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Abstract: In recent times precision and effective use of techniques at solving problems have become very important. Consequently, the  

idea of using real data to determine and resolve the resolution between two most use statistical technique at addressing similar 

situations. This paper looks at the princicpal component analysis and correspondences analysis at solving the same question. This is a 

test to identify the highest of resolutions of the two techniques. With the data considered, percentages ofthe correspondence analysis 

showed it isof much higher in value with similar factors, indicating a higher resolution compared to principal component analysis.It is 

therefore probably the best in explaining the relationship between/among variables in large and as well as multivariate dataset. 
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1. Introduction 
 

This paper seeks to analysis, interpret and compare two 

statistical methods on data set acquired from the data base of 

the Ocean Drilling Project, Leg 138, on Hole 

844B(http://brg.ldeo.columbia.edu/data/odp/leg138/844B/ ). 

 

The methods are;  

1) Principal Component Analysis. 

2) Correspondence Analysis. 

 

These two statistical methods are a part of a broad statistical 

method known as Principal Components. Other methods 

under the Principal Components are Standardized Principal 

Component and Factor analysis (Carr, 2002).   Principal 

component analysis uses the sample variance and covariance 

whereas Correspondence analysis uses the chi-square 

distance between each data entry and its expected value as 

means of generating the end product. The both rely on the 

eigen disintegration of some data likeness matrix with the 

development of two dimensionalplots as the eventual 

objective (Carr, 2002).  These statistical approaches are used 

to give an account of multi-variable data (Lynn and 

McCulloch, 2000) or determining similarity among data 

(Carr, 2002). Both are used to determine the relationship 

(correlation) and variations within data set. 

 

The main objective is to determine the relationship and 

variability of the data set. The second objective is to 

compare these methods visually (plots) and statistically to 

arrive at the better of two. This is to help make informed 

decision based on the basic principles of these methods and 

the conditions under which each could be used 

appropriately. There may be though, unsure a possibility of 

adapting the best of these methods for the analysis of the 

relationship of data set of major elemental composition to be 

acquired from core logs for my intended dissertation work.  

 

Project area (ODP Leg 138) 

 

 
Figure 1: Picture of area data was collected (adopted from ODP map data base) 

 

Data for this paper is acquired from the geochemical data 

base of the ODP Leg 138 hole number 844B data. Hole is 

located at 7
o
 55.279‟N and 90

o
 28.846‟W. The total depth of 

hole 844B is 290.8 meters. The data constitute the major 
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oxide composition of the cored rock samples from hole 

number 844B.  The data consist of 5 variables (oxides) with 

1462 observations for each variable through the entire depth 

of the hole. The variables are SIO2, CACO3 (CAO), FEO, 

TIO2, K 2O and AL2O3.TIO2 had null marginal sum given 

that all measurement made were zero for the 1462 

observations,consequently eliminated from the analysis.  

 

2. Methodology 
 

Principal Component Analysis 

Principal component analysis is a technique used in 

establishing observable characteristics in data. This helps in 

depicting observable distinction and comparability. The 

information from the data is displayed graphically for easy 

interpretation (Carr, 2002). This is usually good when data 

to be analyzed are huge and by visual inspection of data no 

inferences of correlation can be made (Swan et al, 1995). 

The advantage of principal component analysis over others 

is its ability to compress the data into a much smaller 

dimensions and not losing part of the resolution.  

 

Principal component analysis results are attained by the use 

several statistical techniques. Some of these are summary 

statistics (mean, standard deviation etc) and weights (also 

know as loadings). The weights are deduced from the 

correlation or covariance matrix of the data (Swan et al, 

1995), while correlation matrix is much suited for data with 

variable units (PH, %, PPM etc) of measurement, covariance 

matrix is best for a single unit measurement. Thus weights 

derived from covariance and correlation matrix are different. 

The weights are also used in generating the eigenvalues and 

vectors. The eigenvalues are then used to obtain percentage 

variability (factors).  

 

The following are the procedures used in generating the end 

product of principal component analysis. 

A) Determining the summary statistics (mean and Standard 

deviation). 

B) Generate a square matrix of the variables measured using 

covariance and variances generated from the data. 

Therefore the size of the matrix is dependent on the 

number of variables measured. With the covariance 

matrix, the variances form the diagonal and the 

covariance forms the other members of the matrix. The 

correlation Matrix approach is obtained using the 

correlation coefficient of data and replacing all the 

diagonal variances with the number 1. This square matrix 

in principal component analysis is generated from the 

original data (Carr, 2002). 
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where r is the correlation coefficient. r ranges between -1 

and 1. 

C) After the matrix is obtained as above, it is used to 

generate the eigenvectors and eigenvalues. 
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l  is the determinant of the matrix (eigenvalue). The 

decomposition of this matrix generates the eigenvalues 

and vectors.  

 

D) Finally the percentage variability (% factor) for the 

individual eigenvalue is obtained using the ratio of the 

eigenvalue to total sum of all eigenvalues multiplied by 

100.  
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is defined as the factor/ variability loading. 

E) The variability (factor) defines the coordinates for the 

plot of the data. The higher the eigenvalue the higher the 

percentage variability (factor). The percentage variability 

sum up to 100% (Carr, 2002). 

 

3. Correspondence Analysis 
 
Correspondence analysis is a technique for demonstrating 

the correspondence between rows and columns of 

multivariate data matrix as points in twofold low-

dimensional vector spaces. The matrix is principally a dual- 

way incident table (Greenacre, 1984).  The name 

correspondence analysis was coined from the fact that, the 

geometry of the row profiles to and the columns relates 

directly in some many ways. Thus, in most cases the data 

matrix is evaluated along the profiles of the columns and 

rows for a clearer picture of the relationship (Greenacre, 

1984). The columns are the variables and the rows are the 

samples. The similarities in the data matrix are based on the 

chi-square distance between each expected values and its 

data entry (Carr, 2002). 
( ) ^ 2 ( ) ^ 2

^ 2
Observeddifference Expected

X
Expected

O - E -
= =

E
 

Carr 2002, suggest the following steps for establishing the 

chi –square values in correspondence analysis. 

 

Step 1:  The data set are first grouped into a matrix NXM 

represented by [Y]  
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[ ] [ ]Y N M= C  

 

Step 2:  All the data values of Y in  [ ]Y  are sum up to 

generate the total sum 

 

Step 3:  Each of the individual values in the matrix [ ]Y  is 

divided by the total sum to obtain a new matrix [ ]'Y  

 
The [ ]'Y looks more of a probability function. 

 

Step 4:   After the generation of[ ]'Y , two new vectors are 

created. These vectors are represented by {W} for (Nx1) for 

each row in [ ]'Y  and {T} for (1xM) for each column in 
[ ]'Y . The steps 2 to 4 are replicated iteratively till no 

modifications can be made to the vectors {W} and {T}. 

 

Step 5:   With the above steps as the foundation, a matrix 

NxM[ ]S which is eigen decomposable is formed. Each Si 

is an approximate measure of chi-square 
( ) ^ 2 ( ) ^ 2

^ 2
Observeddifference Expected

X
Expected

O - E -
= =

E  
 

Where ijO y= and  i jE W T=  

 

Software Used 

The software used for this analysis is a 30 day free trial 

version of a complete excels data analysis program called 

XLSTAT.  The XLSTAT is a product of Addinsoft, 

privately-owned company managed by Thierry Fahmy 

(PhD). 

 

4. Results 
 

Principal Component Analysis 

 

Table PCA:1  Summary statistics 

Variable Observations Obs. With missing data Obs. Without missing data Minimum Maximum Mean Std. deviation 

SIO2 1462 0 1462 -0.002 92.944 18.605 19.053 

CACO3-CAO 1462 0 1462 0.000 95.929 65.255 26.228 

FEO* 1462 0 1462 0.000 55.636 5.320 8.102 

K2O 1462 0 1462 0.000 2.813 0.364 0.379 

AL2O3 1462 0 1462 1.035 32.881 5.394 5.211 

 

Table PCA:2  Correlation matrix (Pearson (n-1)) 
Variables SIO2 CACO3-CAO FEO* K2O AL2O3 

SIO2 1 -0.709 -0.067 0.015 0.048 

CACO3-CAO -0.709 1 -0.623 -0.539 -0.649 

FEO* -0.067 -0.623 1 0.571 0.676 

K2O 0.015 -0.539 0.571 1 0.868 

AL2O3 0.048 -0.649 0.676 0.868 1 

 

Table PCA: 3 Eigenvalues and their cumulative variability 

 

F1 F2 F3 F4 F5 

Eigenvalue 3.030 1.361 0.490 0.118 0.000 

Variability (%) 60.604 27.229 9.797 2.369 0.000 

Cumulative % 60.604 87.834 97.631 100.000 100.000 

 

 
Figure PCA 1: Scree Plot showing a histogram of eigenvalues and their percentage cumulative variability 

 

Table PCA: 4 Eigenvectors of the variables 

 

F1 F2 F3 F4 F5 

SIO2 0.175 0.813 -0.116 -0.086 0.536 

CACO3-CAO -0.498 -0.412 -0.185 -0.051 0.738 

FEO* 0.458 -0.243 0.753 -0.205 0.349 

K2O 0.486 -0.253 -0.551 -0.629 0.005 

AL2O3 0.524 -0.215 -0.285 0.743 0.213 

 

 

Table PCA:5  Factor loadings 
  F1 F2 F3 F4 F5 

SIO2 0.305 0.949 -0.081 -0.030 0.000 

CACO3-CAO -0.867 -0.480 -0.130 -0.017 0.000 

FEO* 0.798 -0.284 0.527 -0.070 0.000 

K2O 0.847 -0.295 -0.386 -0.216 0.000 

AL2O3 0.912 -0.251 -0.199 0.256 0.000 
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Table PCA: 6 Correlations between variables and factors: 
  F1 F2 F3 F4 F5 

SIO2 0.305 0.949 -0.081 -0.030 0.000 

CACO3-CAO -0.867 -0.480 -0.130 -0.017 0.000 

FEO* 0.798 -0.284 0.527 -0.070 0.000 

K2O 0.847 -0.295 -0.386 -0.216 0.000 

AL2O3 0.912 -0.251 -0.199 0.256 0.000 

 

 
FigurePCA2: Principal component analysis of the variables explained on by the first two factors 

 

 
FigurePCA3: Biplot – simultaneous graphic view of observations and variables 

 

Table PCA: 7 Contribution of the variables (%) 
  F1 F2 F3 F4 F5 

SIO2 3.061 66.091 1.34 0.739 28.769 

CACO3-CAO 24.817 16.955 3.438 0.256 54.533 

FEO* 21.011 5.911 56.73 4.187 12.161 

K2O 23.663 6.413 30.376 39.544 0.003 

AL2O3 27.448 4.63 8.116 55.273 4.533 

 

 

 

 

 

 

Table PCA:8  Squared cosines of the variables: 
  F1 F2 F3 F4 F5 

SIO2 0.093 0.9 0.007 0.001 0 

CACO3-CAO 0.752 0.231 0.017 0 0 

FEO* 0.637 0.08 0.278 0.005 0 

K2O 0.717 0.087 0.149 0.047 0 

AL2O3 0.832 0.063 0.04 0.065 0 
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Correspondence Analysis  

 

Table CA: 1 Eigenvalues, Inertia and cumulative percentage of dimensions 
  F1 F2 F3 

Eigenvalue 0.350 0.049 0.002 

Inertia (%) 87.434 12.172 0.394 

Cumulative % 87.434 99.606 100.000 

 

 
Figure CA 1: Scree Plot showing histogram of eigenvalues and their percentage cumulative variability 

 

Table CA:2 Weights, distances and squared distances to the origin, inertias and relative inertias (columns): 

 

Weight 

(relative) 
Distance 

Sq- 

Distance 
Inertia 

Relative 

inertia 

CACO3-CAO 0.855 0.240 0.058 0.049 0.123 

FEO* 0.070 1.782 3.176 0.221 0.553 

K2O 0.005 1.368 1.872 0.009 0.022 

AL2O3 0.071 1.308 1.711 0.121 0.302 

 

Table CA: 3 Chi squared distances (Columns) 

 

CACO3-CAO FEO* K2O AL2O3 

CACO3-CAO 0 2.009 1.568 1.528 

FEO* 2.009 0 1.444 1.276 

K2O 1.568 1.444 0 0.600 

AL2O3 1.528 1.276 0.600 0 

 

 

Table CA: 4 Principal coordinates (Columns) 

 

F1 F2 F3 

CACO3-CAO -0.239 0.017 0.000 

FEO* 1.713 0.492 0.002 

K2O 1.056 -0.668 0.557 

AL2O3 1.137 -0.646 -0.038 

 

Table CA: 5 Standard coordinates (Columns) 

 

F1 F2 F3 

CACO3-CAO -0.405 0.077 -0.003 

FEO* 2.895 2.229 0.041 

K2O 1.785 -3.024 14.023 

AL2O3 1.921 -2.926 -0.947 

 
Table CA: 6 Contributions (Columns) 

 

Weight (relative) F1 F2 F3 

CACO3-CAO 0.855 0.140 0.005 0.000 

FEO* 0.070 0.584 0.346 0.000 

K2O 0.005 0.015 0.044 0.937 

AL2O3 0.071 0.261 0.605 0.063 

 

 

Paper ID: ART20194521 10.21275/ART20194521 1211 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor (2018): 7.426 

Volume 8 Issue 1, January 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table CA: 7 Square cosines (Columns) 

 

F1 F2 F3 

CACO3-CAO 0.995 0.005 0.000 

FEO* 0.924 0.076 0.000 

K2O 0.596 0.238 0.166 

AL2O3 0.755 0.244 0.001 

 

 
Figure CA 2: Symmetric plot of analysis of association between variables and observations (rows and columns) 

 

 
Figure CA 3: Asymmetric column plot of analysis of association between variables and observations 

 

5. Interpretations and Discussions 
 

Principal Component Analysis 

In the introduction, principal component analysis is 

discussed as a method to reducing data sets and as well as 

helping in the application of multivariate statistical methods 

like analysis of variance or regression analysis. The data 

used have been reduced and presented in the tables and plots 

under the sub heading “results”. Table PCA 1 expresses the 

summary statistics of the data employed in the analysis. The 

table shows the means, standard deviation, minimum and 

maximum observation values of the variables under 

consideration. The minimum value measured is -0.002 

corresponding to SIO2 and the maximum of 95.929 

corresponds to CACO3-CAO. The least deviation among the 

observations of the measured parameters corresponded to 

K2O at 0.379 though is in conformity with that mean of its 

data set.Table PCA 2 outlines the correlation of the 

variances between and among variables in the matrix 

generated. The number of variables equals the total variance 

in the matrix.  The significant correlations are exhibited in 

bold face which in other words expresses self correlation of 

the measured parameters. The consideration of the 

correlation is based on the relative reflectance of 

independence of the factors (high and low correlations 

between and among variables). A strong correlation 

isexperiential between AL2O3& FEO, and AL2O3& K2O, 

indication a close similarity between/among the variables of 

the data set while an anti correlation  is observed between 

CACO3-CAO and SIO2as wells as with FEO,AL2O3, K2O. 
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Eigenvalues of the data set acquire with the use of factors in 

variance extraction (principal component analysis) are 

elaborated in Table PCA 3. The eigenvalues are scalar 

values obtained in the reduction and extraction processes 

and the match up vector component are revealed in Table 

PCA 4. The table displays the eigenvalues to correspond to 

factors (F) - (principal components extracted) and 

percentages. A factor with eigenvalue greater than 1.00 

indicatessignificance (Kaiser 1960) and therefore explains 

an important amount of variability in the data whereas a 

factor of the eigenvalue which is  less than 1.00 is 

considered to be too weak  (Kaiser 1960) and thus not able 

to explain a significant portion of the data variability. 

Consequently the factors F1 (3.030) and F2 (1.361) with 

eigenvalues greater than 1.00 are considered for explaining 

the significance of the data variability.Thus these two factors 

are retained in considering other processes for the final 

decision. 

 

According to Raykov and Marcoulides, 2008, the scree 

plot(proposed by Cartel 1966) characterizes the consecutive 

sequence of significance of eigenvalues pictographically and 

the term scree is used in geologicperceive for a steep 

mountain slope with debrisor fragments at itsbase. In this 

manner, the debris are detected on the plot with an „‟elbow‟‟ 

shaped plot of the cumulative eigenvalue percentage 

contributions which show a slightly tilted flat pattern at 

emergence. The plot helpssettle on the number of factors to 

use in an analysis and accordingly emphasizes the choice of 

F1 and F2 in Table PCA 3. 

 

Table PCA 5,presents summary of factor loadings of the 

data set which are the results of the factor score using the 

theory of factor analysis in examining the variability among 

observed variables. The correlation between/among 

variables and factors as displayed are similar to the factor 

loading in this data analysis, thus the similar results. Factor 1 

generally appears to show a strong correlation with the 

variablesfollowed by factor 2.The contributions from both 

are enough for the classification of the variables and best 

suites the generation of Figure PCA 2 rather than the 

combination of others.Hence the factor loading of the six 

variables are reduced to the specific factors displayed on the 

plot. In Figure PCA 2, AL2O3, FEO and K2O are closer in 

the domain and therefore exhibits and translates their 

correlation as well as significance of the components while 

CACO3-CAO and SIO2are separated from the variables with 

partial significance. The contributions in percentage are 

again expressed in Table PCA 7. The square cosines help 

emphasize variable contributions. Low square distances are 

sometimes not interpreted though the values also tell the 

contribution within each factor.  Overall, as shown in the 

graphic view of the biplot are the variables and observations. 

It is significant and enough to validates the interpretations 

the first two factors by also showing higher percentages on 

the plot axis. 

 

 

 

 

 

 

 

Correspondence Analysis 

 

The correspondence analysis is an evocative technique 

intended to examine a two way or multi-way tables which 

has some quantity of correspondence between columns and 

rows. Though a result from this technique has similarity with 

factor analysis, the correspondence analysis makes it 

possible to investigate the structure of definite variables in 

the table(Greenacre, 1984).The process establishes cross 

tabulation of frequencies such that the sum of all relative 

frequencies (mass) equals 1.00. The tables also represent the 

distances between the individual columns and rows in a low 

dimensional space. The computation of the relative 

frequencies for 1462 observation of the six variables gives a 

large data set thus the mean relatives frequencies are shown 

in the table below; 

 
Variables CACO3-CAO FEO K2O AL2O3 Total 

Mean 0.816 0.088 0.006 0.089 1.00 

 

The above is achieved with each element divided by the 

total. The relative frequencies are named column or row 

mass depending on the emphasis. Table CA1 illustrates the 

eigenvalues, inertia, cumulative percentages andtheir 

corresponding dimensions (factors).The two way table 

generates a maximum number of eigenvalues which are 

equivalent to minimum number of columns minus 1 and 

rows minus 1. The dimensions are similar to the extracted 

principal components. The inertia is equivalent to “moment 

of inertia” which is computed as the squared distance to the 

centroid times the integral of the mass (Greenacre, 1984).  

Therefore the inertia in the table is defined as the total 

Pearson Chi-Square of a two-way table divided up by the 

overall sum (inertia = chi-Square/Total N).  The first column 

of the table shows a single dimension (F1) of 87.43%, 

implying 87.43% of the inertia is explained which in other 

words the relative frequency of the values from a single 

dimension of the chi-square value that can be recreated. The 

second column explains 12.17 % of the inertia, thus both F1 

and F1 explains 99.60% of the inertia. They are therefore 

used in the analysis of the variables. The selection is 

confirmed with the scree plot in Figure CA 1 where the 

“elbow” flattens (smoothens) up. The weights assigned, 

distances and the distances squares generated the processes 

of the Correspondence analysis are as shown in table CA 2 

whereas the chi-square distances, principal  and standard 

coordinates are expressed in tables CA3, CA4, and CA5 

respectively. The weighteddistances are weightsput on 

variable observations for the computation of the factors. 

Figures CA 2 and CA 3 express the symmetric plot and 

asymmetric plot of the variables with the observations with 

respect to distances of the centriod respectively. In all cases 

the F1 and F2 are used for the analysis. 

 

Comparison of methods 

Both methods are compared using their percentage 

variability and percentage inertia given that they are 

generated using the eigenvalues obtained from the matrix 

decomposition. 
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Table CM: 1 
Method  /  Factor F1 (%) F2 (%) F3 (%) F4 (%) Total (%) 

Principal Component 

Analysis 
60.60 27.23 9.80 2.37 100.00 

Correspondence 

Analysis 
87.43 12.17 0.39 0.00 100.00 

 

Table CM: 2 

Factor Contribution 
Principal Component 

Analysis 

Correspondence 

Analysis 

F1 (%) 60.60 87.43 

F2 (%) 27.23 12.17 

Total % 87.83 99.60 

 

The correlation matrix (Table PCA: 2) of the principal 

component analysis indicates a strong a correlation between 

AL2O3 and K2O whereas a good but less strong relationship 

between AL2O3 and FeO. This association is again depicts in 

the plot of the column variables (figure PCA2). The AL2O3, 

FeO and K2O are illustrated as similar to each other whereas 

the SiO2 and CaCO3-CAO are far apart. The strong 

association of AL2O3, FeO and K2O are also represented in 

the table of factors and variables (Table PCA: 6). The factor 

loading relating to these variables are dependent on the 

eigenvalue/ vectors (Table PCA: 4 and 5).    

 

In the correspondence analysis, a similar association is noted 

for the principal coordinates (column) and the standard 

coordinates (columns) in tables CA 4 and 5 respectively. 

The symmetric (columns) and asymmetric (rows) again 

portray the relationship. These are as shown in figures: CA 2 

and 3. 

 

In summary there are similarities and differences amongst 

the variables and the samples. 

 

6. Conclusions 
 

The factor loadings percentages from both techniques are 

summarized in tables CM 1 and 2 above. Considering 

factors 1 and 2 (F1 and F2) under each of the techniques, 

Principal component analysis had F1 and F2 contribute 

60.60 and 27.23 % respectively, while the correspondence 

analysis F1 had percentage 87.43 and F2 at 12.17. The total 

for both F1 and F2 for the principal component and 

correspondence analysis are 87.83% and 99.61% 

respectively. With these percentages the correspondence 

analysis showed a much higher percentage value with 

similar factors, indicating a higher resolution compared to 

principal component analysis and probably the best in 

explainingthe relationship between/among variables in large 

and as well as multivariate dataset. 
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