

Proof: (i)⟹ (𝑖𝑖) 

 

Let (R,B,𝑑 ) be a metric space in which translations are 

motions and (i) is satisfied. 

Let ∅ 𝑥 = 𝑑 𝑥, 0 . 
By the theorem 3.3 (R,B,𝑑 ) is determined by the weak 

Boolean valued ring (R,B,∅) setting 𝑑 𝑎, 𝑏 =∅ 𝑎 − 𝑏  
But since condition (i) is satisfied 

𝑑 𝑥𝑦, 0 ⊆ 𝑑 𝑥, 0   and 

𝑑 𝑥𝑦, 0 ⊆ 𝑑 𝑦, 0  
Hence 𝑑 𝑥𝑦, 0 ⊆ 𝑑 𝑥, 0 ∩ 𝑑 𝑦, 0    and 

∅ 𝑥𝑦 ⊆  ∅ 𝑥 ∩ ∅(𝑦) 

So that (R,B,∅) is a Boolean valued ring. 

(ii)⟹ (𝑖𝑖𝑖) 

By definition 𝑑 𝑥𝑧, 𝑦𝑧 = ∅ 𝑥𝑧 − 𝑦𝑧  

∅ 𝑥𝑧 − 𝑦𝑧 = ∅( 𝑥 − 𝑦 𝑧) ⊆ ∅ 𝑥 − 𝑦 ∩ ∅ 𝑧 ⊆ ∅ 𝑥 − 𝑦 
= 𝑑(𝑥, 𝑦) 

Similarly the other inequality can be established. 

(iii)⟹ (𝑖) 

This can be established, by taking either x or y be 0 

  

Theorem 3.5: If  (R,B, 𝑑 ) is a Boolean metric space 

satisfying the conditions of theorem 3.4 ,where R is a ring 

with unit , the following are equivalent. 

a) Ring multiplications are similarity transformations with 

respect to the origin (for every 𝑥 in R ,there is an element 

𝑏(𝑥) of the distance set such that 𝑑 𝑥𝑧, 0 = 𝑑 𝑧, 0 ∩
𝑏(𝑥) for all 𝑧 ∈ 𝑅) 

b) There exists a strong Boolean valuation ∅ for R such that 

𝑑(𝑎, 𝑏)=∅ 𝑎 − 𝑏  

c) Ring  multiplications are contraction mappings with 

fixed constant of contraction (z in R implies the existence 

of 𝑐(𝑧)  in the distance set such that 𝑑(𝑥𝑧, 𝑦𝑧)  ⊆
𝑑(𝑥, 𝑦) ∩ 𝑐(𝑧) for all 𝑥, 𝑦 in R) 

 

Proof: (i)⟹ (𝑖𝑖) 

From (i) it follows that for fixed 𝑥 and all 𝑧, 
𝑑 𝑥𝑧, 0 = 𝑑 𝑧, 0 ∩ 𝑏(𝑥) 

Let ∅ 𝑥 = 𝑑 𝑥, 0 . 
Then by Theorem 3.4 ∅ is a Boolean valuation 

Hence𝑑 𝑥, 0 = 𝑑 𝑥. 1,0 = 𝑑 1,0 ∩ 𝑏 𝑥 = ∅(1) ∩ 𝑏(𝑥) 

Thus ∅(𝑥) = ∅(1) ∩ 𝑏(𝑥) 

But 𝑏 𝑥 = ∅ 𝑡  for some 𝑡 ∈ 𝑅,  so that ∅ 𝑡 = ∅ 𝑡. 1  

⊆ ∅ 𝑡 ∩ ∅ 1  

And hence ∅ 𝑡  ⊆ ∅ 1  

implies that ∅ 1 ∩ 𝑏 𝑥 = ∅ 1 ∩ ∅ 𝑡 = ∅ 𝑡 = 𝑏(𝑥) 

∴  𝑏 𝑥 = ∅(𝑥) 

∅ xz = d xz, 0 = d z, 0 ∩ b x = d z, 0 ∩ ∅ x 
= ∅ z ∩ ∅(x) 

And ∅ is a strog Boolean valuation 

(ii)⟹ (𝑖𝑖𝑖) 

Let 𝑧 be fixed ,then 𝑑 𝑥𝑧, 𝑦𝑧 = ∅ 𝑥𝑧 − 𝑦𝑧 = ∅ 𝑥 − 𝑦 ∩
∅ 𝑧 = 𝑑 𝑥, 𝑦 ∩ ∅ 𝑧 . 
By letting 𝑦 = 0 we can establish that (iii)⟹ (𝑖) 

 

Example 3.6: A Boolean metric space (R,B,𝑑),R a ring,in 

which translations are  not motions 

Let (R,B,𝑑 ) be a Boolean metric space in which R is a 

Boolean ring with identity, B is the Boolean algebra 

associated with R, and 𝑑 𝑎, 𝑏 = 𝑎 − 𝑏 

 

Select distinct elements 𝑥, 𝑦 such that 𝑑 𝑥, 𝑦 ≠ 1 

Let 𝑎 be a fixed non-zero element of R with 𝑎 ≠ 𝑥 + 𝑦. 
Define the function 𝑑′ as follows: 

𝑑′ 𝑏. 𝑐 = 𝑑 𝑏, 𝑐  𝑖𝑓 𝑏 ≠ 𝑥 + 𝑎, 𝑐 ≠ 𝑥 + 𝑎 

𝑑′ 𝑥 + 𝑎, 𝑏 = 𝑑′ 𝑏, 𝑥 + 𝑎 = 1 𝑖𝑓 𝑏 ≠ 𝑥 + 𝑎 

𝑑′ 𝑥 + 𝑎, 𝑥 + 𝑎 = 0 

Then (R,B,𝑑′) is a Boolean metric space, but 𝑑′ 𝑥 + 𝑎, 𝑦 +
𝑎=1 ≠𝑑′𝑥,𝑦 

 

Example 3.7: An example of a Boolean valued ring which 

is not a strong Boolean valued ring. 

Consider the Boolean valued ring (R,B,∅) where R is a ring 

with divisors of zero and B is the two element Boolean 

algebra. 

Let ∅ 𝑥 = 1 

if 𝑥 ≠ 0 and ∅ 0 = 0 Then if 𝑥𝑦 = 0, and 𝑥, 𝑦 ≠ 0, 
∅ 𝑥𝑦 = 0, but ∅ 𝑥 ∩ ∅ 𝑦 = 1 ∩ 1 = 1. 
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