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Abstract: For 𝒒 ∈  𝟎, 𝟏 , a 𝒒 − deformation of the continuity equation is introduced using the q- derivative (or Jackson derivative). By 
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1. Introduction 
 

A continuity equation in physics is an equation that 

describes the transport of some quantity. It is particularly 

simple and powerful when applied to a conserved quantity, 

but it can be generalized to apply to any extensive quantity. 

Since mass, energy, momentum, electric charge and other 

natural quantities are conserved under their respective 

appropriate conditions, a variety of physical phenomena may 

be described using continuity equations. Continuity 

equations are a stronger, local form  of conservation laws. 

For example, a weak version of the law of conservation of 

energy states that energy can neither be created nor 

destroyed i.e., the total amount of energy in the universe is 

fixed. This statement does not rule out the possibility that a 

quantity of energy could disappear from one point while 

simultaneously appearing at another point. A stronger 

statement is that energy is locally conserved: energy can 

neither be created nor destroyed, nor can it ”teleport” from 

one place to another, it can only move by a continuous 

flow.Acontinuityequationisthemathematicalwaytoexpressthis

kindofstatement. For example, the continuity equation for 

electric charge states that the amount of electric charge in 

any volume of space can only change by the amount of 

electric current flowing into or out of that volume through its 

boundaries. An alternative expression of the continuity 

equation for a species in the atmosphere can be derived 

relative to a frame reference moving with the local flow; this 

is called the Lagrangian approach. Consider a fluid element 

at location 𝑋0 at time 𝑡. We wish to know where this element 

will be located at a later time 𝑡. We define a transition 

probability density such that the probability that the fluid 

element will have moved to within a volume 

 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 centered at location X at time t. Continuity 

equations more generally can include “source” and  “sink” 

terms, which allow them to describe quantities that are often 

but not always conserved, such as the density of a molecular 

species which can be created or destroyed by chemical 

reactions. In an everyday example, there is a continuity 

equation for the number of people alive; it has a ”source 

term” to account for people being born, and a ”sink term” to 

account for people dying. 

 

Any continuity equation can be expressed in an ”integral 

form”  in terms of a flux integral, which applies to any finite 

region, or in a differential form interms of the divergence 

operator) which applies at a point. Continuity equations 

underlie more specific transport equations such as the 

convection diffusion equation, Boltzmann transport 

equation, and Navier-Stokes equations. 

A continuity equation is useful when a flux can be defined. 

To define flux, first there must be a quantity 𝑄 which can 

flow or move, such as mass, energy, electric charge, 

momentum, number of molecules, etc. Let 𝜌 be the volume 

density of this quantity, that is, the amount of 𝑄 per unit 

volume. 

 

By the divergence theorem, a general continuity equation 

can also be written in a differential form: 

 
where ∇ is divergence, 𝜌 is the amount of the quantity 𝑄 per 

unit volume, 𝑗 is the flux of 𝑄, 𝑡 is time, 𝜎 is the generation 

of 𝑄 per unit volume per unit time. Terms that generate 𝑄 

(i.e. 𝜎 > 0) or remove 𝑄 (i.e. 𝜎 < 0) are referred to as a 

”sources” and ”sinks” respectively. This general equation 

may be used to derive any continuity equation, ranging from 

as simple as the volume continuity equation to as 

complicated as the Navier-Stokes equations. This equation 

also generalizes the advection equation. Other equations in 

physics, such as Gauss’s law of the electric field and Gauss’s 

law for gravity, have a similar mathematical form to the 

continuity equation, but are not usually referred to by the 

term ”continuity equation”, because j in those cases does not 

represent the flow of a real physical quantity. In the case that 

𝑄 is a conserved quantity that cannot be created or destroyed 

(such as energy), 𝜎 = 0 and the equations becomes: 

 
In electromagnetic theory, the continuity equation is an 

empirical law expressing (local) charge conservation. 

Mathematically it is an automatic consequence of Maxwell’s 

equations, although charge conservation is more 

fundamental than Maxwell’s equations. It states that the 

divergence of the current density 𝑗 (in amperes per square 

meter) is equal to the negative rate of change of the charge 

density 𝜌 (in coulombs per cubic metre), 

 
 

Current is the movement of charge. The continuity equation 

says that if charge is moving out of a differential volume 

(i.e. divergence of current density is positive) then the 

amount of charge within that volume is going to decrease, so 

the rate of change of charge density is negative. Therefore, 

the continuity equation amounts to a conservation of charge. 

If magnetic monopoles exist, there would be a continuity 

equation for monopole currents as well, see the monopole 

article for background and the duality between electric and 

magnetic currents. In fluid dynamics, the continuity equation 
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states that the rate at which mass enters a system is equal to 

the rate at which mass leaves the system plus the 

accumulation of mass within the system. Conservation of 

energy says that energy cannot be created or destroyed. (See 

below for the nuances associated with general relativity.) 

Therefore, there is a continuity equation for energy flow: 

 
 

Where 𝑢  is a local energy density (energy per unit volume), 

𝑄 is energy flux (transfer of energy per unit cross-sectional 

area per unit time) as a vector.  An important practical 

example is the flow of heat. When heat flows inside a solid, 

the continuity equation can be combined with Fourier’s law 

(heat flux is proportional to temperature gradient) to arrive at 

the heat equation. The equation of heat flow mayalso have 

source terms: although energy cannot becreated or 

destroyed, heat can be created from other types of energy, 

for example via friction or joule heating. 

 

In recent years the q-deformation of the Heisemburg 

commutation relation has drawn attention. In the paper [10], 

the purpose was to understand the probability distribution of 

a non-commutative random variable 𝑎 + 𝑎∗, where 𝑎 is a 

bounded operator on some Hilbert space satisfying 

 
 

for some 𝑞 ∈ [−1,1). The calculation is inspired by the case, 

𝑞 = 0, where 𝑎 and 𝑎∗,  turn out to be the left and right shift 

on 𝑙2(ℕ), In this case a and 𝑎∗, can be quite nicely 

represented as operators on the Hardy class ℋ2of all 

analytic functions on the unit disk with 𝐿2 limits toward the 

boundary. 

 

Subsequently, they find a measure 𝜇𝑞 , 𝑞 ∈  −1,1 , on the 

complex plane that replaces the Lebesgue measure on the 

unit circle in the above: µq is concentrated on a family of 

concentric circle, the largest of which has the radius
1

 1−𝑞
 . 

Their representation space (see[10]) will be ℌ2 𝔇𝑞 , 𝜇𝑞  the 

completion of the analytic functions on ℑ𝑞 =  𝑧 ∈ ℂ 𝑧 2 <

11−𝑞  (1−q)}with respect to the inner product defined by𝜇𝑞. 

In this space annihilation operator 𝑎 is represented by a 𝑞 

difference operator 𝐷𝑞 . As 𝑞 tends to 1, 𝜇𝑞will tend to the 

Gauss measure on ℂ and 𝐷𝑞  becomes differentiation. So, it is 

natural to ask what is the 𝑞 - deformation of the continuity 

equation. This paper organized as follows. In Section 2, we 

briefly recall well-known results on 𝑞 - calculus, Jackson 

derivative (or 𝑞 -derivative) and useful representations. In 

Section 3, we introduce 𝑞 -continuity equation and we 

deduced some theorems. 

 

2. Preliminaries 

 

We recall some basic notations of the language of q-calculus 

(see [1, 2, 7, 9, 10]). The natural number n has the following 

q deformation: 

 

 𝑛 𝑞 ≔ 1 + 𝑞 + 𝑞2 + ∙ ∙ ∙  +𝑞𝑛−1,  with   0 𝑞 = 0. 

Occasionally we shall write  ∞ 𝑞   for the limit of these 

numbers: 
1

 1−𝑞 
. The 𝑞 factorials and 𝑞 binomial coefficients 

are defined naturally as 

 

 𝑛 𝑞 ! ≔   1 𝑞 ∙   2 𝑞 ⋯  𝑛 𝑞  with   0 𝑞 ≔ 1 

 

Recall that from [10], for 𝑞 ∈ (−1,1).  relation (1) admits, 

up to unitary equivalence, a unique non-trivial bounded 

irreducible representation given on the canonical basis  
 𝑒𝑛  𝑛 ∈ ℕ  of  𝑙2(ℕ)by: 

 
For 𝑞 ∈ (0,1) and analytic 𝑓: ℂ ⟶ ℂdefine operators 𝑍 and 

𝐷𝑞  as follows (see [7, 9, 10]) 

 

 
The operator𝐷𝑞  has the following properties: 

 
 

It is well known ([10]) that the operators 𝐷𝑞  and 𝑍 give a 

bounded representation of (1), i.e., 𝐷𝑞  and 𝑍 satisfy 

 
With respect to the measure (see [10]) 

 
where 𝜆𝑟𝑘

 is the normalized Lebesgue measure on the circle 

with radius𝑟𝑘 , they define the inner product 

 
for all 𝑓, 𝑔 ∈ ℌ2 𝔇𝑞 , 𝜇𝑞 . Note that 𝜇𝑞 ⟶ 𝜇0 when 𝑞 ⟶ 0, 

where 𝜇0 is the normalized Lebsgue measure on the unit 

circle and that, in the limit 𝑞 ↑ 1,𝜇𝑞  tends to the Gauss 

measure on the complex plane. The identification 𝑎 = 𝐷𝑞and  

𝑎∗ = 𝑍 determine a representation of (1) on  ℌ2 𝔇𝑞 , 𝜇𝑞 . In 

particular, with 𝑒𝑛 ≔ 𝑧𝑛 , (i),(ii) and (iii) are satisfied, and 

therefore 𝐷𝑞
∗ = 𝑍. For more details see Ref. [10]. 

 

3. q-Continuity Equation 
 

Let 𝑞 ∈ (0,1). Recall that  

 
And 
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As a 𝑞-deformation of the continuity equation 

 
we will study the following equation 

 
 

Theorem3.1. For 𝑞 ∈ (0,1), the q-continuity equation (4) 

gives 

 

 
Proof: From equation (2) we get 

 

 
. 

. 

. 

 
Then, we obtain 

 
Therefore, we deduce that 

 
As𝑘 → ∞ we get 

 
which completes the proof. 

 

Theorem3.2. For 𝑞 ∈ (0,1),  the solution of the 𝑞 -

continuity equation (4) is given by 

 

 

 
Proof: From equation (2) we get 

 
Which gives 

 
. 

. 

. 

 
Then, we get 

 

 
. 

. 

. 

 
Then, we obtain 

 
 

As𝑘 → ∞ we get 

 
as desired. 
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