Estimating and Forecasting Bitcoin Daily Returns Using ARIMA-GARCH Models

Emaeyak Xavier Udom

Sure Foundation Polytechnic, Department of Mathematics and Statistics, Ukanafun P.M.B. 1050 Abak, Akwa Ibom State, Nigeria

Abstract: This paper provides an evaluation of the forecasting performance of hybrid ARIMA-GARCH model in forecasting Bitcoin daily price returns. We combined ARIMA and GARCH model with Normal, Student’s t and Skewed student’s t distributions. To make the series stationary, Bitcoin daily price data was transformed to Bitcoin daily returns. By using Box-Jenkins method, the appropriate ARIMA model was obtained and for capturing volatilities of the returns series GARCH (1,1) models with Normal, Student’s t and Skewed student’s t distributions was used. To evaluate the performance of the models, the study employs two measures, RMSE and MAE. The results reveal that ARIMA (2,0,1)-GARCH (1,1) with Normal distribution outperform the other three in terms of out-of-sample forecast with minimum RMSE and MAE. The findings can aid investors, market practitioners, financial institutions, policymakers, and scholars.

Keywords: ARIMA, GARCH, Bitcoin returns, Hybrid ARIMA-GARCH

1. Background of the Study

Bitcoin is a cryptocurrency first introduced by an unknown or group of people using the name Satoshi Nakamoto [1]. A cryptocurrency is a digital asset designed to work as a medium of exchange that uses strong cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets (Wikipedia.org accessed on Aug 20th, 2019). Bitcoins are created as a reward for a process known as mining and can be exchanged for other currencies, products, and services (Wikipedia.org accessed on Aug 20th, 2019). Bitcoin is the first widely used and traded cryptocurrency since 2009 when the Bitcoin software started to be available to the public and mining-the process of which new Bitcoins can be created and transactions can be recorded and verified on the blockchain begins [2].

As Bitcoin becomes increasingly popular, and the idea of decentralized and encrypted currencies catch on, more rival, alternative cryptocurrencies appear. But Bitcoin remains the most successful and widely accepted cryptocurrencies. Bitcoin prices have been negatively affected by several hacks or theft from cryptocurrency exchanges including thefts from Coincheck in January 2018, Coinrail and Bithumb in June, and Bancor in July 2018 and for the first six months of 2018, $761 million worth of cryptocurrencies was reported stolen from exchanges (Wikipedia.org accessed on Aug 20th, 2019).

The purpose of this paper is to use time series methodology to predict the future returns and price of Bitcoin. At the same time, we want to compare the performance of ARIMA-GARCH models with Normal, Student’s t and Skewed student’s t distributions. As Bitcoin gradually has had a place in the financial markets and in portfolio management, time series analysis is a useful tool to examine the characteristics of Bitcoin prices and returns and extract important statistics in order to forecast future values of the series.

Section 2 that follows this background of the study discusses review of related works, Section 3 discusses the methodology of this study and Section 4 discusses data analysis, while Section 5 gives the summary and conclusion of the paper.

2. Literature Review

Some studies have already been conducted on the financial and statistical characteristics of Bitcoin. Brandvold et al. [3] and Bouoiyour et al. [4], examined price discovery in the Bitcoin market, their findings reveal some significant relationship between Bitcoin prices, transaction use, and investors’ attractiveness. Kristoufek [5], and Gracia et al [6] are of the opinion that Bitcoin price is subject to unique factors which are substantially different from those affecting conventional, financial assets, such as internet search, information on google trends, and word of mouth information on social media.

Glaser et al. [7], in their finding, reveal that Bitcoin is mainly used and viewed as an asset rather than a currency. Dyhrberg [8] analyses the volatility of Bitcoin in comparison to the US Dollar and Gold using GARCH (1,1) and EGARCH (1,1). The study concluded that Bitcoin bears significant similarities to both assets, especially concerning hedging capabilities and volatility reaction to news, suggesting that Bitcoin can be a useful tool for portfolio management, risk analysis, and market sentiment analysis. The author replicates the study using T-GARCH (1,1) and finds similar conclusions [9].

3. Methodology

In this section, the paper discusses the techniques that feature prominently in this study. These are ARIMA, ARIMA- GARCH models with (Normal, Student-t, and Skewed Student-t distribution)
3.1 The Box-Jenkins for ARIMA Model

Auto-Regressive Integrated Moving Average (ARIMA) model is one of the time series forecasting methods which says that the current value of a variable can be explained in terms of two factors; a combination of lagged values of the same variable and a combination of a constant term plus a moving average of past error terms. To build an ARIMA model one essentially use Box-Jenkins methodology [10], which is an iterative process and involves four stages: Identification, Estimation, Diagnostic Checking, and forecasting. As the Box Jenkins (AR, MA, ARMA or ARIMA) models are based on the time series stationary, if underlying series is non-stationary, then first it is converted into a stationary series either by using differencing approach or taking logarithms or regressing the original series against time and by taking the error terms of this regression [11]. The series stationary was tested by applying the ADF-Augmented Dickey-Fuller [12] and PP-Phillips-Perron unit root tests [13]. ADF was performed for the scenario with a constant, without a constant and with a trend [14]. If it is needed for the time series to have one differential operation to achieve stationarity, it is a I(1) series. Time series is I(n) in case it is to be differentiated for n times to achieve stationarity. Therefore, ARIMA (p, d, q) models are used for the non-stationary time series, specifically the autoregressive integrated average models, where d is the order of differentiation for the series to become stationary.

Box-Jenkins ARIMA is known as ARIMA (p, d, q) model where p is the number of autoregressive (AR) terms, d is the number of difference taken and q is the number of moving average (MA) terms. ARIMA models always assume the variance of data to be constant. The ARIMA (p, d, q) model can be represented by the following equation:

\[y_t = \varphi_1 y_{t-1} + \cdots + \varphi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q} \]

Where \(\varepsilon_t \sim N(0, \sigma^2_t) \), p and q are the number of autoregressive and the number of lagged forecast errors, respectively.

The identification of modeling the conditional mean value is based on the analysis of estimated autocorrelation and partial autocorrelation function (ACF, PACF). These estimations may be strongly inter-correlated, it is therefore recommended not to insist on unambiguous determination of the model order, but to try more models. We must not forget to carry out the verification, which is based on a retrospective review of the assumptions imposed on the random errors.

Validation of ARMA (p, q) models is based on minimizing the AIC (Akaike’s information criterion) and BIC (Schwarz’s information criterion) criteria. Given that financial data are very often characterized by high volatility, it is necessary to test the model for ARCH effect, i.e. presence of conditional heteroscedasticity [11]. Regarding heteroscedasticity, it is, therefore, a situation where the condition of finite and constant variance of random components is violated. If ARCH test indicates that the variance of residuals is nonconstant, we can use ARCH family models for capturing volatilities of model

3.2. GARCH Models

GARCH models are used mainly for modeling financial time series that present time-varying volatility clustering. The general GARCH \((q, p)\) model for the conditional heteroscedasticity according to Bollerslev [15] has the following form:

\[y_t = \mu_t + z_t \]

Where

\[\mu_t \] is conditional mean of \(y_t \)

\(z_t \) is the shock at time \(t \)

\(\varepsilon_t \sim iid N(0,1) \).

\[\sigma^2_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i z^2_{t-i} + \sum_{j=1}^{p} \beta_j \sigma^2_{t-j} \]

Where

\(\sigma^2_t \) is the conditional variance of \(y_t \)

\(\alpha_0 \) is a constant term

\(q \) is the order of the ARCH terms

\(p \) is the order of the GARCH terms

\(\alpha_i \) and \(\beta_j \) are the coefficient of the ARCH and GARCH parameters respectively

With constraints

\[\alpha_0 > 0 \]

\[\alpha_i \geq 0, \text{ for } i = 1, 2, \ldots, q \]

\[\beta_j \geq 0, \text{ for } j = 1, 2, \ldots, p \]

\[\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j < 1 \]

3.3 The Densities

The GARCH models are estimated using a maximum likelihood (ML) approach. The logic of ML is to interpret the density as a function of the parameters set, conditional on a set of sample outcomes. This function is called the likelihood function. Financial time-series often exhibits non-normality patterns, i.e. excess kurtosis and skewness. Bollerslev and Wooldridge [16] propose a Quasi Maximum Likelihood method (hereafter QML) that is robust to departure from normality. Indeed, Weiss [17] and Bollerslev and Wooldridge [16] show that under the normality assumption, the QML estimator is consistent if the conditional mean and the conditional variance are correctly specified. This estimator is, however, inefficient, with the degree of inefficiency increasing with the degree of departure from normality [18].

Since it may be expected that excess kurtosis and skewness displayed by the residuals of conditional heteroscedasticity models will be reduced when a more appropriate distribution is used, we consider three distributions in this study: The Normal, the Student-t (including a “tail” parameter) and the Skewed Student-t (including a “tail” parameter and an asymmetric parameter).
3.3.1 Gaussian
The Normal distribution is by far the most widely used distribution when estimating and forecasting GARCH models. If we express the mean equation as:
\[y_t = E[y_t | \varphi_{t-1}] + \epsilon_t \] (5)
And \(\epsilon_t = z_t \sigma_t \) the log-likelihood function of the standard normal distribution is given by
\[L_T = -\frac{1}{2} \sum_{t=1}^{T} \left[\ln(2\pi) + \ln(\sigma_t^2) + z_t^2 \right] \] (6)
Where \(T \) is the number of observations.

3.2.2 Student-t
For a Student-t distribution, the log-likelihood is
\[L_T = \ln[\Gamma(\nu/2)] - \ln[\Gamma((\nu+2)/2)] - 0.5\ln[\pi(\nu-2)] - 0.5 \sum_{t=1}^{T} \ln(\sigma_t^2) + (1+\nu)\ln(1 + \frac{z_t^2}{\nu-2}) \] (7)
Where \(\nu \) is the degree of freedom, \(2 < \nu \leq \infty \) and \(\Gamma(.) \) is the gamma function. When \(\nu \to \infty \), we have the normal distribution, so that the lower \(\nu \) the fatter the tails.

3.3.3 Skewed Student-t
Skewness and kurtosis are important in financial applications in many respects (in asset pricing models, portfolio selection, option pricing theory or Value-at-Risk among others). Therefore, adistribution that can model these two moments looks appropriate. Quite recently, Lambert and Laurent [19]-[20], extend the Skewed Student density proposed by Fernandez and Steel [21]to the GARCH framework. For a Standardized (zero mean and unit variance) Skewed Student, the log-likelihood is:
\[L_T = \ln[\Gamma(\nu/2)] - \ln[\Gamma((\nu+2)/2)] - 0.5\ln[\pi(\nu-2)] - 0.5 \sum_{t=1}^{T} \ln(\sigma_t^2) + (1+\nu)\ln(1 + \frac{z_t^2}{\nu-2}) \] (8)
Where \(\xi \) is the asymmetry parameter, \(\nu \) the degree of freedom of the distribution, \(r(.) \) is the gamma function.
\[L_t = \begin{cases} 1 & \text{if } z_t \geq -m \\ -1 & \text{if } z_t < -m \\ s & \text{if } |z_t| < m \end{cases} \]
\[m = \frac{r(\nu+2)/2 - \nu}{\sqrt{\Gamma(\nu/2)}} (\xi - \frac{1}{2}) \] and
\[s = \sqrt{\xi^2 + \frac{1}{\nu} - 1 - m^2} \] see Lambert and Laurent [20] for more details.

3.4. Hybrid ARIMA-GARCH Model
In order to recommend a hybrid ARIMA-GARCH model, two stages should be applied. In the first stage, we use the best ARIMA model that fits on stationary and linear time series data while the residuals of the linear model will contain the non-linear part of the data. In the second stage, we use the GARCH model in order to contain non-linear residuals patterns. This hybrid model, which combines ARIMA and GARCH model containing non-linear residuals patterns, is applied to analyze and forecast the returns of Bitcoin.

3.5. Estimation of Hybrid ARIMA-GARCH Model
The hybrid ARIMA-GARCH model is a nonlinear time series model which combines a linear ARIMA model with the conditional variance of a GARCH model. The estimation procedure of ARIMA and GARCH models are based on maximum likelihood method. Parameters’ estimation in logarithmic likelihood function is done through nonlinear Marquardt’s algorithm [22]. The logarithmic likelihood function has the following equation:
\[\ln L[(\gamma_t, \theta)] = \sum_{t=1}^{T} \left[\ln[\mathbb{D}(z_t(\theta), \mu)] - \frac{1}{2} \ln[\sigma_t^2(\theta)] \right] \] (9)
Where \(\theta \) is the vector of the parameters that have to be estimated for the conditional mean, conditional variance, and density function, \(z_t \) denoting their density function, \(\mathbb{D}(z_t(\theta), \mu) \) is the log-likelihood function of, for \((y_t, \theta) \) a sample of \(T \) observation. The maximum likelihood estimator \(\hat{\theta} \) for the true parameter, vector, is found by maximizing (10) [23].

3.6. Diagnostic Checking of Hybrid ARIMA-GARCH Model
The diagnostic tests of hybrid ARIMA-GARCH models are based on residuals. Residuals’ normality test is employed with Jarque and Bera test [24]. Ljung and Box [25] (Q-statistics) statistic for all time lags of autocorrelation is used for the serial correlation test. Also, for the conditional heteroscedasticity test, we use the squared residuals of autocorrelation function.

3.7. Forecast Evaluation
This study adopted two very popular measures for evaluating the forecast accuracy of the series and these are: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). These measures are evaluated by assessing their returns. The one with the lowest error measure is judged the best. These measures are defined as follows.
\[\text{MAE} = \frac{1}{N} \sum_{t=1}^{N} (X_t - \hat{X}_t)^2 - \hat{\sigma}_t \] (10)
and
\[\text{RMSE} = \left[\frac{1}{N} \sum_{t=1}^{N} (X_t - \hat{X}_t)^2 - \hat{\sigma}_t^2 \right]^{1/2} \] (11)
Where:
\(X_t \): The return of the horizon before the current time \(t \)
\(\hat{X}_t \): The average return
\(\hat{\sigma}_t \): Is the forecast value of the conditional variance over \(n \) steps ahead horizon of the current time \(t \)

4. Data Analysis
The data used in this study are the daily closing prices of Bitcoin from Jan 1st, 2012 to July 31st, 2019, which corresponds to a total of 2769 observations. The estimation process is run using 7 years of data (2012-2018) while the remaining are used for forecasting. The data is compiled from Bitstamp, the largest Bitcoin exchange, and covers a daily database denominated in US dollar, which is the main currency against which Bitcoin is the most traded.
Bitcoin prices are transformed into their returns so that we obtain stationary series. The transformation is

$$\eta_t = 100 \times [\ln y_t - \ln y_{t-1}]$$

Equation (12)

Table 1 shows some key statistics of the data before transformation which shows high standard deviation and none normality.

Table 2 presents some key statistics of the data after transformation. Skewness and excess kurtosis are clearly observed, leading to a high valued Jarque and Bera (1987) test which indicates non-normality of the distribution.

In the following Figure 1, we present the closing price of Bitcoin before transformation which seems to be nonstationary.

In Figure 2, we present the closing returns of Bitcoin price after transformation. From Figure 2, the daily closing returns of Bitcoin seems to be stationary. The conformation in stationarity of the returns of Bitcoin price is done with Dickey-Fuller [12] and Phillips-Perron [13] unit root tests.

The results of Table 3 confirm that the returns of Bitcoin price are stationary in their level.

4.1 Choice of the best model

Once stationary have been addressed, the next step is to identify the order (the p, d, and q) of the autoregressive and moving average terms. The primary tools for doing this are Akaike information criterion, Schwartz information criterion, and Hannan Quinn information criterion. That is the model that gives minimum A

4.1.1 ARIMA Model Identification

Table 4: AIC of ARIMA (p, d, q)

<table>
<thead>
<tr>
<th>Order</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1)</td>
<td>-5862.983</td>
</tr>
<tr>
<td>(0,0,2)</td>
<td>-5862.051</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>-5862.886</td>
</tr>
<tr>
<td>(1,0,1)</td>
<td>-5861.584</td>
</tr>
<tr>
<td>(1,0,2)</td>
<td>-5860.047</td>
</tr>
<tr>
<td>(2,0,0)</td>
<td>-5862.077</td>
</tr>
<tr>
<td>(2,0,1)</td>
<td>-5854.612*</td>
</tr>
<tr>
<td>(2,0,2)</td>
<td>-5857.967</td>
</tr>
</tbody>
</table>

(*) minimum value to criterion

From table 4, we observed that the optimal model is ARIMA (2, 0, 1) that is based on the selection criterion AIC.

4.2 Model estimation

After an optimum model has been identified, the model estimation methods make it possible to estimate all the parameters of the ARIMA model.

Table 5: The estimated model of ARIMA (2,0,1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>coefficient</th>
<th>Std.error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.0003927</td>
<td>0.000313</td>
<td>0.2096</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.8115002</td>
<td>0.086643</td>
<td>0.00000***</td>
</tr>
<tr>
<td>AR(2)</td>
<td>0.0425337</td>
<td>0.024744</td>
<td>0.0856</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.8456408</td>
<td>0.084552</td>
<td>0.00000***</td>
</tr>
</tbody>
</table>
4.3 Justifications for ARIMA-GARCH model

We have already known from the excess kurtosis that an obvious fat tails displayed in our series, a typical evidence of heteroskedastic effects as clustering of volatility. We will also use Box-Pierce [25] and Engle LM test [26], to test for the presence of ARCH effect using ARIMA (2,0,1) residuals.

<table>
<thead>
<tr>
<th>Table 6: ARIMA (2,0,1) residuals test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of test</td>
</tr>
<tr>
<td>Ljung-Pierce (R^2)</td>
</tr>
<tr>
<td>ARCH LM-test (R)</td>
</tr>
</tbody>
</table>

R denotes residuals

The results of Table 6 confirm the presence of ARCH effect in the model. Given the ARCH effects on the returns of Bitcoin price, we proceed with the estimations of hybrid ARIMA-GARCH models to examine the volatilities that exist in the related returns of Bitcoin. To catch this cluster we should use ARIMA as well as GARCH models. Thus, in the levels time-series on returns of Bitcoin prices we have to find out the appropriate hybrid ARIMA-GARCH model. Estimation parameters’ is held with Maximum Likelihood method.

4.4 Estimation of ARIMA(2,0,1)-GARCH models

4.4.1 Why use GARCH models (1,1)

According to Javed and Mantalos [27], numerous studies that investigate model selection for the GARCH models find that the “performance of the GARCH (1,1) model is satisfactory”. Javed and Mantalos claim that the first lag is sufficient to capture the movements of the volatility. To be able to compare the results, I will for the purpose of this study used GARCH (1,1) model with different distribution such as normal, student-t, and skewed-student-t.

<table>
<thead>
<tr>
<th>Table 7: Estimate of ARIMA(2,0,1)-GARCH(1,1) model with Normal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean equation</td>
</tr>
<tr>
<td>AR(1)</td>
</tr>
<tr>
<td>AR(2)</td>
</tr>
<tr>
<td>MA(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance equation</th>
<th>Coefficient</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>7.131e-05</td>
<td>0.000000***</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>2.192e-01</td>
<td>0.000000***</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>7.699e-01</td>
<td>0.000000***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>Test stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LJung-Box R^2 Q(10)</td>
<td>2.188098</td>
<td>0.9949685</td>
</tr>
<tr>
<td>LJung-Box R^2 Q(15)</td>
<td>5.88718</td>
<td>0.968075</td>
</tr>
<tr>
<td>LJung-Box R^2 Q(20)</td>
<td>8.87396</td>
<td>0.984331</td>
</tr>
<tr>
<td>LM Arch Test</td>
<td>2.83514</td>
<td>0.996312</td>
</tr>
<tr>
<td>Jarque-Bera Test</td>
<td>1280.39</td>
<td>0.000000</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>3541.236</td>
<td></td>
</tr>
</tbody>
</table>

AR and MA denote the autoregressive and moving average terms respectively. R^2 (Q) are Ljung-Box Q-statistic of squared residuals at lag 10, 15, 20 respectively. *** indicate statistical significant at 1%, 5%, 10%.

The results on Table 6, Table 7, and Table 8 shows that ARIMA-GARCH(1,1) models have adequately captured the persistent in volatility and there is no ARCH effect left in the residuals from the selected models except the presence of non-normality.

4.5 ARIMA – GARCH Model Forecast Evaluation

The full sample is from January 31st 2012 to July 31st 2019. To test which predicting model is better, we choose data from January 31st 2012 to January 31st 2018 to build up the prediction function. Then we use the data from February 1st 2018 to July 31st 2019 out-of-sample forecast.
Table 10: The evaluation of forecasting results of ARIMA(2,0,1)-GARCH(1,1) (normal, student-t, skewed student-t)

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA</td>
<td>0.04102977</td>
<td>0.04102956</td>
</tr>
<tr>
<td>ARIMA-GARCH(Normal)</td>
<td>0.03722042</td>
<td>0.03721840</td>
</tr>
<tr>
<td>ARIMA-GARCH(Student-t)</td>
<td>0.05911808</td>
<td>0.05911808</td>
</tr>
<tr>
<td>ARIMA-GARCH(Skewed student-t)</td>
<td>0.06106578</td>
<td>0.06096372</td>
</tr>
</tbody>
</table>

4.6. Comparative Analysis

From Table 10 it can be seen that ARIMA(2,0,1)-GARCH(1,1) with normal distribution outperforms other models. From the point of view of the RMSE it returned a forecast error of 0.03722042 followed by ARIMA (2,0,1) with a forecast error of 0.04102977. ARIMA (2,0,1)-GARCH (1,1) with student-t distribution is 0.05911818 and ARIMA (2,0,1)-GARCH with skewed student-t is 0.06106578. For the MAE it returned a forecast error of 0.04102956; ARIMA (2,0,1)-GARCH(1,1) with normal distribution still post the best result with skewness dynamics 0.04102977, ARIMA (2,0,1)-GARCH and ARIMA (2,0,1)-GARCH with skewed student-t 0.06096372.

5. Summary and Conclusion

This paper aims to create a hybrid model combining ARIMA model with GARCH models of high volatility in order to analyze and forecast the return of Bitcoin price. To make the Bitcoin price stationary, the Bitcoin price is transformed to Bitcoin returns. In order to find the most optimal lags, different AR and MA lags were tested using the Box-Jenkins method. The most appropriate obtained model among different models using AIC is ARIMA (2,0,1). As financial time series like Bitcoin returns may possess volatility, an attempt is made to model this volatility using GARCH (1,1) model with Normal, Student’s t and Skewed Student’s t distributions.

The results of the paper showed that ARIMA (2,0,1)-GARCH (1,1) model provides the optimal results and improves forecasting in relation to other models.

References

Author Profile

Emaeyak Udom received His B.Sc. degree in statistics from University of Uyo in 2013 and receive M.Sc. degree in statistics from university of Ilorin in 2018. He's currently a lecturer in the department of mathematics and statistics Sure Foundation polytechnic Ukanafun, Akwa Ibom State, Nigeria. His research interest is in time series and econometrics.