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Abstract: Investigation of the Structural, Electronic, Magnetic and Mechanical properties of the Fe2-xCoxTiSi (x = 0.0, 0.5, 1.0, 1.5, 

2.0) compounds in both the Hg2CuTi and Cu2MnAl-type structures using the first-principles density functional calculations, were 

studied by the augmented waves method. The exchange and correlation potential is treated by the generalized gradient approximation 

parameterized by Perdew-Burke-Erzerhof (GGA-PBE) and GGA- PBE+U scheme is used based on Dudarev’s approach. The results 

show that the Cu2MnAl-type structure is energetically more stable than the Hg2CuTi-type structure for the Fe2TiSi and Co2TiSi 

compounds at the equilibrium volume. The substitution of Co atom in Fe2TiSi for Fe, changes the semiconducting behavior to half 

metallic behavior in Fe1.5Co0.5TiSi, Fe1.0 Co1.0TiSi, Fe0.5Co1.5TiSi and Co2TiSi. The magnetic properties for this full Heusler alloys upon 

substitution approach remains largely unexplored. It is worth noting that Fe2TiSi alloy becomes magnetized after the introduction of Co 

atom. The mechanical properties of bulk modulus, shear modulus, Young’s modulus E, anisotropic ratio, Poisson’s ratio m and B/G 

ratio are also investigated to explore the ductile and brittle nature of these compounds. 
 

1. Introduction 
 

Experimentally, both Fe2TiSi and Co2TiSi based alloys were 

analysed [1-4] and it was found that Fe2TiSi is non magnetic 

semiconductor and Co2TiSi is half metallic ferromagnetic 

material. Voronin et al. [2] analyzed thermal properties of 

Fe2TiSn1-x Six.  

 

The electronic properties of Fe2TiSn1-x Six investigated. Bhat 

et al. [5] predicted the semiconducting behavior in Fe2TiSi 

Heusler alloys with the band gap of 0.38 eV. Jong et al. [6] 

investigated the electronic properties of Fe2TiSi and Fe2TiSn 

alloys under pressure and they predicted that both the alloys 

are semiconductors.  

 

The variation of band gap is analyzed by substituting Sn for 

Si in Fe2TiSi (Fe2TiSi1-xSnx) using first principles 

calculations [7]. Yabuuchi et al. [8] have studied the 

electronic structure of full Heusler alloys with valence 

electron count of 24 (Fe2TiSi and Fe2TiSn) and these alloys 

were predicted as semiconductors. Sharma et al. [10] 

predicted that Co2TiSi, Co2TiGe and Co2TiSn compounds 

are half metallic ferromagnetic materials with the magnetic 

moment 2 µB. The magnetic and electronic properties of 

Co2TiSi and Co2TiSn Heusler alloys were analysed using 

LSDA+U method by Zayed et al. [11].From the above 

mentioned literature, it is seen that there is no substitution 

approach in the concerned Fe- based full Heusler alloys (i.e., 

Fe2TiSi). Fe2TiSi is found to be non- magnetic.  

 

A solid body which is subject to external forces, or a body in 

which one part exerts a force on neighboring parts, is in a 

state of stress. If such forces are proportional to the area 

of the surface of the given part, the force per unit area 

is called the stress. The stress in a crystalline material is a 

direction dependent quantity and therefore, it is in general 

described by the stress tensor ij . If all parts of the body 

are in equilibrium and body forces are absent, the condition 

0
x j

ij





 must be fulfilled. The symbols xj denote 

the cartesian axes. The deformations of the solid caused 

by the exerted stress are described by the strain tensor. If ui 

is the displacement of a point xj in a deformed solid, the 

strain tensor is then defined as 
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The diagonal components 11 , 22  and 33  are called 

tensile strains, whereas the other components are usually 

denoted as shear strains. Both stress and strain tensors 

are symmetrical Hence I investigate the structural stability, 

electronic and magnetic properties of Fe2-xCoxTiSi (x = 0.0, 

0.5, 1.0, 1.5, 2.0) full Heusler alloys. 

 

2. Computational Details 
 

The ab initio calculations are performed using density 

functional theory within the generalized gradient 

approximation parameterized by Perdew-Burke-Erzerhof 

(GGA-PBE) [12-14] as implemented in the VASP code [15-

17]. The interaction between the ion and electron is 

described by the projector augmented wave method [13]. 

Ground state geometries are determined by minimizing 

stresses and Hellmann–Feynman forces using conjugate-

gradient algorithm with force convergence less than 10
-3

 eV 

Å
-
1 and the Brillouin zone integration is performed with a 

Gaussian broadening of 0.1 eV. The Khon-Sham orbitals are 

expanded using the plane wave energy cutoff of 500 eV.  

 

The Brillouin zone integrations are carried out using 

Monkhorst–Pack K-point mesh [18] with a grid size of 6 x 6 

x 6 for the total energy calculation. The valence electron 
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configurations are Fe 3d
6
 4s

2
, Co 3d

7
 4s

2
, 3d

2
 4s

2
, Ti and 3s

2
 

3p
2
 of Si atoms. In order to correct the effect of strong 

correlation of 3d orbital of Fe, Co and Ti atoms, GGA- 

PBE+U scheme is used based on Dudarev’s approach (Ueff = 

U - J) to address the onsite Coulomb interaction. The U- 

parameter value corresponding to minimum energy is found 

to be U= 1.8 eV for Fe, U= 2.0 eV for Co, U = 2.05 eV for 

Ti and exchange parameter J = 0.73 eV. 

 

3. Result and Discussion 
 

3.1 Structural Properties 

 

The structural properties of the full Heusler alloys X2YZ, 

with the combination of 3d elements of transition metals X= 

Fe, Co, Y= Ti and main group element Z= Si are analyzed. 

The total energies are computed for L21 and XA phases of 

Fe2TiSi and Co2TiSi Heusler alloys. The structural stability 

between L21 phase and XA phase is analyzed by plotting 

total energy (eV) values against cell volume (Å
3
) for (a) 

Fe2TiSi and (b) Co2TiSi, in Figure 3.1.1 and Figure 3.1.2. It 

is found that L21 phase has the lower energy compared to 

XA phase. Thus, L21 phase is predicted as the stable phase 

for both the alloys. Subsequently, all the total energy 

calculations are performed for Fe2-xCoxTiSi (x = 0.0, 0.5, 

1.0, 1.5, 2.0) with L21 phase. Table 3.1.3 shows the 

calculated ground state properties of Fe 2-xCoxTiSi (x = 0.0, 

0.5, 1.0, 1.5, 2.0) in L21 structure with GGA- PBE and 

GGA- PBE+U calculations in addition to the available 

experimental and theoretical results [1,2, 4-6]. 

 

 
Figure 3.1.1: The structural stability between L21 phase and 

XA phase is analyzed by plotting total energy (eV) values 

against cell volume (Å
3
) for Fe2TiSi 

 
Figure 3.1.2: The structural stability between L21 phase and 

XA phase is analyzed by plotting total energy (eV) values 

against cell volume (Å
3
) for Co2TiSi  

 

 

Table 3.1.3 calculated lattice parameters a (Å), equilibrium volume V0 (Å
3
), formation enthalpy ΔH (eV), bulk modulus B 

(GPa) and its derivatives B0
′
 of Fe2-xCoxTiSi of considered L21 structure using GGA- PBE and GGA PBE+U method. 

 
a
Ref [1] Expt, 

b
Ref [5] Theo,

 c
Ref [6] Theo, 

d
Ref [7] Theo, 

e
Ref [8] Theo, 

f
Ref [3] Expt,

 g
Ref [9] Theo, 

h
Ref [11] Theo 

 

3.2 Electronic Properties 

 

The electronic structure of full Heusler alloys Fe2TiSi, 

Fe1.5Co0.5TiSi, Fe1.0Co1.0TiSi, Fe0.5Co1.5TiSi and Co2TiSi is 

investigated by computing the spin polarized total and 

partial density of states (DOS) with GGA- PBE and GGA- 

PBE+U approach. The density of states computed with 

GGA- PBE scheme indicates semiconducting behavior for 

Fe2TiSi [1,5-8] and half metallic nature for 

Fe1.5Co0.5TiSi,Fe1.0Co1.0TiSi,Fe0.5Co1.5TiSi and Co2TiSi [9-

11] full Heusler alloys. When, Co is substituted in Fe2TiSi, 

the half metallicity is observed in 

Fe1.5Co0.5TiSi,Fe1.0Co1.0TiSi,Fe0.5Co1.5TiSi and Co2TiSi. The 

energy gap and spin flip gap values are enhanced while 

calculated using GGA- PBE+U scheme.  

 

Hence, the total density of states (DOS) of Fe2-xCoxTiSi (x = 

0.0, 0.5, 1.0, 1.5, 2.0) Heusler compounds computed with 

GGA- PBE+U scheme at normal pressure is presented in 

Fig. 3.2.1 (a) to (e). It is observed that Fe2TiSi is a 

semiconductor material which is consistent with the results 

of Bhat et al. and Jong et al. [5-7]. The Co- substituted full 

Heusler compounds Fe2TiSi exhibits an energy gap at the 

Fermi level EF in the spin down states. The majority and 
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minority states are slightly shifted to a lower energy range 

with respect to the Fermi level. However, the change in 

minority states is so obvious. It is seen that energy range ~ 5 

eV to ~ 7.5 eV (around the Fermi level) has a great impact 

on s and p state electrons of main group element. Mainly, it 

should be noted that peak around the Fermi level is due to 

the hybridization of d- state electrons. The spin flip gap (Eg) 

observed in Fe1.5 Co0.5TiSi, Fe1.0 Co1.0TiSi, Fe0.5Co1.5TiSi and 

Co2TiSi are 0.397 eV, 0.629 eV, 0.646 eV and 0.783 eV 

respectively. 

 
 

3.2.1 Density of State and Partial Density of State at Low 

pressure (a) Fe2TiSi (b) Fe1.5Co0.5TiS (c) Fe1.0Co1.0TiSi(d) 

Fe0.5Co1.5TiSi (e) Co2TiSi 

 

In order to understand the half metallicity and energy 

hybridization in detail, the partial density of states (PDOS) 

near the Fermi level of Fe2-xCoxTiSi (x=0.0, 0.5, 1.0, 1.5, 

2.0) at normal pressure is shown in Figure 3.2.2 (a) to (e). In 

Fe2-xCoxTiSi (x = 0.0, 0.5, 1.0, 1.5, 2.0) compounds, Fe and 

Co atoms present a strong spin-splitting with antibonding 

states centered about ~5 eV to ~7.5 eV, in the spin states 

leads to the formation of spin flip gap. The conduction state 

in d
6
 and d

7 
states of Fe and Co atoms are not fully occupied 

in the spin down state. 

 

 
 

3.2.2 Density of State and Partial Density of State at High 

pressure (a) Fe2TiSi (b) Fe1.5Co0.5TiSi (c) Fe1.0Co1.0TiSi (d) 

Fe0.5Co1.5TiSi (e) Co2TiSi 

 

As a result, an occupied 3d state in a spin down channel is 

mixed with sp state of main group element Ge and shows the 

spin flip gap. On the other side, majority spin channel shows 

the metallic nature. So, these d-states hybridization 

recognized the half metallic gap in the spin down state. 

Finally, the effect of substitution of Co atom in Fe site 

originates the appreciable changes in the electronic structure 

of Fe2TiSi. This change is due to the vicinity of d- state 

electrons of Co-atom hybridized with Fe-atoms. 

 

3.3 Magnetic Properties 

 

To inspect the magnetic properties of Fe2-xCoxTiSi (x = 0.0, 

0.5, 1.0, 1.5, 2.0) full Heusler alloys for their potential 

applications in spintronics and quantum computing, the spin 

polarized calculations are carried out. The ability of a spin 

polarization at Fermi energy (EF) of a full Heusler alloy is 

calculated by the formula [9]:  

 

where and are spin electron density 

of states of majority and minority states near the Fermi 

energy level. For the complete spin polarization, any one of 

the electron densities, either spin up ρ
↑
(Ef) or spin down ρ

↓ 

(Ef) equals zero, and it is called true half metallic behaviour. 

The studied full Heusler alloys 

Fe1.5Co0.5TiSi,Fe1.0Co1.0TiSi,Fe0.5Co1.5TiSi and Co2TiSi are 

half metals at normal pressure. In these full Heusler alloys, 

the electron density near the Fermi level in the minority spin 

channel (ρ
↓ 

(Ef)) of all the compounds (except Fe2TiSi) are 

)(E f )(E f
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zero at normal pressure. Hence, it is worthwhile to note that 

the spin polarization of the full Heusler alloys Fe1.5 

Co0.5TiSi, Fe1.0 Co1.0TiSi, Fe0.5Co1.5TiSi and Co2TiSi is 

100% at the normal pressure.  

 

For practical purposes, the ferromagnetic order of Heusler 

compounds must be maintained beyond ambient condition. 

In this regard, the total energy is calculated for non-magnetic 

and ferromagnetic states of Fe2-xCoxTiSi (x = 0.0, 0.5, 1.0, 

1.5, 2.0) full Heusler alloys to predict the magnetic ground 

state and it is observed that ferromagnetic state is more 

stable for these alloys except Fe2TiSi which are accredited to 

their lowest energy. 

 
Figure 3.3.1: Magnetic moment (µB) versus effect of 

substitution of Co atom curve of Fe2-xCoxTiSi (x= 0, 0.5, 1, 

1.5, 2) full Heusler alloys 

 

For practical purposes, the ferromagnetic order of Heusler 

compounds must be maintained beyond ambient condition. 

In this regard, the total energy is calculated for non-magnetic 

and ferromagnetic states of Fe2-xCoxTiSi (x = 0.0, 0.5, 1.0, 

1.5, 2.0) full Heusler alloys to predict the magnetic ground 

state and it is observed that ferromagnetic state is more 

stable for these alloys except Fe2TiSi which are accredited to 

their lowest energy. In Table 3.3.2 and 3.3.3, the total and 

the interstitial spin magnetic moments in the unit cell of Fe2-

xCoxTiSi (x = 0.0, 0.5, 1.0, 1.5, 2.0) full Heusler compounds 

using GGA- PBE and GGA- PBE+U approach are given. 

The implementation of Hubbard parameter (GGA PBE+U) 

to the host material has little impact on the magnetic 

moment. Interestingly, the total magnetic moment of the 

Fe2TiSi alloy is zero. But when Co atom is substituted, Fe1.5 

Co0.5TiSi, Fe1.0 Co1.0TiSi, Fe0.5Co1.5TiSi and Co2TiSi have 

the magnetic moment. Hence, the effect of doping induces 

the magnetism. The strong magnetism of Fe2-xCoxTiSi (x = 

0.0, 0.5, 1.0, 1.5, 2.0) in the ferromagnetic state is due to the 

unfilled 3d sub-shell, since the magnetic effects of electrons 

in the incomplete 3d orbit do not cancel each other as they 

are present in a complete sub-shell.  

 

Table 3.3.2 Calculated total magnetic moment (µB) for Fe 2-x 

CoxTiSi (X= 0, 0.5, 1, 1.5, 2)in L21 structure 

 
 

 

Table 3.3.3. Calculated total magnetic moment (µB) of individual atoms in for Fe 2-xCoxTiSi (X= 0, 0.5, 1, 1.5, 2) full Heusler 

alloys 

 
 

3.4 Mechaical Properties 

 

The elastic constants and elastic moduli are fundamental 

materials parameters providing detailed information on 

the mechanical properties of materials. The knowledge of 

these data may be used to predict mechanical behavior in 

many different situations. The parameters mn  and pr
 

are symmetric and have only 6 independent elements, 

hence the number of 81 elastic constant is reduced to 21 

by symmetry arguments. The elastic energy density U, 

which is defined as the total energy per volume, is 

obtained from the stress tensor (force per unit area) by 

integration of Hooke's law 

prmnmnprC
V

E
U 

2

1
  

The strain tensor has been considered as a tensor of order 

two of the form 
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In the convenient matrix-vector notation, the 6 

independent elements of stress and strain are 

represented as vectors (denoted here as εi and εj with i, 

j running from 1 . . .  6 according to the sequence xx, yy, 

zz, yz, xz, xy) and the fourth order tensor Cmnpr are can be 

rewritten as a 6x6 matrix cij, then 

jiijC
V

E
U 

2

1
  

 

Taking into account additional symmetry arguments 

imposed by the crystal lattice, the number of elastic 

constants further decreases. In particular, for a cubic 

lattice only three independent elastic constants, c11, c12, c44 

are sufficient. In order to calculate the elastic constants of a 

structure, a small strain is applied on to the structure and its 

stress is determined. The energy of a strained system [1, 2] 

can be expressed in terms of the elastic constants Cij as: 

  .........e Oee
2

V
)0,() E(V, 3

iji

6

1,

0
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1

00i 
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ij

i

ii CeVVE   

 

The elasticity tensor has three independent components (C11, 

C12, C44) for cubic crystals. A proper choice of the set of 

strains {ei , i=1,2,…….,6}, in Eq.(5.6) leads to a parabolic 

relationship between ΔE/V0 (ΔE ≡ E−E0) and the chosen 

strain. Such choices for the set {ei} and the corresponding 

form for ΔE are shown in Table 5.1 for cubic lattices [3]. 

For each lattice structure, the lattice was strained by 0%, 

±1%, and ±2% to obtain their total minimum energies E(V). 

These energies and strains were fitted with the 

corresponding parabolic equations of ΔE/V0 as given in 

Table 3.4.1 to yield the required second-order elastic 

constants. While computing these energies all atoms are 

allowed to relax with the cell shape and volume fixed by the 

choice of strains {ei}.  

 

The independent elastic constants should satisfy the Born-

Huang elastic stability criteria [4] given by: 

02,,0 1211121144  CCCCC
 

for the stable 

cubic structure. The strain energy 1/2Cijeiej of a given crystal 

in equation (5.8) must always be positive for all possible 

values of the set {ei}; for the crystal to be mechanically 

stable. As per this work the calculated elastic constants are 

positive for all the phases and obey the necessary 

mechanical stability conditions. The bulk modulus (B) and 

shear modulus (G) for the cubic crystals are determined 

using Voigt – Reuss – Hill (VRH) averaging scheme [5-7]. 

 

 

 

 

 

Table 3.4.1: Strain combinations in the strain tensor for 

calculating the elastic constants of cubic structures 
Cubic crystals 

Strain Parameters 

(unlisted ei=0) 

ΔE/V0 

1 

2 

3 

e1=e2=δ, e3= (1+δ)-2-1 

e1=e2= e3=δ 

e6=δ, e3=δ
2(4-δ2)-1 

3(C11-C12)δ
2 

(3/2)(C11+2C12)δ
2 

(1/2)C44δ
2 

 

Young modulus refers to longitudinal stress and strain. The 

shear (or rigidity) modulus is the tangential force per unit 

area divided by the angular deformation. The ratio of the 

lateral strain to the longitudinal strain is known as Poisson’s 

ratio. It was first introduced by Simeon-Denis Poisson 

(1781-1840). Anisotropic denotes a medium in which certain 

physical properties are different in different directions. 

 

The mechanical properties such as Young’s modulus (E), 

shear modulus (G) and Poisson’s ratio (v) are important 

physical quantities, especially for engineering and 

technological applications. The hardness of the 

polycrystalline material can be investigated by computing 

the Kleinman parameter. These parameters are calculated 

using the following relations [8]: 

 
The calculated mechanical parameters for Fe2-xCoxTiSi (X= 

0, 0.5, 1, 1.5, 2) with considered phases of  

 

L21 structure using GGA-PBE and GGA-PBE+U is 

presented in Tables 3.4.2. Young’s modulus is often used to 

provide a measure of stiffness of a solid, i.e., larger the value 

of Young’s modulus, stiffer is the material. The computed 

Young’s modulus values indicate that Fe2TiSi is the stiffest 

material. The Poisson’s ratio is associated with the volume 

change during uniaxial deformation, and it reflects the 

stability of the crystal against shear. The v =0.25 and 0.5 are 

the lower and upper limits, respectively, for central force in 

solids [7]. It is observed that Poisson’s ratio for Fe2-xCoxTiSi 

(x= 0, 0.5, 1, 1.5, 2) full Heusler alloys is in the range of 

0.3–0.4, which indicates that the bonding is more ionic in 

nature.  

 

The ratio of bulk modulus to shear modulus (B/G) is used to 

estimate the brittle or ductile nature of materials. A high B/G 

value is associated with ductility, while a low B/G value 

corresponds to the brittle nature. The critical value which 

separates ductile and brittle materials is about 1.75. The 

ratios of B/G values of these full Heusler compounds is 

greater than the critical value 1.75 indicating that they are 

ductile materials in their stable L21 phase. The Zener 

anisotropy factor (A) measures the degree of anisotropy in 

the solid structure. The value of A=1, represents completely 

elastic isotropy, while values smaller or larger than 1 

measure the degree of elastic anisotropy. The calculated 
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values of A predict that all the alloys are not close to the 

value of 1, which indicates that these full Heusler alloys has 

complete elastic anisotropy. 

 

The Debye temperature (θD) is an important parameter 

closely related to many physical properties of materials, 

such as specific heat, elastic constants and melting 

temperature. The Debye temperature is calculated from the 

elastic constants data using average sound velocity  by 

the following common equation [8]:  

  
where 

 
 

are the velocities of longitudinal and transverse sound waves 

respectively. The calculated Debye temperature values for 

Fe 2-x CoxTiSi (X= 0, 0.5, 1, 1.5, 2) using GGA PBE are 

listed in Tables 3.4.2 respectively.  

 

For materials, usually, the higher Debye temperature 

indicates the larger thermal conductivity and microhardness. 

From Table 3.4.2, it is seen that Fe2TiSi has the highest 

Debye temperature (748.69 K using GGA- PBE and 727.91 

K using GGA- PBE+U) which exhibits the strong covalent 

bond and high thermal conductivity among the studied Fe2-

xCoxTiSi (x= 0, 0.5, 1, 1.5, 2) full Heusler alloys. 

 

Table 3.4.2 Calculated elastic constants C11, C12, C44 (GPa) for Fe 2-x CoxTiSi (X= 0, 0.5, 1, 1.5, 2) in L21 structure. Total 

energy E (eV), formation enthalpy ΔH (KJ/mol), bulk modulus B0 (GPa) and its derivative B0' for Fe 2-x CoxTiSi (X= 0, 0.5, 1, 

1.5, 2) in L21 structure 

 
 

4. Conclusion 
 

The electronic structure and magnetic properties have been 

calculated using the first principles augmented plane waves 

(FP-APW) method for the Fe2-xCoxTiSi (x =0.0,0.5, 1.0, 1.5, 

2.0).The spin polarized calculations showed that the Co2TiSi 

Heusler compound is half-metallic with a magnetic moment 

of 2 μB. Fe2-xCoxTiSi (x = 0.0, 0.5, 1.0, 1.5, 2.0) revealed 

that the Full Heusler alloys have a perfect half-metallic 

character and 100% polarization which making them as 

good candidate in spintronics applications. The values of 

B/G indicates that all the Fe2-xCoxTiSi (x= 0, 0.5, 1, 1.5, 2) 

full Heusler alloys are ductile in nature and also the 

Poisson’s ratio for full Heusler alloys is in the range of 0.3–

0.4, which indicates that the bonding is more ionic in nature. 

The computed Young’s modulus values indicate that stiffest 

material. The value of anisotropy factor indicates that this 

full Heusler alloy has complete elastic anisotropy. The high 

value of the Debye temperature for Fe2TiSi indicates its 

thermal conductivity. 
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