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Abstract: This paper provides an evaluation of the forecasting performance of hybrid ARIMA-GARCH model in forecasting Bitcoin 

daily price returns. We combined ARIMA and GARCH model with Normal, Student’s t and Skewed student’s t distributions. To make 

the series stationary, Bitcoin daily price data was transformed to Bitcoin daily returns. By using Box-Jenkins method, the appropriate 

ARIMA model was obtained and for capturing volatilities of the returns series GARCH (1,1) models with Normal, Student’s t and 

Skewed student’s t distributions was used. To evaluate the performance of the models, the study employs two measures, RMSE and 

MAE. The results reveal that ARIMA (2,0,1)-GARCH (1,1) with Normal distribution outperform the other three in terms of out-of-

sample forecast with minimum RMSE and MAE.The findings can aid investors, market practitioners, financial institutions, 

policymakers, and scholars. 
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1. Background of the Study 
 

Bitcoin is a cryptocurrency first introduced by an unknown 

or group of people using the name Satoshi Nakamoto [1]. A 

cryptocurrency is a digital asset designed to work as a 

medium of exchange that uses strong cryptography to secure 

financial transactions, control the creation of additional 

units, and verify the transfer of assets(Wikipedia.org 

accessed on Aug 20
th,

 2019). Bitcoinsare created as a reward 

for a process known as mining and they can be exchanged 

for other currencies, products, and services (Wikipedia.org 

accessed on Aug 20
th,

 2019). Bitcoin is the first widely used 

and traded cryptocurrency since 2009 when the Bitcoin 

software started to be available to the public and mining-the 

process of which new Bitcoins can be created and 

transactions can be recorded and verified on the blockchain 

begins [2].   

 

As Bitcoin becomes increasingly popular, and the idea of 

decentralized and encrypted currencies catch on, more rival, 

alternative cryptocurrencies appear. But Bitcoin remains the 

most successful and widely accepted cryptocurrencies. 

Bitcoin prices have been negatively affected by several 

hacks or theft from cryptocurrency exchanges including 

thefts from Coincheck in January 2018, Coinrail and 

Bithumb in June, and Bancor in July 2018 and for the first 

six months of 2018, $761million worth of cryptocurrencies 

was reported stolen from exchanges (Wikipedia.org 

accessed on Aug 20
th,

 2019). 

 

The purpose of this paper is to use time series methodology 

to predict the future returns and price of Bitcoin. At the same 

time, we want to compare the performance of ARIMA-

GARCH models with Normal, Student’s t and Skewed 

student’s t distributions. As Bitcoin gradually has had a 

place in the financial markets and in portfolio management, 

time series analysis is a useful tool to examine the 

characteristics of Bitcoin prices and returns and extract 

important statisticsin order to forecast future values of the 

series. 

 

Section 2 that follows this background of the study discusses 

review of related works, Section 3 discusses the 

methodology of this study and Section 4 discusses data 

analysis, while Section 5 gives the summary and conclusion 

of the paper. 

 

2. Literature Review 
 

Some studies have already been conducted on the financial 

and statistical characteristics of Bitcoin. Brandvold et al. [3] 

and Bouoiyour et al. [4], examined price discovery in the 

Bitcoin market, their findings reveal some significant 

relationship between Bitcoin prices, transaction use, and 

investors attractiveness. Kristoufek [5], and Gracia et al [6] 

are of the opinion that Bitcoin price is subject to unique 

factors which are substantially different from those affecting 

conventional, financial assets, such as internet search, 

information on google trends, and word of mouth 

information on social media. 

 

Glaser et al. [7], in their finding, reveal that Bitcoin is 

mainly used and viewed as an asset rather than a currency. 

Dyhrberg [8] analyses the volatility of Bitcoin in comparison 

to the US Dollar and Gold using GARCH (1,1) and 

EGARCH (1,1). The study concluded that Bitcoin bears 

significant similarities to both assets, especially concerning 

hedgingcapabilities and volatility reaction to news, 

suggesting that Bitcoin can be a useful tool for portfolio 

management, risk analysis, and market sentiment analysis. 

The author replicates the study using T-GARCH (1,1) and 

finds similar conclusions [9]. 

 

3. Methodology 
 

In this section, the paper discusses the techniques that 

feature prominently in this study. These are ARIMA, 

ARIMA- GARCH models with (Normal, Student-t, and 

Skewed Student-t distribution) 
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3.1 The Box-Jenkins for ARIMA Model 
 

Auto-Regressive Integrated Moving Average (ARIMA) 

model is one of the time series forecasting methods which 

says that the current value of a variable can be explained in 

terms of two factors; a combination of lagged values of the 

same variable and a combination of a constant term plus a 

moving average of past error terms. To build an ARIMA 

model one essentially use Box-Jenkins methodology [10], 

which is an iterative process and involves four stages; 

Identification, Estimation, Diagnostic Checking, and 

forecasting. As the Box Jenkins (AR, MA, ARMA or 

ARIMA) models are based on the time series stationary, if 

underlying series is non-stationary, then first it is converted 

into a stationary series either by using differencing approach 

or taking logarithms or regressing theoriginal series against 

time and by taking the error terms of this regression [11]. 

The series stationary was tested by applying the ADF-

Augmented Dickey-Fuller [12] and PP-Phillips-Perron unit 

root tests [13]. ADF was performed for the scenario with a 

constant, without a constant and with a trend [14]. If it is 

needed for the time series to have one differential operation 

to achieve stationarity, it is a I(1) series. Time series is I(n) 

in case it is to be differentiated for n times to achieve 

stationarity. Therefore, ARIMA (p, d, q) models are used for 

the non-stationary time series, specifically the autoregressive 

integrated average models, where d is the order of 

differentiation for the series to become stationary.  

 

Box-Jenkins ARIMA is known as ARIMA (p, d, q) model 

where p is the number of autoregressive (AR) terms, d is the 

number of difference taken and q is the number of moving 

average (MA) terms. ARIMA models always assume the 

variance of data to be constant. The ARIMA (p, d, q) model 

can be represented by the following equation: 

𝑦𝑡 = 𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞

     (1) 

Where 𝜀𝑡~𝑁(0, 𝜎𝑡
2),p and q are the number of 

autoregressive terms and the number of lagged forecast 

errors, respectively. 

 

The identification of modeling the conditional mean value is 

based on the analysis of estimated autocorrelation and partial 

autocorrelation function (ACF, PACF). These estimations 

may be strongly inter-correlated, it is therefore 

recommended not to insist on unambiguous determination of 

the model order, but to try more models. We must not forget 

to carry out the verification, which is based on a 

retrospective review of the assumptions imposed on the 

random errors.  

 

Validation of ARMA (p, q) models is based on minimizing 

the AIC (Akaike's information criterion) and BIC 

(Schwarz’s information criterion) criteria. Given that 

financial data are very often characterized by high volatility, 

it is necessary to test the model for ARCH effect, i.e. 

presence of conditional heteroscedasticity [11]. Regarding 

heteroscedasticity, it is, therefore, a situation where the 

condition of finite and constant variance of random 

components is violated. If ARCH test indicates that the 

variance of residuals is nonconstant, we can use ARCH 

family models for capturing volatilities of model 

 

3.2. GARCH Models 

 

GARCH models are used mainly for modeling financial time 

series that present time-varying volatility clustering. The 

general GARCH (q, p) model for the conditional 

heteroscedasticity according to Bollerslev [15] has the 

following form:  

 
Where 

𝜇𝑡  is conditional mean of 𝑦𝑡  

z is the shock at time t  

 
Where 

εt → iid N(0,1). 

 
Where 

σt
2  is the conditional variance of yt  

α0  is a constant term 

q    is the order of the ARCH terms 

p    is the order of the GARCH terms 

αi and βj  are the coefficient of the ARCH and GARCH 

parameters respectively 

 

With constrains  

 
 

3.3 The Densities 

 

The GARCH models are estimated using a maximum 

likelihood (ML) approach. The logic ofML is to interpret the 

density as a function of the parameters set, conditional on a 

set of sampleoutcomes. This function is called the 

likelihoodfunction. financial time-series often exhibits non-

normality patterns,i.e. excess kurtosis and skewness. 

Bollerslev and Wooldridge [16] propose a Quasi 

MaximumLikelihood method (hereafter QML) that is robust 

to departure from normality. Indeed, Weiss [17] and 

Bollerslev and Wooldridge [16] show that under the 

normality assumption, the QML estimator is consistent if the 

conditional mean and the conditional variance are 

correctlyspecified. This estimator is, however, inefficient 

with the degree of inefficiency increasing with thedegree of 

departure from normality [18]. 

 

Since it may be expected that excess kurtosis and skewness 

displayed by the residuals ofconditional heteroscedasticity 

models will be reduced when a more appropriate distribution 

isused, we consider three distributions in this study: 

TheNormal, the Student-t (including a “tail”parameter) and 

the Skewed Student-t (including a “tail” parameter and an 

asymmetric parameter). 
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3.3.1 Gaussian 

The Normal distribution is by far the most widely used 

distribution when estimating and forecastingGARCH 

models. If we express the mean equation as: 

 
And εt = ztσt  

 thelog-likelihood function of the standard normal 

distribution is given by 

 
Where T is the number of observations. 

 

3.2.2 Student-t 

 

For a Student-t distribution, the log-likelihood is 

 
Where v is the degree of freedom, 

2 < 𝑣 ≤ ∞ and ᴦ(. ) is the gamma function. When 

 v→ ∞, we have the normal distribution, so that the lower v 

the fatter the tails. 

 

3.3.3 Skewed Student-t 

Skewness and kurtosis are important in financial 

applications in many respects (in asset pricingmodels, 

portfolio selection, option pricing theory or Value-at-Risk 

among others). Therefore, adistribution that can model these 

two moments looks appropriate. Quite recently, Lambert 

andLaurent [19]-[20], extend the Skewed Student density 

proposed by Fernandez and Steel [21]to the GARCH 

framework. For a Standardized (zero mean and unit 

variance) Skewed Student,the log-likelihood is: 

 

 
Where 𝜉 is the asymmetry parameter, v the degree of 

freedom of the distribution, ᴦ(. ) is the gamma function. 

 

 

s =  ξ2 +
1

ξ2 − 1 − m2 see Lambert and Laurent [20] for 

more details. 

 

3.4. Hybrid ARIMA-GARCH Model  
 

In order to recommend a hybrid ARIMA-GARCH model, 

two stages should be applied. In the first stage, we use the 

best ARIMA model that fits on stationary and linear time 

series data while the residuals of the linear model will 

contain the non-linear part of the data. In the second stage, 

we use the GARCH model in order to contain non-linear 

residuals patterns. This hybrid model, which combines 

ARIMA and GARCH model containing nonlinear residuals 

patterns, is applied to analyze and forecast the returns of 

Bitcoin. 

 

3.5. Estimation of Hybrid ARIMA-GARCH Model  
 

The hybrid ARIMA-GARCH model is a nonlinear time 

series model which combines a linear ARIMA model with 

the conditional variance of a GARCH model. The estimation 

procedure of ARIMA and GARCH models are based on 

maximum likelihood method. Parameters’ estimation in 

logarithmic likelihood function is done through nonlinear 

Marquardt’s algorithm [22]. The logarithmic likelihood 

function has the following equation: 

 
Where θis the vector of the parameters that have to be 

estimated for the conditional mean, conditional variance, 

and density function, ztdenoting their density function, 

D zt θ , μ is the log-likelihood function of, for [ yt , θ]a 

sample of T observation. The maximum likelihood estimator 

𝜃 for the true parameter, vector is found by maximizing  (10) 

[23].  

 

3.6. Diagnostic Checking of Hybrid ARIMA-GARCH 

Model  
 

The diagnostic tests of hybrid ARIMA-GARCH models are 

based on residuals. Residuals’ normality test is employed 

with Jarque and Bera test [24]. Ljung and Box [25] (Q-

statistics) statistic for all time lags of autocorrelation is used 

for the serial correlation test. Also, for the conditional 

heteroscedasticity test, we use thesquared residuals of 

autocorrelation function. 

 

3.7. Forecast Evaluation  
 

This study adopted two very popular measures for 

evaluating the forecast accuracy of the series and these are: 

Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). These measures are evaluated by assessing their 

returns. The one with the lowest error measure is judged the 

best. These measures are defined as follows. 

 

Mean Absolute Error (MAE) is given by: 

 
and Root Mean Squared Error (RMSE) is given by: 

 
Where: 

𝑋𝑡 : The return of the horizon before the current time t 

𝑋 : The average return 

𝑝 𝑡 : Is the forecast value of the conditional variance over n 

steps ahead horizon of the current time t 

 

4. Data Analysis 
 

The data used in this study are the daily closing prices of 

Bitcoin from Jan 1
st
, 2012 to July 31

st
, 2019, which 

corresponds to a total of 2769 observations. The estimation 

process is run using 7 years of data (2012-2018) while the 

remaining are used for forecasting. The data is compiled 

from Bitstamp, the largest Bitcoin exchange, and covers a 

daily database denominated in US dollar, which is the main 

currency against which Bitcoin is the most traded.The 
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Bitcoin prices are transformed into their returns so that we 

obtain stationary series.  The transformation is 

 
Table 1 show some key statistics of the data before 

transformation which shows high standard deviation and 

none normality. 

 

Table 2 presents some key statistics of the data after 

transformation. Skewness and excess kurtosis are clearly 

observed, leading to a high valued Jarque and Bera (1987) 

test which indicates non-normality of the distribution. 

In the following Figure 1,we present the closing price of 

Bitcoin before transformation which seems to be 

nonstationary. 

 

In figure 2, we present the closing returns of Bitcoin price 

after transformation. From figure 2, the daily closing returns 

of Bitcoin seems to be stationary. The conformation in 

stationarity of the returns of Bitcoin price is done with 

Dickey-Fuller [12] and Phillips-Perron [13] unit root tests.  

The results of Table 3 confirm that the returns of Bitcoin 

price are stationary in their level. 

 

Table 1: Descriptive Statistics of Daily Bitcoin Price 
Mean 2227.456 

Median 511.87 

Maximum 19187.78 

Minimum 4.23 

Standard deviation 3387.488 

Skewness 1.864031 

Kurtosis 3.090124 

Jarque-Bera 2717.929 

Probability 0.000000 

Observations 2769 

 

Table 2: Descriptive Statistics of Daily Bitcoin Returns 
Mean 0.280326 

Median 0.222228 

Maximum 33.748619 

Minimum -66.394803 

Standard deviation 4.746170 

Skewness -1.243758 

Kurtosis 21.575621 

Jarque-Bera 54648.6373 

Probability 0.000000 

Observations 2769 

 

 
Figure 1: Time Plot of daily Bitcoin closing price from 

January 1, 2012, to July 31
st,

 2019. 

 

 
Figure 2. Time Plot of daily Bitcoin closing returns from 

January 1, 2012, to July 31
st,

 2019. 

 

Table 3: Unit root tests of the returns of Bitcoin 
Test Test Stat Mackinnon critical values 

ADF -37.9891 1% -3.96 

5% -3.41 

10% -3.12 

PP -54.3139 1% -3.4357 

5% -2.8631 

10% -25677 

 

4.1 Choice of the best model  

 

Once stationary have been addressed, the next step is to 

identify the order (the p, d, and q) of the autoregressive and 

moving average terms. The primary tools for doing this are 

Akaike information criterion, Schwartz information 

criterion, and Hannan Quinn information criterion. That is 

the model that gives minimum A 

 

4.1.1 ARIMA Model Identification 

 

Table 4: AIC of ARIMA (p, d, q) 
Order AIC 

(0,0,1) -5862.983 

(0,0,2) -5862.051 

(1,0,0) -5862.886 

(1,0,1) -5861.584 

(1,0,2) -5860.047 

(2,0,0) -5862.077 

(2,0,1) *-5864.612* 

(2,0,2) -5857.967 

(*) minimum value to criterion  

From table 4, we observed that the optimal model is ARIMA 

(2, 0, 1) that is based on the selection criterion AIC. 

 

4.2 Model estimation  

 

After an optimum model has been identified, the model 

estimation methods make it possible to estimate all the 

parameters of the ARIMA model. 

 

Table 5: The estimated model of ARIMA (2,0,1) 
Variable coefficient Std.error p-value 

Constant 0.0003927 0.000313 0.2096 

AR(1) 0.8115002 0.086643 0.00000*** 

AR(2) 0.0425337 0.024744 0.0856 

MA(1) -0.8456408 0.084552 0.00000*** 
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4.3 Justifications for ARIMA-GARCH model 

 

We have already known from the excess kurtosis that an 

obvious fat tails displayed inour series, a typical evidence of 

heteroskedastic effects as clustering of volatility. We will 

also use Box-Pierce [25]and Engle LM test [26], to test for 

the presence of ARCH effect using ARIMA (2,0,1) 

residuals.  

 

Table 6: ARIMA (2,0,1) residuals test 
Type of test Test stat P-vale 

Ljung-Pierce (R^2) 249.23 0.00000 

ARCH LM-test (R) 282.51 0.00000 

R denote residuals 

 

The results of Table 6 confirm the present of ARCH effect in the 

model. Given the ARCH effects on the returns of Bitcoin 

price, we proceed with the estimations of hybrid ARIMA-

GARCH models to examine the volatilities that exist in the 

related returns of Bitcoin. To catch this cluster we should 

use ARIMA as well as GARCH models. Thus, in the levels 

this time-series on returns of Bitcoin prices we have to find 

out the appropriate hybrid ARIMA-GARCH model. 

Estimation parameters’ is held with Maximum Likelihood 

method. 
 

4.4 Estimation of ARIMA (2,0,1)-GARCH models 

 

4.4.1 Why use GARCH models (1,1) 

According to Javed and Mantalos [27], numerous studies 

that investigate model selectionfor the GARCH models find 

that the “performance of the GARCH (1,1) model 

issatisfactory”. Javed and Mantalos claim that the first lag is 

sufficient to capture themovements of the volatility. To be 

able to compare the results, I will for the purpose of this 

study used GARCH (1,1) model with different distribution 

such as normal, student-t, and skewed-student-t. 

 

Table 7: Estimate of ARIMA(2,0,1)-GARCH(1,1) model 

with Normal distribution 
Mean equation Coefficient p-values 

AR(1) 

AR(2) 

MA(1) 

9.377e-01 

9.284e-03 

-9.077e-01 

0.00000*** 

0.757 

0.000000*** 

Variance equation Coefficient p-value 

𝛼0 

𝛼1 

𝛽1 

7.131e-05 

2.192e-01 

7.699e-01 

0.000000*** 

0.000000*** 

0.000000*** 

Diagnostic test Test stat p-value 

Ljung-Box R^2   Q(10) 2.188098 0.994685 

Ljung-Box R^2 Q(15) 6.588718 0.968075 

Ljung-Box R^2 Q(20) 8.87306 0.984331 

LM Arch Test 2.883514 0.996312 

Jarque-Bera Test 12804.39 0.0000000 

Log-likelihood 3541.236  

AR and MA denote the autoregressive and moving average 

terms respectively. R^2 Q(.) are Ljung-Box Q-statistic of 

squared residuals at lag 10, 15, 20 respectively. *
,
**

,
*** 

indicate statistical significant at 1%, 5%, 10%.  

 

 

 

 

 

 

Table 8: Estimate of ARIMA(2,0,1)-GARCH(1,1) model 

with Student’s t distribution 
Mean equation Coefficient p-values 

AR(1) 

AR(2) 

MA(1) 

0.9219392 

0.0554118 

-0.9562585 

0.00000*** 

0.0122* 

0.000000*** 

Variance equation Coefficient p-value 

𝛼0 

𝛼1 

𝛽1 

Shape 

0.0000581 

0.6063956 

0.7710283 

2.3286485 

0.0466* 

0.0183* 

0.000000*** 

0.000000** 

Diagnostic test Test stat p-value 

Ljung-Box R^2   Q(10) 1.931536 0.9968384 

Ljung-Box R^2 Q(15) 2.769039 0.9997563 

Ljung-Box R^2 Q(20) 3.233868 0.9999922 

LM Arch Test 2.552368 0.9979635 

Jarque-Bera Test 43022.95 0.0000000 

Log-likelihood 3862.174  

AR and MA denote the autoregressive and moving average 

terms respectively. R^2 Q(.) are Ljung-Box Q-test- statistic 

of squared residuals at lag 10, 15, 20 respectively. *
,
**

,
*** 

indicate statistical significant at 1%, 5%, 10%.  

 

Table 9: Estimate of ARIMA(2,0,1)-GARCH(1,1) model 

with Skewed Student’s t distribution 
Mean equation Coefficient p-values 

AR(1) 

AR(2) 

MA(1) 

0.9072000 

0.0591800 

-0.947100 

0.00000*** 

0.00706** 

0.000000*** 

Variance equation Coefficient p-value 

𝛼0 

𝛼1 

𝛽1 
Shape 

Skew 

0.0000653 

0.6853000 

0.7701000 

2.3286485 

0.9535000 

0.07108 

0.04104* 

0.000000*** 

0.000000*** 

0.000000*** 

Diagnostic test Test stat p-value 

Ljung-Box R^2   

Q(10) 

1.962815 0.9968384 

Ljung-Box R^2 Q(15) 2.836047 0.9997563 

Ljung-Box R^2 Q(20) 3.304784 0.9999922 

LM Arch Test 2.589192 0.9979635 

Jarque-Bera Test 42417.99 0.0000000 

Log-likelihood 3864.775  

AR and MA denote the autoregressive and moving average 

terms respectively. R^2 Q(.) are Ljung-Box Q-statistic of 

squared residuals at lag 10, 15, 20 respectively. *
,
**

,
*** 

indicate statistical significant at 1%, 5%, 10%.  

 

The results on Table 6, Table 7andTable 8 shows that 

ARIMA-GARCH(1,1) models has adequately captured the 

persistent in volatility and there is no ARCH effect left in 

the residuals from the selectedmodels except the presence of 

non-normality.  

 

4.5 ARIMA –GARCH Model Forecast Evaluation 

 

The full sample is from January 31
st,

2012 to July 31
st,

 2019. 

To test which predicting model is better, we choose data 

from January 31
st
 2012 to January 31

st
 2018 to build up the 

prediction function. Then we use the data from February 1
st
 

2018 to July 31
st
 2019 out-of-sample forecast.  
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Table 10: The evaluation of forecasting results of 

ARIMA(2,0,1)-GARCH(1,1) (normal, student-t, skewed 

student-t) 
Model RMSE MAE 

ARIMA 0.04102977 0.04102956 

ARIMA-GARCH(Normal) 0.03722042 0.03721840 

ARIMA-GARCH(Student-t) 0.05918818 0.05911808 

ARIMA-GARCH(Skewed student-t) 0.06106578 0.06096372 

 

4.6. Comparative Analysis 

 

From Table 10it can be seen that ARIMA(2,01)-

GARCH(1,1) with normal distribution outperforms other 

models. From the point of view of the RMSE it returned a 

forecasterror of 0.03722042 followed by ARIMA (2,0,1) 

with a forecast errorof 0.04102977, ARIMA (2,0,1)-

GARCH (1,1) with student-t distribution is 0.05918818 and 

ARIMA (2,0,1)-GARG (1,1) with skewed student-t is 

0.06106578. For the MAEARIMA (2,0,1)-GARCH (1,1) 

with normal distribution still post the best result with 

forecast accuracy of0.03721840; ARIMA (2,0,1) 

0.04102956; ARIMA (2,0,1)-GARCH (1,1)with student-t 

distribution0.05911808 and ARIMA (2,0,1)-GARCH (1,1) 

with skewed student-t 0.06096372. 

 

5. Summary and Conclusion  
 

This paper aim to create a hybrid model combining ARIMA 

model with GARCH models of high volatility in order to 

analyze and forecast the return of Bitcoin price. To make the 

Bitcoin price stationary, the Bitcoin price are transformed to 

Bitcoin returns. In order to find the most optimal lags, 

different AR and MA lags were tested using the Box-Jenkins 

method. The most appropriate obtained model among 

different models using AIC is ARIMA (2,0,1). As financial 

time series like Bitcoin returns may possess volatility, an 

attempt is made to model this volatility using GARCH (1,1) 

model with Normal, Student’s t and Skewed Student’s t 

distributions. 

 

The results of the paper showed that ARIMA (2,0,1)-

GARCH (1,1) model provides the optimal results and 

improves forecasting in relation to other models. 
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