
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Comparative Analysis of Complexity of C++ and

Python Programming Languages Using Multi-

Paradigm Complexity Metric (MCM)

Balogun M. O.
1
, Sotonwa K. A.

2

Abstract: Software complexity metrics have used to quantifydifferent types of software properties such as cost, effort, time,

maintainability, understanding and reliability. The existing metrics considered limited factors that affect software complexity, but do not

consider the characteristics that affect complexity of multi-paradigm languages. In this work, a Multi-paradigm Complexity Metric

(MCM) for measuring software complexity was developed for multi-paradigm codes. Multi-paradigm languages that were considered in

thiswork are C++ and Python, these two languages combine the features of procedural and object oriented paradigms, therefore this

research began with investigation of factors that affect the complexity of procedural code and object oriented code, so that the developed

metric could be used not only for procedural code, but also either object oriented codes or in more general for multi-paradigm codes.

The developed metric was then applied on sample programs written in most popular programming languages such as Python and C++,

and the result of the developed metric was further evaluated with other existing complexity metrics like effective line of code (eLOC),

cyclomatic complexity metric and Halstead complexity measures. The study showed that the developed complexity metric have

significant comparison with the existing complexity metrics and can be used to rank numerous programs and difficulties of various

modules.

Keywords: Basic Control Structure,Cyclomatic Complexity Measure, Complexity of Distinct Class, Complexity of Inherited

Class,Halstead Complexity Measure, Procedural Complexity, Multi-paradigm Code

1. Introduction

The requisite for improved quality control of the software

development process has given rise to the discipline of

software engineering, withpurposes of applying the

systematic approach present in the engineering paradigm to

the progress of software development. In ISO (2010) it was

said that, if a software system is functional, reliable,

maintainable, portable, useable, and efficient, then it is said

to be of high quality. Alert, due to complexity of software

system it is difficult to attain all these qualities during

software development process. Software metrics have

always been important tools in the development of

software’s. Software quality has been of rising demand for

decades and some definitions have been provided

throughout software history. According to (Sommerville,

2004) the most necessary software quality attributes is

maintainability. To efficiently be able to maintain a software

system, the codes should be understandable to the

developer. For code to be easily understands, it has to be of

low complexity. But in other to reduce software complexity,

software metrics are used. Metrics are indicators of

complexities; they expose several weakness of a complex

software system. Software metric is used to measure some

properties of a piece of software or its specifications. Since

quantitative measurements are essential in all sciences, there

is a continuous effort by computer science practitioners and

theoreticians to bring similar approaches to software

development. The goal is obtaining objective, reproducible

and quantifiable measurements, which may have numerous

valuable applications in schedule and budget planning, cost

estimation, quality assurance testing, software debugging,

software performance optimization, and optimal personnel

task assignments. Reason for using software metrics as ‘you

cannot manage what you cannot measure’’ therefore in

order to monitor and improve software quality,

measurement is essential said by DeMarco in 1986. Also

McCabe and Watson in 2010 defined software complexity

as ‘‘one branch of software metrics that is focused on direct

measurement of software attributes, as opposed to indirect

software measures such as project milestone status and

reported system failures’’. It is believed that for coding and

modifying a software system, a higher comprehensibility of

the code is required. If the comprehensibility is higher, then

the complexity of the software is lower, and therefore

testing is easier.

Related to the definition above, software complexity metric

can be classified according to paradigms as follows:

1) Procedural paradigm

2) Object-oriented paradigm

3) Multi-paradigm

4) Other paradigms

But the complexity factors and metric that are employed in

this research is based on multi-paradigm metric which is a

combination of procedural and object oriented paradigm.

2. Overview of Some Existing Metrics

According to Eclipse Metrics Plug-in 1.3.8 2010 ‘Most of the

metrics used for measuring code complexity of procedural

languages include Lines of Code, Cyclomatic Complexity

Measure and Halstead Complexity Measures, while those of

object oriented languages includes the chidamber and

kemerer metrics suite, weighted class complexity just to

mention but view.

Effective lines of code

This metric considers only the number of lines of code inside

a program. According to (Resource Standard Metrics, 2010)
Effective Line of Code Metric has the following types:

1) Lines of Code (LOC): counts every line including

comments and blank lines.

Paper ID: ART20194760 10.21275/ART20194760 1832

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2) Kilo Lines of Code (KLOC): it is LOC divided by 1000.

3) Effective Lines of Code (eLOC): estimates effective line

of code excluding parenthesis, blanks and comments.

4) Logical Lines of Code (lLOC): estimates only the lines

which form statements of a code. For example, in C, the

statements which end with semi-colon are counted to be

lLOC.

Limitation of this method includes: measurement is highly

dependent on programming languages. A code written in

Java may be much more effective than C. Also two programs

that give the same functionalities written in two different

languages may have very different LOC values.

Cyclomatic Complexity Measures (CCM)

Cyclomatic complexity is a static software metric pioneered

in the 1976 by Thomas McCabe. The Cyclomatic complexity

number (CCN) is a measure of how many paths there are

through a method. CCM serves as a rough measure of code

complexity and as a count of the minimum number of test

cases that are required to achieve full code-coverage of the

method.

McCabe’s gives the formular for Calculating Cyclomatic

Complexity as:

m= e – n + 2 p

Where,

m is the Cyclomatic complexity

e is the number of edges

n is the number of vertices

p is the connected components

For example, if e= 8, n=10, p=2

m = 8 – 10 + 2(2)

m = 4

Halstead Complexity Measures

This metric was presented by Halstead in 1977. Halstead

makes the observation that metrics of the software should

reflect the implementation or expression of algorithms in

different languages, but be independent of their execution on

a specific platform. These metrics are therefore computed

statically from the code. Halstead's goal was to identify

measurable properties of software, and the relations between

them. This is similar to the identification of measurable

properties of matter (like the volume, mass, and pressure of a

gas) and the relationships between them (such as the gas

equation). Thus his metrics are actually not just complexity

metrics.

The method includes:

(i) n1: the number of distinct operators,

(ii) n2: the number of distinct operands,

(iii) N1: the total number of operators, and

(iv) N2: the total number of operands.

The following values can be deduced from Halstead

Complexity Measure:

Program Length => N = N1 + N2

Vocabulary Size => n = n1 + n2

Program Volume => V = N* log 2(n)

Difficulty Level => D = (n1/2) * (N2/n2)

Program Level => L = 1/D

Effort to Implement => E = V * D

Time to Implement => T = E/18

Number of Delivered Bugs => B = 𝐸2/3/ 300

Further research made it cleared that all these metrics

considered limited factors that affect software complexity,

and neglect many other factors responsible for the

complexity of a code, they do not consider the

characteristics of multi-paradigm languages at all, for

instance line of code only considered the effective lines we

have in a particular code, Cyclomatic complexity measures

only make a basis path testing by measuring the flow of a

program, while Halstead complexity measure only identifies

the measurable properties in a code and the relationship that

exist between those properties.

Chidamber and Kemeree metrics suite and weighted class

complexity deals with only the weight classes ,weight

methods and weight of subclasses we have in a code,

neglecting many other factors responsible for the complexity

of such a code been considered.

3. Proposed Methodology

The study investigates the factors that affect the complexity

of Multi-paradigm codes and then developed a metric for

Multi-paradigm programming languages. For validation of

the metric, the metric is applied on some searching

algorithms codes written in C++ and Python.

The developed metric

A new metric was developed for the procedural parts of

multi-paradigm codes. The research was extended by

considering also the object oriented parts of the codes. This

means that the developedmetric, Multi-paradigm Complexity

Measure (MCM) combines procedural and OO factors.

The following are recognised as the factors that are

responsible for the complexity of multi paradigm language

are.

Factors of complexity of procedural part:

a) Variables and constants

b) Basic Control Structures

Factors of Complexity of object oriented Part:

a) Attributes and constants,

b) Basic Control Structures; and

c) Classes.

The metric is developed in a way that it can measure OO and

procedural parts separately. However, some programs may

not cover OO features in a code. Then, 0 should be assigned

to the parts that are not related with OO paradigm. Table

1presents basic control structure of MCM.

Paper ID: ART20194760 10.21275/ART20194760 1833

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Basic control structure for Multi-paradigm

Complexity Measure (Wang and Shao 2003)

Based on the mentioned factors, the research developed a

metric for multi-paradigm codes as below.

Multi-paradigm Complexity Measurement (MCM):

MCM=

CIclass + CDclass +
PCCM (i)

Where, CIclass = Complexity of Inherited Classes

CDclass = Complexity of Distinct Class

PCCM = Procedural Complexity

Although, PCCM measures the procedural complexity, it is

assumed that using PCCM is difficult. MCM includes

various complexity factors of PCCM. PCCM, being a part of

MCM, would make the metric too complex and too difficult

to apply. Therefore, it is recommended that Cprocedural is

used in MCM instead of PCCM. However, it is possible to

use MCM with PCCM for more detailed measurement.

From i MCM = CIclass + CDclass + Cprocedural
Cprocedural = Procedural Complexity

All these factors are defined as follows:

Cclass can be defined as complexity of a class. Cclass takes a

major role in the calculation of both CDclass and CIclass.

For example, for calculating CIclass, CDclassis needed.

Cclass is defined as,

Cclass= W (attributes) + W (variables) + W(structures) +

W(objects) – W(cohesion)

Where, Cclass = Complexity of Class(ii)

The reason of subtraction of cohesion is that it reduces the

complexity and thus it is desirable from the point of view of

software developers said by Roger in 2005.

Where, weight of attributes or variables is defined as

Where, AND = Number of arbitrarily named distinct

variable/ attributes

MND = Number of meaningfully named distinct

variables/attributes

Weight of structure W (structures) is defined as:

W (structure) = W (BCS)

Where, BCS are basic control structure.

Weight of objects, Weight (objects) is defined as:

W (objects) = 2

An object created is counted as 2, because while creating an

object constructor is automatically called. Thus, coupling

occurs. Therefore, it is the same as calling a function or

creating an object. Here it is meant to be the objects created

inside a class.

Moreover, a method that calls another method is another

cause of coupling, but that fact is added to MCM value inside

Weight (structures).

Weight of cohesion is defined as:

W (cohesion) = MA/AM

Where, MA = Number of methods where attributes are used

AM = Number of attributes used inside methods

While counting the number of attributes there is no any

importance of AND or MND.

CIclass can be defined as;

There are two cases for calculating the complexity of the

Inheritance classes depending on the architecture:

i) If the classes are in the same level then their weights are

added.

ii) If they are children of a class then their weights are

multiplied due to inheritance property.

If there are m levels of depth in the object oriented code and

level j has n classes then the Cognitive Code Complexity

(CCC) of the system is given as

Paper ID: ART20194760 10.21275/ART20194760 1834

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

CDclass can be defined as;

CDclass Cclass(x) + Cclass(y) + -------

(v)

Note: All classes, which are neither inherited nor derived

from another, are parts of CDclass even if they have caused

coupling together with other classes.

Cprocedural can be defined as;

Cprocedural= W (variables) + W (structures) + W (objects) –

W (cohension)(vi)

Weight of variable W (variable) is defined as:

From equation (iii) W (variables) = 4 ∗ 𝐴𝑁𝐷 + 𝑀𝑁𝐷

The variables are defined globally.

Weight of structure W (structures) is defined as:

W(structures) = W(BCS) + object.method

Where, BCS are basic control structure, and those structures

are used globally. ‘object.method’ is calling a reachable

method of a class using an object.‘object.method’ is counted

as 2, because it is calling a function written by the

programmer. If the program consists of only procedural code,

then the weight of the ‘object.method’ will be 0.

Weight of objects, W (objects) is defined as:

W (objects) = 2

Creating an object is counted as 2, as it is described above.

Here it is meant to be the objects created globally or inside

any function which is not a part of any class. If the program

consists of only procedural code, then the weight of the

‘objects’ will be 0.

Where, NF is number of functions, and NV means number of

variables. Coupling is added inside W (structures) as

mentioned in the beginning of the metric description.

4. Demonstration of the Metrics and Discussion

of the Results

For demonstration of MCM, linear and binary search

algorithms codes were considered, the codes were written in

two different programming languages, which include C++

and Python. Since the metric consist of both procedural and

object oriented part, so in the Table the parts that are in dark

colour represents the object oriented part of the code, from

which the complexity of the distinct class is calculated, while

the light part represent the procedural part. Table2 is showing

the demonstration of binary search algorithm written in

python, while calculation of MCM is shown immediately

below the table3, just to show how the proposed metric was

implemented.

Table 2: Linear Searching Demonstration in Python

 Att str var obj MA AM Cohesion Complexity

import time 2 1

a = ["0"] 1 1

class ClassOfSearchAlgos:

deflinear_search(self, item_list, wanted):

fl = False 5 5

msg = "Using Linear Search, The Element Found At position " 1 1 2

 for i in range(len(item_list)): 7 5 12

 if int(wanted) == int(item_list[i]): 6 6 12

msg = msg + str(i) + "," + " " 4 6 10

fl = True 5 5

 if fl == False : msg = "Using Linear Search, The Element Not Found" 3 6 9

 return msg 1 1

defload_data_from_file(filename): 1 1

i = 0 5 5

 with open(filename) as fp: 1 2 3

 for line in iter(fp.readline, ''): 7 1 8

a.append("0") 1 2 1 4

i = i + 1 9 9

 a[i] = line 1 5 6

 print(a[i]) 1 2 4 7

load_data_from_file("C:\EclipseWorkspaces\csse120\Tolu\codes.txt") 3 3

wanted = input("search: ") 3 1 4

x = ClassOfSearchAlgos() 2 2

 print (x.linear_search(a, wanted)) 1 4 1 6

MCM = CIclass +CDclass + Cprocedural

From the table CIclass = 0

CDclass = 5+2+12+12+10+5+9+1+1+15+3+8+4+9+6+7 =99

Cprocedural = 1+3+4+2+6 = 16

Therefore, MCM =0 +99 +16 =115

Paper ID: ART20194760 10.21275/ART20194760 1835

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 3: Comparison of the developed metric (MCM) with

the existing metrics
Program MCM eLOC CC V D E T

Binary

Search

C++

266 93 5 8388 61.5 515856 28659

Linear

Search

C++

149 51 5 4021 40 160824 8935

Binary

Search

Python

117 31 6 2664 38.1 101487 5638.2

Linear

Search

Python

115 24 5 1910 28.4 54148.5 3008.3

The results showed that linear search algorithm written in

C++ and Python gave 149and 115 respectively for MCM.

While binary search algorithm written in C++ and python

also revealed 266and 117 respectively for MCM. Evaluating

the results with other established complexity metrics revealed

that binary search algorithm coded in C++ with MCM of 266,

cyclomatic complexity (CC) of 5, effective line of code

(eLOC) of 93 and Halstead volume (V) of 8388 has the

highest complexity values. Furthermore linear search

algorithm coded in Python with MCM of 115, eLOC of 24,

CC of 5 and Halstead volume of 1910 has the lowest

complexity value. The following figures were used to further

validate in efficient of the proposed metric (MCM). The

follow figures were also used to validate the efficiency of

MCM over the other metrics considered in the work.

Figure 1: Graph of Comparison between MCM and eLOC

Figure 2: Graph of Comparison between MCM and CC

Figure 3: Relative Graph between MCM and CC

Figure 4: Relative Graph between MCM and eLOC

Paper ID: ART20194760 10.21275/ART20194760 1836

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Relative Graph between MCM, eLOC, CC, V and

D

5. Conclusion

In this study, a complexity metric was proposed to include the

factors that affect the complexity of Multi-paradigm

Programming Languages. The proposed metric was

formulated to include the factors of procedural and object

oriented languages. Various existing software complexity

metrics such as effective line of code (eLOC), cyclomatic

complexity measure (CC) and Halstead complexity metric

were reviewed in other to applied them to sample programs

written in Multi-paradigm languages such as C++ and Python

Two case studies to measure the complexity of linear search

and binary search algorithms were discussed. The complexity

of each of these codes were measured using Multi-paradigm

complexity metric, the results was later compared with those

of the existing metrics.

It was discovered that the values gotten when multi-paradigm

complexity metric was applied on each of the codes are higher

than that of eLOC and CC, this is because MCM includes all

other factors that affect code complexity neglected by eLOC

and CC. It was also found out that the values realised from the

application of Halstead method are somehow too exaggerated

when compared with those from other existing metrics and the

proposed metric.

More so, it was found out that the complexity values gotten

for both linear and binary search algorithms using Python

programming language is low when compared with that of

C++, this is due to the fact that, python is a modern interpreted

language with powerful built-in features and a unique

indentation feature to shorten coding.

References

[1] DeMarco, T (1986): Controlling Software Projects,

Yourdon Press, New York p.217-220.

[2] Eclipse Metrics Plugin 1.3.8 (last accessed

23.02.2010)Available at: http://metrics2.sourceforge.net/

[3] Halstead M. H. (1997) Element of Software Science,

Elsevier North- Holland, New York, p.670-672.

[4] International standard organisation (2010), standard for

software quality metrics methodology, p1-20.

[5] McCabe(1976) T. McCabe, A complexity measure, IEEE

Transactions of Software Engineering, Vol. SE-1, p.308-

320.

[6] McCabe (2010) T.J., Watson, A.H. (1994): Software

Complexity, McCabe and Associates, p. 14-56. Inc. (last

accessed 17.03.2010)

[7] Available at:

http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.as

p

[8] Resource Standard Metrics. (last accessed 18.02.2010).

Available at

http://msquaredtechnologies.com/m2rsm/docs/rsm_metric

s_narration.htm
[9] Sommerville, I. (2004) Software Engineering, 7thEdition,

Addison Wesley, slides 6-9.

[10] Wang, Y., Shao, J.: A (2003): New Measure of Software

Complexity Based on Cognitive Weights.Can. J. Elec.

Computer Engineering, p. 1-5.

Paper ID: ART20194760 10.21275/ART20194760 1837

http://metrics2.sourceforge.net/
http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp
http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm

