
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Semantic Analysis of Object-Oriented Programming

Languages: Survey

Abdulkadir Abubakar Bichi
1
, Abdulrauf Garba Sharifai

1
, Saud Adam Abdulkadir

1

Department of Computer Science, Northwest University, Kano Nigeria

Abstract: Object-oriented programming (OOP) is a programming paradigm that uses a special data structure called objects which

encapsulate the data fields and procedures together with their interactions for writing a computer program. This paper is a survey of ten

(10) Object oriented programming languages: C++, C#, Java, Modula, Delphi, Ada, Eiffel, VB.Net, Python and Smalltalk. The work

involved a comparative semantic analysis of the ten programming languages with respect to the following criteria: support of

inheritance, encapsulation, operations and method overloading among others. Smalltalk and Eiffel are pure OOP languages, but Eiffel

is more powerful in terms of inheritance since it supports both single and multiple inheritance and support class variable/method. C++

and Java are hybrid languages; they support most of the OOP features but not all. However, Java has higher degree of objectivity since

it supports total objectivity of user defined and have a good technique for garbage collection, C++ also has many powerful features like

operation and method overloading, flexibility in binding and multiple inheritance support, though difficult to use and prone to errors, it

is powerful and complex at the same time. Python can also be considered as hybrid since it lack the feature of total object of operation

message but has higher degree of objectivity compare to both C++ and Java. C# is like an improved version of C++ that solve many

complications of the later language. C# behaves similar to Java but support of more features like method overloading.

Keywords: Abstract Data Type, Inheritance and Polymorphism

1. Introduction

Object-oriented programming (OOP) is a programming

paradigm that uses a special data structure called objects

which encapsulate the data fields and procedures together

with their interactions for writing a computer program [1].

Though it was invented with the creation of the Simula

language in 1965, and further developed in Smalltalk in the

1970s, it was not commonly used in mainstream software

application development until the early 1990s[2].

Manytodays modern programming languages support the

features of OOP. The degree of objectivity of the language is

measure in terms of functionality features such as: Abstract

data type, inheritance, Polymorphism. All pre-defined data

types, operations performed by sending messages to Objects

and all user-defined data types [3].

2. Types of OOP Languages

The OOP languages can be classified based on its degree of

object orientation;this can be put as:

1) Pure: A Pure Object-Oriented language is the one that

satisfied all the above six features [4]. The languages

treateverything in them consistently as an object, from

primitives such as characters and punctuation, all the way

up to whole classes, prototypes, blocks, modules, etc.

They were designed specifically to facilitate, and even

enforce OO methods. Examples: Smalltalk and Eiffel.

2) Hybrid: The hybrid language usually refers to the one

that satisfied the first three features but may lack some of

the last three. Languages designed mainly for OO

programming, but with some procedural elements.

Examples: C++, C#, Java, Ada, Python.

3) Partial: Languages usually supports encapsulation

(abstract data type) and one more feature, but not all

features of object-orientation, they are sometimescalled

object-based languages. Examples: Modula-2 and

VB.NET.

3. General Features of OOP Languages

Object oriented programming involves three fundamental

concepts: Abstract Data Types (ADT), Inheritance and

Dynamic binding.

1) Abstract Data Type (ADT) is a set of values (the carrier

set) and a collection of operations to manipulate them.

Every programming language provides some built-in data

types (like integers and floating-point numbers) that can

be instantiated as needed. Objects may either be statically

or dynamically instantiated. Statically instantiated objects

are allocated at compile-time and exist for the duration

that the program executes. Dynamically instantiated

objects require run-time support for allocation and for

either explicit deallocation or some form of garbage

collection [5].

2) Inheritance is a means by which a new abstract data

type can inherit the data and functionality of some

existing type and is also allowed to modify some of those

entities and add new entities.

a) Single Inheritance: if a new class is a subclass of a

single parent class.

b) Multiple Inheritance: if a new class has more than one

parent class.

The process of deriving a whole new class from the base

class has various advantages: the execution time would get

reduced, the possibilities of errors will be less as we are

using the same attributes which have been compiled by the

system and, they are error free [6]. With the help of the

existing class, we can create a new class using same

function. The existing class will be used as a reference class

for the derived class. To organize our grammar or language

in a systematic way in the program, we must use inheritance.

The reusability of the same grammar in the new sub-class

would reduce execution and compilation time [7]. Reusing

the attributes, methods make the task of programming easy

and the reusability of the code from our existing class to our

new derived class is very feasible for the users [8] By

Paper ID: ART20194688 10.21275/ART20194688 2136

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

making the use of inheritance, we save the execution time

and the programming complexity.

The dynamic binding also sometimes called dynamic

dispatch is the process of linking procedure call to a specific

sequence of code (Method) at run time. In other words,

Dynamic Binding means that a block of code executed with

reference to a procedure call is determined at run time. The

code usage gives the programmer to utilize the time and get

fast results [9]. We could define only one singular code for

many different types of variables to perform the action of

execution quickly. By allowing common functions to work

for various objects we avoid the complexity and bind objects

together. Binding of objects makes the task of giving

definition easy, which is very necessary if we have to write

long codes for programs [10]. By giving access to users on

defining their objects limits to certain classes, the user gets

the leverage to use the same object at different positions

with different functions. It joins the derived classes together

which gives us a clear picture of what polymorphism and its

importance in OOP [11].

4. Related Works

This section reviews some related works pertinent to Survey

on Concepts of Object Oriented Programming Language,

Maya Hristakeva, RadhaKrishnaVuppala[12]. Discusses

Object-oriented programming and how it become important

programming paradigm of our times. From the time it was

brought into existence by Simula, object-oriented

programming has seen wide acceptance. Object-oriented

programming languages (OOPLs) directly support the object

notions of classes, inheritance, information hiding

(encapsulation), and dynamic binding (polymorphism). This

paper in detailed look at some of the concepts considered

fundamental to object-orientation, namely Abstract data

type, inheritance and polymorphism. Different aspects of

inheritance and polymorphism are implemented in various

popular OOPLs. This work concludes with the observation

that there is still lot of work to be done to reach a common

ground for these crucial features of OOPLs. This survey

presents a detailed comparison of 7 Object Oriented

Programming Languages Java, Smalltalk, C++, C#, Eiffel,

Ruby and Python in terms of their inheritance and

polymorphism implementations. The paper also presents a

compilation of the observations made by several earlier

surveys

OscarNierstrasz [5] discussed various concepts of object-

oriented programming language and the importance of those

mechanisms in the real world environment. OOP becomes

popular not only by the programmers who use it to solve

their problem but also because of its flexibility over user

interfaces, operating systems and databases. Smalltalk effort

is a main reason for the popularization of the OOP which

utilizes both the classes and inheritance concept. Simula was

the first programming language which uses an object as a

programming construct. The creation of the object is not

only flexible for programmers; it is also useful for

prototyping and application development. The most

important concepts that are supported by the OOP are

encapsulation and inheritance. Encapsulation is used to hide

the behaviour of objects, whereas the behaviour of

properties can be shared among objects through the

inheritance. This work studies mainly about the reusability

properties of objects, its various types and its concurrency

properties.

5. Comparative Semantics Analysis

S/N Language Encapsulation Inheritance Polymorphism

1

C++

Parentless class: yes

Generic class: yes

Class Variables/ Methods: yes

Garbage collection: none

Total objectivity of user defined: no

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: yes

Inheritance based: class

Binding; both

Operator overloading: yes

Method overloading: yes

2

Java

Parentless class: no

Generic class: no

Class Variables/ Methods: yes

Garbage collection: Mark and Sweep or

Generational

Total objectivity of user defined: yes

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: virtual

Inheritance based: class

Binding: static

Method overloading: yes

Operator overloading: no

3

Python

Parentless class: yes

Generic class: no

Class Variables/ Methods: no

Garbage collection: Reference Counting

Total objectivity of user defined: yes

Total objectivity of pre-defined type: yes

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritances: yes

Inheritance based: both

Binding: dynamic

Method overloading: no

Operator overloading: yes

4

Smalltalk

Parentless class: No

Generic class: no

Class Variables/ Methods: yes

Garbage collection: Mark and Sweepor

Generational

Total objectivity of user defined: yes

Total objectivity of pre-defined type: yes

Single inheritance: yes

Multiple inheritance: no

Inheritance based: class

Binding: dynamic

Method overloading: no

Operator overloading: yes

Paper ID: ART20194688 10.21275/ART20194688 2137

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Total objectivity of operation message: yes

5

C#

Parentless class: No

Generic class: no

Class Variables/ Methods: yes

Garbage collection: Mark and Sweep or

Generational

Total objectivity of user defined: yes

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: virtual

Inheritance based: class

Binding: both

Method overloading: yes

Operator overloading: yes

6

VB.net

Parentless class: No

Generic class: no

Class Variables/ Methods: no

Garbage collection: Reference Counting

Total objectivity of user defined: yes

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: virtual

Inheritance based: class

Binding: static

Method overloading: yes

Operator overloading: yes

7

Delphi

Parentless class: Yes

Generic class:

Class Variables/ Methods:

Garbage collection: reference counting

Total objectivity of user defined: no

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: virtual

Inheritance based: class

Binding: both

Method overloading: yes

Operator overloading: yes

8

Modula-3

Parentless class: yes

Generic class: yes

Class Variables/ Methods: yes

Garbage collection: none

Total objectivity of user defined: no

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: no

Inheritance based: class

Binding: dynamic

Method overloading:

Operator overloading:

9

Eiffel

Parentless class: Yes

Generic class: yes

Class Variables/ Methods: no

Garbage collection: Mark and Sweep or

Generational

Total objectivity of user defined: yes

Total objectivity of pre-defined type: yes

Total objectivity of operation message: yes

Single inheritance: yes

Multiple inheritance: yes

Inheritance based: class

Binding: dynamic

Method overloading: no

Operator overloading: yes

10

Ada

Parentless class: no

Generic class: yes

Class Variables/ Methods: yes

Garbage collection: none

Total objectivity of user defined: no

Total objectivity of pre-defined type: no

Total objectivity of operation message: no

Single inheritance: yes

Multiple inheritance: virtual

Inheritance based: class

Binding: both

Method overloading: yes

Operator overloading: yes

The degree of objectivity is not enough to conclude one

language is better than the other without extensively

discussing the other factors like: generic class, inheritance

mechanism, support of multiple inheritance, Operator

overloading,Method overloading and technique of garbage

collection. Smalltalk and Eiffel are pure OOP languages, but

Eiffel is more powerful in terms of inheritance since it

support both single and multiple inheritance and less

complication in binding since it use static binding but unlike

Smalltalk does not support class variable/method. C++ and

Java are hybrid languages they support most of the OOP

features but not all. However, Java has higher degree of

objectivity since it supports total objectivity of user defined

and good technique of garbage collection, but C++ has many

powerful features like operations and method overloading,

flexibility in binding and multiple inheritance support thus

make it powerful and complex and the same time; is good

for complex task but difficult to use and prone to errors.

Python too can be considered as hybrid since it lacks the

feature of total object of operation message but has higher

degree of objectivity compare to both C++ and Java. C# is

like an improve version of C++ will solve many

complications of the later language is works very similar to

Java but support of more features like method overloading

6. Conclusion

Generally, OOP languages are sophisticated and more

difficult compare to other programming paradigms but has

powerful features that gives you a handleover complex

tasks. There is no direct answer of which language is the

best among the OOP languages but generally the pure OOL

are easier and more efficient to implement object-oriented

algorithms. C++ has a lot of features that make the language

powerful but with many complications and prone to errors,

thus make it difficult to work with. Java and C# appear to be

an improvement over C++ to solve the complications but

compromised many of the powerful features.

Paper ID: ART20194688 10.21275/ART20194688 2138

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Oscar Nierstrasz, A Survey of Object-Oriented Concepts,

University of Geneva†

[2] Makkar, G., J.K. Chhabra, and R.K. Challa. Object

oriented inheritance metric-reusability perspective. In

Computing, Electronics and Electrical Technologies

(ICCEET), 2012 International Conference on. 2012.

[3] Mernik, M., et al. The template and multiple inheritance

approach into attribute grammars. In Computer

Languages, 1998. Proceedings. 1998 International

Conference on. 1998.

[4] Rathore, N.P.S. and R. Gupta. A novel coupling metrics

measure difference between inheritance and interface to

find better OOP paradigm using C#. In Information and

Communication Technologies (WICT), 2011 World

Congress on. 2011.

[5] Milojkovic, N., et al. Polymorphism in the Spotlight:

Studying Its Prevalence in Java and Smalltalk. In

Program Comprehension (ICPC), 2015 IEEE 23rd

International Conference on. 2015.

[6] Rountev, A. and A. Milanova. Fragment class analysis

for testing of polymorphism in Java software. in

Software Engineering, 2003. Proceedings. 25th

International Conference on. 2003.

[7] Hang, Z., H. Zhiqiu, and Z. Yi. Polymorphism Sequence

Diagrams Test Data Automatic Generation Based on

OCL. In Young Computer Scientists, 2008. ICYCS 2008.

The 9th International Conference for. 2008.

[8] Maya Hristakeva, RadhaKrishnaVuppala. A Survey of

Object Oriented Programming Univ. of California,

SantaCruz

Paper ID: ART20194688 10.21275/ART20194688 2139

