
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Comparison of Face Detection and

Recognition Algorithms

Mohsin Furkh Dar, Dr. Sarvottam Dixit

Faculty of Science and Technology, Mewar University, Chittorgarh, Rajasthan, India

Abstract: Recognition of faces is a fundamental cognitive ability that forms an important basis for our social interactions. This paper aims

to optimize the existing face recognition system by comparing the results of different algorithms. To achieve this goal, I have analyzed state-

of-the-algorithms in both face detection and face recognition. The research for algorithms goes through the analysis of recent benchmarks,

two of which (i.e. WIDER FACE [1] and MegaFace [2]) are also used for evaluating those algorithms. The results on these benchmarks

allows to determine which algorithms perform better, that is to say SSH [3] for detection and both Dlib-R [4] and ArcFace [5] for

recognition. All the tests are performed with algorithm efficiency in mind. And computation time measurements show that the best

techniques tend to work slower but that they can achieve practical execution times.

Keywords: SSH, Dlib-R

1. Introduction

The area of face recognition has strongly motivated many

researchers to find the challenges in image processing

systems. During this process of facial image recognition, the

researchers pored on the factors which can handle human

faces in a better way under different conditions like

illumination, pose, lightning effects. Face detection got

popular in the year 2000 when Paul Viola and Michael Jones

devised a method to detect faces. Their method was fast

enough to run on cheap cameras. However, today much more

reliable solutions exist now.

Face Detection

As presented in [1], “given an arbitrary image, the goal of face

detection is to determine whether or not there are any faces in

the image and, if present, return the image location and extent

of each face [6]”. Practically, face detection algorithms will

aim at generating bounding boxes (often rectangular or

elliptical) around all the faces in the image and only around

faces.

To define when we consider a detection to be correct, we must

beforehand decide how a detection is represented. As reported

in [7] and illustrated in Figure1, there is no clear consensus

and “representations vary from image regions such as

rectangular and elliptic regions or patches of arbitrary shape to

locations of facial landmarks. Combinations of those two can

also be found in the literature with additional features such as

head pose [8]”. Most of the recent datasets (e.g. [1], [9], [8],

[10], [11], [12]) use rectangular bounding boxes as ground-

truth which are usually reported using the pixel coordinates of

their upper-left corner, their height and their width. This

representation will be used throughout this paper.

Figure 1: Illustrative figure from [7]. The red ellipses are

annotations while the squares correspond to the outputs of two

different detectors. We can see that except for the one false

positive, the detections are correct but are not represented in

the same way by the two algorithms and are also very different

from the annotations

To confirm that a detection is correct, most benchmarks rely

on the bounding box overlap ratio or intersection over union

measure, or IoU for short. As defined in [9], “the overlap ratio

between a predicted bounding box Bp and ground truth

bounding box Bgt is given by

IOU = area (Bpꓵ Bgt)/area (Bpꓴ Bgt)

where Bp ∩Bgt denotes the intersection of the predicted and

ground truth bounding boxes and Bp ∪Bgt their union”, and

where the area of a region is measured by the number of pixels

it contains. For all the benchmarks analyzed in this paper, a

detection is considered „correct‟ when this value is greater

than 50%. This choice was generally made following the

PASCAL VOC [9] protocol.

Once we have defined what we consider to be a correct

detection, we can estimate how well a face detection algorithm

performs by counting the number of true positives (i.e.

detections considered as correct, noted TP), false positives

(i.e. detections considered as incorrect, noted FP) and false

Paper ID: ART20194439 10.21275/ART20194439 986

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

negative (i.e. faces that were not detected, noted FN). Using

these numbers, a perfect detector would be one that would

simultaneously have 0 false negatives (correctly detecting all

faces) and 0 false positives (not having any incorrect

detection).

Figure 2: Combination of images coming from the Wikipedia

pages „Sensitivity and Specificity‟ and „Precision and Recall‟

showing how the different binary classification measures are

obtained

This is nearly never the case and one has to make a

compromise between those two values. To quantify this

compromise, the benchmarks propose generally two

approaches. The first one is to use adapted Receiver Operating

Characteristic (ROC) curves. The second approach is based on

precision-recall curves where precision is computed as

TP/(TP+FP). The authors of [9] mention that based on

previous experience, using precision-recall curves was used

“to improve the sensitivity of the metric, to improve

interpretability (especially for image retrieval applications), to

give increased visibility to performance at low recall” and they

showed that using either of the two the “ranking of participants

was generally in agreement but that the AP measure

highlighted differences between methods to a greater extent”.

The choice of precision-recall curves for evaluating face

detection seems, therefore, more appropriate.

Face Recognition

Face recognition is generally divided into two sub-categories.

On the one side, face verification (or 1:1 face recognition)

consists in checking if a face corresponds to a given identity.

On the other side, face identification (or 1: N face recognition)

consists in finding the identity corresponding to a given face.

Face recognition can also be divided in terms of evaluation

protocol. “Either algorithms are tested under the closed-set

protocol or under the open-set protocol. In the former, the

testing identities are the same as the training ones and face

recognition can then be assimilated to a classification problem.

In the latter case, the testing identities are usually disjoint from

the training ones. The problem becomes more one of encoding

faces into a discriminative feature space.” [13] In our case, we

are typically trying to solve a face identification problem

under the open-set protocol. Indeed, our goal is to identify any

registered person that comes in front of the welcome station

without asking him to identify himself. Moreover, there is no

plan to retrain the face recognition algorithm each time a new

person registers in the system and it is thus more appropriate

to consider that the testing identities will be mostly different

from the training ones.

There are several ways to evaluate the quality of face

recognition algorithms. First, the faces for which we want to

obtain the identity are generally called the `probes', `probe

faces' or `probe set'. The goal is to compare these probes to our

database of faces, generally called `gallery' or `gallery set‟ and

find for each of those faces at least one face of the same

identity in the gallery, if there is such a face. To achieve this,

face recognition algorithms produce for each face, both in the

probe set and, in the gallery set, a vector of features. Then

using a distance measure, one can rank all the faces in the

gallery from closest to furthest for each given probe.

To evaluate the performances of an algorithm, one then

typically looks at each rank in this ordering if the true identity

of the person was found before this rank or not. This leads to a

series of measures called respectively rank-1, rank-2, ..., rank-

N identification rates (or performance). More specifically, the

rank-N performance is equal to the percentage of probes for

which a face from the gallery corresponding to the right

identity was found in at least one of the N first ranks. These

measures can be combined into a Cumulative Matching

Characteristic (CMC) curve that shows identification rates for

each possible rank (1 to the size of the gallery). Another aspect

that can be analyzed is the performances of the algorithm with

regards to the size of the gallery. Indeed, the more identities it

contains the more difficult it is to discriminate between

different identities in the feature space. This evaluation

scenario is the one proposed in the MegaFace challenge [2]. A

more detailed approach of the quantification of the

performances of face recognition algorithms is given in the

Face Recognition Vendor Test (FRVT) [14].

The goal of this work was to search for and evaluate state-of-

the-art algorithms in both face detection and recognition in

order to take informed decisions regarding the implementation

choices in computer vision system. To reach this aim, I

decided to work in a scientific way so that the conclusions of

this report can be directly exploited and if need be, that my

researches and experiments can be reiterated to test new

algorithms.

The paper is organized as follows. Section I contains the

introduction of face detection and face recognition problem

and the purpose of my work, Section II contain the related

work of both face detection and face recognition, Section III

explain the methodology and terminology used for both

facedetection and face recognition, Section IV describes

Paper ID: ART20194439 10.21275/ART20194439 987

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Precision_and_recall

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

results and discussion of this work, and Section V concludes

research work with future directions.

2. Related Work

Face detection

Anyone who has some knowledge in the field of face detection

would have heard of the Viola & Jones Haar-cascade

algorithm [15] which is often considered as the first practical

face detector. As mentioned in [16], “the use of hand-designed

features methods continued with for instance SURF [17], LBP

[18] or HOG [19]. These features were combined with

Deformable Parts Model [20] to produce significant

advances.” However, the real burst in performance came with

the renewed use of neural networks based on deep

architectures. According to [16], “CNN‟s had already been

applied to face detection as far back as 1994 in [21]” but since

2012, deep architectures started being used such as in [22] or

[23].

These techniques are designed to be applied to 2D images. In

parallel to this, research on 3D or 2D+3D face detection has

also emerged. As mentioned in [24], 2D and 3D approaches

are complementary in the sense that “3D data compensates for

the lack of depth information in a 2D image while it is also

relatively insensitive to pose and illumination variations”. It is

therefore not surprising to see that numerous researchers have

tried to use 3D information either alone such as in [25] by

doing curvature analysis or by combining the two such as in

[24]. [26] takes even another path where they apply 2D

detections technique to 3D data which is preprocessed via

orthogonal projection. These techniques could emerge due to

the arrival of affordable 3D acquisition systems. However, the

main burden remains “the intrinsic complexity in representing

and processing 3D data” [27]. This complexity comes with a

need for large amounts of data, which does not seem to be

tackled for now. Due to this, I decided to focus only on 2D

face detection techniques.

Face Recognition

The history of face recognition techniques is quite similar to

the one of face detection going from hand-crafted features to

features generated by CNN‟s while also going through the use

of other machine learning techniques. As mentioned in [28],

“face recognition research can be characterized into feature-

based and holistic approaches. The earliest work in face

recognition was feature-based and sought to explicitly define a

low-dimensional face representation based on ratios of

distances, areas, and angles [29]. An explicitly defined face

representation is desirable for an intuitive feature space and

technique. However, in practice, explicitly defined

representations are not accurate. Later work sought to use

holistic approaches stemming from statistics and Artificial

Intelligence (AI) that learn from and perform well on a dataset

of face images. Statistical techniques such as Principal

Component Analysis (PCA) [30] represent faces as a

combination of eigenvectors [31]. Eigenfaces [32] and fisher

faces [33] are landmark techniques in PCA-based face

recognition. Lawrence et al. [34] present an AI technique that

uses convolutional neural networks to classify an image of a

face.”

This last technique was presented in 1997 but once again the

use of CNN‟s has massively increased in recent years due to

their good performances in such tasks. One of the most recent

and best-known such approaches is Google‟s FaceNet [35].

Finally, as for face detection, research has also turned to 3D

imagery. Techniques also vary between combining 2D and 3D

([36], [37]), transforming 3D data to 2D data ([27]) or

extracting features directly from 3D data ([38], [39], [40]).

These three last techniques are actually initially designed for

object recognition and based on neural networks. They

propose interesting ways on how to use neural networks on 3D

data. However, due to lack of data and also because there

seems to be much more research in 2D face recognition, I

decided to not take into account 3D face recognition

techniques.

3. Methodology

Face detection

The choice for selecting the testing benchmark for face

detection was made keeping in mind the goals of thesis. The

project contains two very different face detection context. The

first one is the welcome stations where people we want to

recognize will generally be in front of the screen at a constant

distance. Then, as the people are guided through the corridors,

this distance will vary and there is less guarantee that he/she

will face the camera. Moreover, in both scenarios, the number

of people to detect can be very variable, going from a single

person to a group of 20-30 people, maybe more. In addition,

while the cameras will be a priori fixed, the variability in

illumination conditions can be very large. All these conditions

imply that we need a dataset that allows testing how each

algorithm perform in these different settings. Among the ones

that we have presented, the best suited for this idea are MALF,

WIDER FACE, and IJB-C which provide a high level of

annotation granularity. The problem with the first one is that it

contains only 250 testing images while for IJB-C, the size of

the download is prohibitively large. Concerning WIDER

FACE, it is manageable in terms of size and has the advantage

of furnishing evaluation tools. So, based on the elements

analyzed, we decided to use WIDER FACE as a testing

benchmark.

1) Testing Approach used by the evaluation toolbox of

WIDER FACE

For evaluation and plotting the tool box of WIDER FACE

comes with a series of functions coded in MATLAB. In

addition to that, three „. mat‟ files contain data structures

defining which faces in each image compose the „easy‟,

„medium‟ and „hard‟ subsets and providing the meta-data

associated with each face. By looking at the list of faces that

compose each of these subsets, we can actually notice that the

„hard‟ set is a superset of the „medium‟ set which is, in turn, a

superset of the „easy‟ dataset. The total number of faces to

detect in each subset is 7211, 13319 and 31958 for the easy,

medium and hard subset respectively.

Paper ID: ART20194439 10.21275/ART20194439 988

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The „.mat‟ files also contain the ground truth for every face,

even the non-tested or invalid ones. The ground-truth consists

of rectangular bounding boxes reported as „x1, y1, w, h‟. x1

and y1 define the position of the upper-left corner of the

rectangular bounding box, x1 being the position in pixels from

the left side of the image and y1 the position in pixels from the

top side of the image. w is the width and h is the height, both

in pixels, of the image.

To evaluate the face detection performance of an algorithm,

the evaluation function expects to receive for each image

containing a face in the evaluation set, a list of bounding boxes

in the same format as the ground truth, each of which must be

associated with a confidence score. The list needs to be sorted

in decreasing order according to this score. The score has

ideally to be between 0 and 1 but a function is provided to

normalize it if need be. During the evaluation, thresholds are

defined ranging from 0 to 0.999 with a step of 0.001 and

compared against the confidence scores in order to define a

series of precision-recall points. Indeed, at each threshold, all

the bounding boxes associated with a score equal or below this

threshold are not considered for evaluation. This will,

therefore, make the relative number of true positive, false

negative and false positive vary and therefore precision and

recall too. It is important to notice that as the maximum value

of the thresholds is 0.999, the precision-recall curve might not

reach the point (1,0).

For a given threshold and a given image, a list of predictions

will be compared against the ground-truth bounding boxes and

from this comparison, we can compute precision and recall

values for this threshold and image.

2) Time Evaluation

The important part of the project was to find if state-of-the-art

algorithms can work in a practical environment with a given

amount of computing power. The time was measured during

the tests on the validation set of WIDER FACE. This dataset is

composed of images of constant 1024 pixels height but of

varying width with a median of 754 pixels. To observe the

influence of size on the computation time, detection of each

frame was measured individually. It also enables us to take

median time over all frames in order to get rid of outliers.

For each image, the time was measured over the whole face

detection phase and only that, meaning that the time takes into

account:

All preprocessing (resizing, ...) and postprocessing (NMS, ...)

operations

Not the loading of libraries or networks

Not the saving of the data.

Both the real and CPU time was measured. The real time gives

an idea of the practical capabilities of an algorithm whereas

the CPU times allows a fairer comparison of those capabilities

across different computing architectures. These times will

either be expressed by the number of seconds to analyze one

image or as the number of frames that can be processed per

seconds (FPS) depending on the situation. The second one

being computed by dividing 1 by the first one, and vice-versa.

To analyze these results in more detail, htop command was

used to keep the information output, which indicates memory

and CPU usage. Also, nvidia-smi command is used to provide

data about CPU usage.

The algorithms written in Python 2.7 can easily have access to

both CPU and real time using functions clock and time library

respectively. In C++, we can access only CPU time through

clock function of the ctime library.

Face recognition

The tests of face recognition algorithms are carried out on the

MegaFace benchmark. The reason for choosing MegaFace

benchmark is that it provides precise annotations. These

annotations are done automatically and also provides full

evaluation tools. IJB-C possess similar qualities but its size is

prohibitive (>325GB) as a comparison, MegaFace is only

64GB.

The MegaFace evaluation code allows testing identification of

faces from images of the two probe sets, FaceScrub and

FGNet, against a gallery containing a varying number of

distractors (from 10 to 1000000). For a given probe set and a

given number of distractors images, it outputs a CMC curve.

Finally, for both MegaFace (MF) and FaceScrub (FS),

bounding boxes information is provided and allows to easily

crop each image to keep only the face. This cropped face is

then passed through some pre-processing (such as alignment)

and then feature extraction.

Time Evaluation

There are two main stages in face recognition that need to be

analyzed separately in terms of time: feature generation

(including all preprocessing steps) and feature classification

(obtained via nearest-neighbors classification). It is important

to compute the two computations time separately because

these two tasks can easily be parallelized. Moreover, the

efficiency of those two phases is equivalently important to

estimate. Indeed, while we might assume that feature

generation is the most variable in terms of computation time,

the length of the generated features will affect linearly the

computation time of the second phase, which could become

substantial when the size of the gallery explodes.

For the first phase, the time was measured for each image of

the MegaFace dataset. I did not compute it over the images of

FaceScrub because it would have been redundant. It is

important to notice here that the number of images is equal to

the number of faces. However, if we consider the full-face

recognition pipeline, each image will possibly contain several

faces. To avoid confusion with the FPS used a time metric for

face detection algorithms, I will use for face recognition the

term FaPS, referring to the number of faces processed per

seconds. This per-face time will take into account the

alignment and feature extraction step but not the cropping

because it does not depend on the chosen algorithm.

Paper ID: ART20194439 10.21275/ART20194439 989

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

For the second phase, it was not possible to obtain

computation time per image because the testing code was only

available in the form of executable working on the whole

probe and gallery set used for the test and that could not be

modified. The only possible differentiation was to compute

time for different gallery sizes. However, as the testing code

was written in Python, I had access to both real and CPU time.

Moreover, as this time depends only on the size of the

extracted feature vector, they will be the same for each of the

tested variations of the 3 algorithms.

The CPU and real timeplus CPU and GPU usage is measured

using the same functions and commands as in face detection.

4. Results and Discussion

This section contains a series of results obtained through the

evaluation of the face detection and face recognition

algorithms that were selected in the previous section.

Face Detection

The overall result of the different face detection algorithms is

summarized in figure 3 and table 1. In each case we took the

best version of each algorithm.

Table 1: Number of frames that can be processed per second,

in CPU and Real Time with the best versions of four tested

algorithms, from WIDER FACE.
Algorithm CPU FPS Real FPS

VJ-python-scale-1.3-min-10 1.98 34.56

HOG-C++ 14.45 /

FRCNN-nms-0.3 7.25 14.96

SSH-nms-0.5 3.21 5.23

Figure 3: Precision-recall curves obtained by the best versions

of the 4 tested algorithms on the three subsets of WIDER

FACE.

Clearly SSH performs better in terms of precision-recall

performance. On easy and medium set FRCNN produces

similar results but fails on the hardest datasets. On the other

hand, VJ and HOG perform equally but one level below

FRCNN and SSH. Now in terms of computation time, for real-

time computation better the algorithm the smaller the number

of frames per second. FRCNN is more than two times faster

than SSH because SSH makes a much heavier use of Graphics

Processing Unit (GPU) when running. More precisely FRCNN

uses only around 2000 MB of GPU memory whereasSSH uses

nearly 4500 MB. Hence SSH needs greater computation time.

Finally, Figure 4 shows, for the 4 algorithms, the evolution of

CPU time with the number of pixels per image. Even if the

data is quite noisy, we can see that both for VJ and HOG, the

time seems to increase linearly with the number of pixels.

However, for FRCNN and SSH, the relation is far from linear.

This phenomenon is actually linked to the fact that the images

are reshaped before being fed to the networks. However,

overall, time seems to increase with the number of pixels even

if in these two cases it is more difficult to extrapolate for larger

values.

Figure 4: Development of CPU computation time per image

with the number of pixels per image for the 4 tested

algorithms.

Face Recognition

The face recognition algorithms selected were tested based on

MegaFace benchmark. MegaFace allows testing identification

based on two probe sets. FaceScrub and FGNet. The later one

is used to evaluate face recognition across age variation. So

here we are only taking FaceScrub dataset into consideration.

Figure 5 shows the graphs comparing the best versions of each

face recognition algorithm we tested. The main remark that

can be made is that Dlib-R and ArcFace are one level above

OpenFace. The two former algorithms have a similar level of

performance with Dlib-R being slightly better for the smallest

number of distractors and ArcFace taking the lead when this

number increases.

Paper ID: ART20194439 10.21275/ART20194439 990

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(a) Rank-1 identification rate vs number of distractors (b) CMC curves for varying number of distractors

Figure 5: Performances obtained by the best versions of the 3 tested face recognition algorithms on MegaFace. (a) shows the

evolution of rank-1 identification rate with the number of distractors in the gallery while (b) shows the CMC curves for these

different number of distractors

However, if we look in terms of time, Table 2 shows that for

CPU time, Dlib-R performs much better. This might be

explained by the fact that it is written in C++ rather than in

Python and that it is the algorithm that uses the least GPU

memory.

Table 2: Medians of the number of faces, coming from

MegaFace, that can be processed per second, in CPU and Real

Time, with the best versions of the 3 tested face recognition

algorithms
Algorithm CPU FaPS Real FaPS

OpenFace (Align) 27.98 23.56

Dlib-R (Align) 238.84 /

ArcFace 46.54 58.68

As far as computational time is concerned, for classification

step time only depends on the size of the feature

representation. As shown in table 3, Dlib-R and OpenFace

generate the same number of features per face while

InsightFace generates four times more.

Table 3: Size of the feature vectors generated by the 3 tested

face recognition algorithms

Algorithm OpenFace Dlib-R ArcFace

Feature Vector Size 128 128 512

Algorithm OpenFace Dlib-R ArcFace

Feature Vector Size 128 128 512

Figure 6: Evolution of classification time (expressed in

seconds) with the number of distractors for the 3 tested face

recognition algorithms

Figure 6 shows the evolution of classification time with the

number of distractors used. We can see that as expected the

time is greater for ArcFace. We can also see that there seems

to be a small difference between Dlib-R and OpenFace which

is unexpected but seems to be mainly noise. If we analyze the

evolution of time with the number of distractors, it seems like

we have a linear relation which fits with the complexity of a

generic nearest neighbor algorithm. Finally, from this graph,

we can also approximately infer the time needed to make a

prediction for one image. We know that, in total, the

identities of 4,000 probes are predicted. Therefore, for the

largest gallery size, one ArcFace prediction would take

3.2/4000 = 0.0008s = 0.8ms meaning that 1/0.0008 = 1,250

identities can be predicted by second with the given testing

implementation. If we manage to use a testing

implementation that is as efficient as this one, the

classification time can be regarded as negligible.

Paper ID: ART20194439 10.21275/ART20194439 991

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion and Future Scope

In this paper I presented a way to search for and evaluate state-

of-the-art algorithms in both face detection and recognition in

order to allow any team to take informed decisions regarding

the implementation choices of their computer vision system.

The goal of my work was two-fold: find algorithms to

compare one to another and select face detection and face

recognition benchmarks to test them on. Benchmarks define

which algorithms are considered state-of-the-art and are thus a

great source of research. However, comparing the

performances of algorithms tested on different benchmarks is

not an obvious task due to their evaluation divergences. The

option I choose was therefore to select the best performing

algorithms from several benchmarks and to test them on two

individual benchmark datasets, one for detection (i.e. WIDER

FACE) and one for recognition (i.e. MegaFace).

In recent years, the complexity of benchmarks has evolved to

better represent practical use cases, notably with the switch

from controlled to „in-the-wild‟ imagery while increasing in

size. Nevertheless, this change in paradigm was not always

accompanied by a high-level of annotation precision. While

for face detection, datasets like WIDER FACE are annotated

with information such as face pose, level of blur or even

expression level, even though not always clearly determined,

face recognition datasets do not provide such rich information

yet. Moreover, when such information is available,

benchmarks often lack handy evaluation tools to produce

detailed results. However, a fine-grained analysis is essential

to be able to estimate how well algorithms could perform on

datasets with different underlying distributions.

The selection and description of face detection and

recognition algorithms was the second main step of my work.

The selection was following two basic criteria: algorithms

needed to be well enough documented and open source.

Each algorithm was tested independently to select the best

parameters. These tests led to the abandoning of one of the

algorithms which was not reacting correctly. Then, even if I

proceeded to various tests to see the influence of various

parameters, the results obtained on WIDER FACE and

MegaFace were quite consistent and designated the SSH

algorithm as the winner for detection while in recognition

Dlib-R and ArcFace were performing similarly, one level

above OpenFace. The results for detection can be mitigated

by the fact that SSH was also the slowest algorithm. Being a

deep learning algorithm, this reflects the well-known

compromise between speed and accuracy, with neural

networks often favoring the latter. Nonetheless, increasing

effort has been put into improving the former with some deep

learning techniques reaching close-to-real-time performances.

This last observation puts forward the fact that face

recognition is far from being a solved problem.

Even if the quality of benchmarks and algorithms has up

surged in the past few years, a lot of compromises have still

to be made in a practical context. Moreover, new benchmarks

and algorithms are constantly appearing. There is still plenty

of work to get through in order to optimize face recognition.

This is supported by the fact that techniques like face

tracking, that can sometimes help to improve accuracy. The

time between each annotated frame being of nearly 3 seconds,

annotating more frames could open new evaluation

possibilities while also generating more reliable results. More

information could also be provided for each frame specifying

some facial attributes for example. Extending the dataset

would mean extending the set of identities it contains and

could be an opportunity to undertake per-person analysis.

Even though I worked such that those results would be as

close as possible to the expected results in this practical

concept (e.g. using the same computer architecture, testing on

a specific dataset), some additional work is needed. For

instance, while studying the efficiency of detection and

recognition algorithms separately, I did not make a

computing time evaluation of the complete recognition

system from frame acquisition to prediction. In addition, the

computing architecture might change in the future in order to

improve efficiency. Studying the effect of different

computing architectures on the computing time could be

useful to make the best choices.

References

[1] S. Yang, P. Luo, C.-C. Loy, and X. Tang. Wider face: A

face detection benchmark. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, pages 5525–5533, 2016. i, 3, 16

[2] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and

E. Brossard. The megaface benchmark: 1 million faces

for recognition at scale. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, pages 4873–4882, 2016. i, 7, 24, 71

[3] M. Najibi, P. Samangouei, R. Chellappa, and L. Davis.

Ssh: Single stage headless face detector. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4875–4884, 2017. i, 31, 43, 44, 61

[4] K. Davis. High quality face recognition with deep metric

learning. 2017. i, 33

[5] J. Deng, J. Guo, and S. Zafeiriou. Arcface: Additive

angular margin loss for deep face recognition. arXiv

preprint arXiv:1801.07698, 2018. i, 33, 46

[6] M.-H. Yang, D. J. Kriegman, and N. Ahuja. Detecting

faces in images: A survey. IEEE Transactions on pattern

analysis and machine intelligence, 24(1):34–58, 2002. 3

[7] V. Jain and E. Learned-Miller. Fddb: A benchmark for

face detection in unconstrained settings. 3, 4, 5, 12, 13,

14

[8] X. Zhu and D. Ramanan. Face detection, pose

estimation, and landmark localization in the wild. In

Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 2879–2886. IEEE, 2012. 3,

14

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

Paper ID: ART20194439 10.21275/ART20194439 992

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

challenge. Int J Comput Vis, 88:303–338, 2010. 3, 4, 5,

14, 15, 16

[10] J. Yan, X. Zhang, Z. Lei, and S. Z. Li. Face detection by

structural models. Image and Vision Computing,

32(10):790–799, 2014. 3, 14

[11] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Fine-grained

evaluation on face detection in the wild. In Automatic

Face and Gesture Recognition (FG), 2015 11th IEEE

International Conference and Workshops on, volume 1,

pages 1–7. IEEE, 2015. 3, 5, 15, 16

[12] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof.

Annotated facial landmarks in the wild: A large-scale,

real-world database for facial landmark localization. In

Computer Vision Workshops (ICCV Workshops), 2011

IEEE International Conference on, pages 2144–2151.

IEEE, 2011. 3, 13

[13] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face

recognition. arXiv preprint arXiv:1704.08063, 2017. 6,

33

[14] P. J. Grother and M. L. Ngan. Face recognition vendor

test (frvt) performance of face identification algorithms

nist ir 8009. Technical report, 2014. 7, 25

[15] P. Viola and M. J. Jones. Robust real-time face detection.

International journal of computer vision, 57(2):137–154,

2004. 2, 6, 17, 20, 22, 25, 30, 32, 35, 36, 37

[16] H. Jiang and E. Learned-Miller. Face detection with the

faster r-cnn. In Automatic Face & Gesture Recognition

(FG 2017), 2017 12th IEEE International Conference on,

pages 650–657. IEEE, 2017. 6

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.

Speeded-up robust features (surf). Computer vision and

image understanding, 110(3):346–359, 2008. 6

[18] T. Ahonen, A. Hadid, and Pietikainen Face description

with local binary patterns: Application to face

recognition. IEEE transactions on pattern analysis and

machine intelligence, 28(12):2037-2041, 2006, 6

[19] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 1, pages 886–893. IEEE, 2005.

6, 32, 37

[20] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645,

2010. 6, 39

[21] R. Vaillant, C. Monrocq, and Y. Le Cun. Original

approach for the localisation of objects in images. IEE

Proceedings-Vision, Image and Signal Processing,

141(4):245–250, 1994. 6

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE

conference, pages 580-587, 2014. 6,38,39,41

[23] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A

convolutional neural network cascade for face detection.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5325–5334, 2015.

6

[24] G. P. Kusuma and C.-S. Chua. Pca-based image

recombination for multimodal 2d+3d face recognition.

Image and Vision Computing, 29(5):306 – 316, 2011. 6,

8

[25] A. Colombo, C. Cusano, and R. Schettini. 3d face

detection using curvature analysis. Pattern Recognition,

39(3):444 – 455, 2006. 6

[26] M. P. Segundo, L. Silva, O. Bellon, and S. Sarkar.

Orthogonal projection images for 3d face detection.

Pattern Recognition Letters, 50:72 – 81, 2014. Depth

Image Analysis. 6

[27] Z. Guo, Y.-N. Zhang, Y. Xia, Z.-G. Lin, Y.-Y. Fan, and

D. D. Feng. Multi-pose 3d face recognition based on 2d

sparse representation. Journal of Visual Communication

and Image Representation, 24(2):117 – 126, 2013.

Sparse Representations for Image and Video Analysis. 6,

8

[28] B. Amos, B. Ludwiczuk, and M. Satyanarayanan.

Openface: A general-purpose face recognition library

with mobile applications. CMU School of Computer

Science, 2016. 8, 45

[29] T. Kanade. Picture processing system by computer

complex and recognition of human faces. 1974. 8

[30] L. Sirovich and M. Kirby. Low-dimensional procedure

for the characterization of human faces. Josa a, 4(3):519–

524, 1987. 8

[31] M. Turk and A. Pentland. Eigenfaces for recognition.

Journal of cognitive neuroscience, 3(1):71–86, 1991. 8

[32] H. Hotelling. Analysis of a complex of statistical

variables into principal components. Journal of

educational psychology, 24(6):417, 1933. 8

[33] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman.

Eigenfaces vs. fisherfaces: Recognition using class

specific linear projection. IEEE Transactions on pattern

analysis and machine intelligence, 19(7):711–720, 1997.

8

[34] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back.

Face recognition: A convolutional neural-network

approach. IEEE transactions on neural networks,

8(1):98–113, 1997. 8

[35] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A

unified embedding for face recognition and clustering. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 815–823, 2015. 8,

33, 45, 47

[36] G. P. Kusuma and C.-S. Chua. Pca-based image

recombination for multimodal 2d+3d face recognition.

Image and Vision Computing, 29(5):306 – 316, 2011. 6,

8

[37] T.-H. Sun and F.-C. Tien. Using backpropagation neural

network for face recognition with 2d+3d hybrid

information. Expert Systems with Applications,

35(1):361 – 372, 2008. 8

[38] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and

segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 1(2):4, 2017. 8

Paper ID: ART20194439 10.21275/ART20194439 993

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 1, January 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[39] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In

Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 922–928. IEEE,

2015. 8

[40] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for

volumetric shapes. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1912–

1920, 2015.

Paper ID: ART20194439 10.21275/ART20194439 994

