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Abstract: Recognition of faces is a fundamental cognitive ability that forms an important basis for our social interactions. This paper aims 

to optimize the existing face recognition system by comparing the results of different algorithms. To achieve this goal, I have analyzed state-

of-the-algorithms in both face detection and face recognition. The research for algorithms goes through the analysis of recent benchmarks, 

two of which (i.e. WIDER FACE [1] and MegaFace [2]) are also used for evaluating those algorithms. The results on these benchmarks 

allows to determine which algorithms perform better, that is to say SSH [3] for detection and both Dlib-R [4] and ArcFace [5] for 

recognition. All the tests are performed with algorithm efficiency in mind. And computation time measurements show that the best 

techniques tend to work slower but that they can achieve practical execution times. 
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1. Introduction 
 

The area of face recognition has strongly motivated many 

researchers to find the challenges in image processing 

systems. During this process of facial image recognition, the 

researchers pored on the factors which can handle human 

faces in a better way under different conditions like 

illumination, pose, lightning effects. Face detection got 

popular in the year 2000 when Paul Viola and Michael Jones 

devised a method to detect faces. Their method was fast 

enough to run on cheap cameras. However, today much more 

reliable solutions exist now. 

 

Face Detection 

As presented in [1], “given an arbitrary image, the goal of face 

detection is to determine whether or not there are any faces in 

the image and, if present, return the image location and extent 

of each face [6]”. Practically, face detection algorithms will 

aim at generating bounding boxes (often rectangular or 

elliptical) around all the faces in the image and only around 

faces. 

 

To define when we consider a detection to be correct, we must 

beforehand decide how a detection is represented. As reported 

in [7] and illustrated in Figure1, there is no clear consensus 

and “representations vary from image regions such as 

rectangular and elliptic regions or patches of arbitrary shape to 

locations of facial landmarks. Combinations of those two can 

also be found in the literature with additional features such as 

head pose [8]”. Most of the recent datasets (e.g. [1], [9], [8], 

[10], [11], [12]) use rectangular bounding boxes as ground-

truth which are usually reported using the pixel coordinates of 

their upper-left corner, their height and their width. This 

representation will be used throughout this paper. 

 
Figure 1: Illustrative figure from [7]. The red ellipses are 

annotations while the squares correspond to the outputs of two 

different detectors. We can see that except for the one false 

positive, the detections are correct but are not represented in 

the same way by the two algorithms and are also very different 

from the annotations 

 

To confirm that a detection is correct, most benchmarks rely 

on the bounding box overlap ratio or intersection over union 

measure, or IoU for short. As defined in [9], “the overlap ratio 

between a predicted bounding box Bp and ground truth 

bounding box Bgt is given by 

IOU = area (Bpꓵ Bgt)/area (Bpꓴ Bgt) 

where Bp ∩Bgt denotes the intersection of the predicted and 

ground truth bounding boxes and Bp ∪Bgt their union”, and 

where the area of a region is measured by the number of pixels 

it contains. For all the benchmarks analyzed in this paper, a 

detection is considered „correct‟ when this value is greater 

than 50%. This choice was generally made following the 

PASCAL VOC [9] protocol. 

 

Once we have defined what we consider to be a correct 

detection, we can estimate how well a face detection algorithm 

performs by counting the number of true positives (i.e. 

detections considered as correct, noted TP), false positives 

(i.e. detections considered as incorrect, noted FP) and false 
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negative (i.e. faces that were not detected, noted FN). Using 

these numbers, a perfect detector would be one that would 

simultaneously have 0 false negatives (correctly detecting all 

faces) and 0 false positives (not having any incorrect 

detection). 

 

 
Figure 2: Combination of images coming from the Wikipedia 

pages „Sensitivity and Specificity‟ and „Precision and Recall‟ 

showing how the different binary classification measures are 

obtained 
 

This is nearly never the case and one has to make a 

compromise between those two values. To quantify this 

compromise, the benchmarks propose generally two 

approaches. The first one is to use adapted Receiver Operating 

Characteristic (ROC) curves. The second approach is based on 

precision-recall curves where precision is computed as 

TP/(TP+FP). The authors of [9] mention that based on 

previous experience, using precision-recall curves was used 

“to improve the sensitivity of the metric, to improve 

interpretability (especially for image retrieval applications), to 

give increased visibility to performance at low recall” and they 

showed that using either of the two the “ranking of participants 

was generally in agreement but that the AP measure 

highlighted differences between methods to a greater extent”. 

The choice of precision-recall curves for evaluating face 

detection seems, therefore, more appropriate. 

 

Face Recognition 

Face recognition is generally divided into two sub-categories. 

On the one side, face verification (or 1:1 face recognition) 

consists in checking if a face corresponds to a given identity. 

On the other side, face identification (or 1: N face recognition) 

consists in finding the identity corresponding to a given face. 

Face recognition can also be divided in terms of evaluation 

protocol. “Either algorithms are tested under the closed-set 

protocol or under the open-set protocol. In the former, the 

testing identities are the same as the training ones and face 

recognition can then be assimilated to a classification problem. 

In the latter case, the testing identities are usually disjoint from 

the training ones. The problem becomes more one of encoding 

faces into a discriminative feature space.” [13] In our case, we 

are typically trying to solve a face identification problem 

under the open-set protocol. Indeed, our goal is to identify any 

registered person that comes in front of the welcome station 

without asking him to identify himself. Moreover, there is no 

plan to retrain the face recognition algorithm each time a new 

person registers in the system and it is thus more appropriate 

to consider that the testing identities will be mostly different 

from the training ones. 

 

There are several ways to evaluate the quality of face 

recognition algorithms. First, the faces for which we want to 

obtain the identity are generally called the `probes', `probe 

faces' or `probe set'. The goal is to compare these probes to our 

database of faces, generally called `gallery' or `gallery set‟ and 

find for each of those faces at least one face of the same 

identity in the gallery, if there is such a face. To achieve this, 

face recognition algorithms produce for each face, both in the 

probe set and, in the gallery set, a vector of features. Then 

using a distance measure, one can rank all the faces in the 

gallery from closest to furthest for each given probe.  

 

To evaluate the performances of an algorithm, one then 

typically looks at each rank in this ordering if the true identity 

of the person was found before this rank or not. This leads to a 

series of measures called respectively rank-1, rank-2, ..., rank-

N identification rates (or performance). More specifically, the 

rank-N performance is equal to the percentage of probes for 

which a face from the gallery corresponding to the right 

identity was found in at least one of the N first ranks. These 

measures can be combined into a Cumulative Matching 

Characteristic (CMC) curve that shows identification rates for 

each possible rank (1 to the size of the gallery). Another aspect 

that can be analyzed is the performances of the algorithm with 

regards to the size of the gallery. Indeed, the more identities it 

contains the more difficult it is to discriminate between 

different identities in the feature space. This evaluation 

scenario is the one proposed in the MegaFace challenge [2]. A 

more detailed approach of the quantification of the 

performances of face recognition algorithms is given in the 

Face Recognition Vendor Test (FRVT) [14]. 

 

The goal of this work was to search for and evaluate state-of-

the-art algorithms in both face detection and recognition in 

order to take informed decisions regarding the implementation 

choices in computer vision system. To reach this aim, I 

decided to work in a scientific way so that the conclusions of 

this report can be directly exploited and if need be, that my 

researches and experiments can be reiterated to test new 

algorithms. 

The paper is organized as follows. Section I contains the 

introduction of face detection and face recognition problem 

and the purpose of my work, Section II contain the related 

work of both face detection and face recognition, Section III 

explain the methodology and terminology used for both 

facedetection and face recognition, Section IV describes 
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results and discussion of this work, and Section V concludes 

research work with future directions. 

 

2. Related Work  
 

Face detection 

Anyone who has some knowledge in the field of face detection 

would have heard of the Viola & Jones Haar-cascade 

algorithm [15] which is often considered as the first practical 

face detector. As mentioned in [16], “the use of hand-designed 

features methods continued with for instance SURF [17], LBP 

[18] or HOG [19]. These features were combined with 

Deformable Parts Model [20] to produce significant 

advances.” However, the real burst in performance came with 

the renewed use of neural networks based on deep 

architectures. According to [16], “CNN‟s had already been 

applied to face detection as far back as 1994 in [21]” but since 

2012, deep architectures started being used such as in [22] or 

[23].  

 

These techniques are designed to be applied to 2D images. In 

parallel to this, research on 3D or 2D+3D face detection has 

also emerged. As mentioned in [24], 2D and 3D approaches 

are complementary in the sense that “3D data compensates for 

the lack of depth information in a 2D image while it is also 

relatively insensitive to pose and illumination variations”. It is 

therefore not surprising to see that numerous researchers have 

tried to use 3D information either alone such as in [25] by 

doing curvature analysis or by combining the two such as in 

[24]. [26] takes even another path where they apply 2D 

detections technique to 3D data which is preprocessed via 

orthogonal projection. These techniques could emerge due to 

the arrival of affordable 3D acquisition systems. However, the 

main burden remains “the intrinsic complexity in representing 

and processing 3D data” [27]. This complexity comes with a 

need for large amounts of data, which does not seem to be 

tackled for now. Due to this, I decided to focus only on 2D 

face detection techniques. 

 

Face Recognition 

The history of face recognition techniques is quite similar to 

the one of face detection going from hand-crafted features to 

features generated by CNN‟s while also going through the use 

of other machine learning techniques. As mentioned in [28], 

“face recognition research can be characterized into feature-

based and holistic approaches. The earliest work in face 

recognition was feature-based and sought to explicitly define a 

low-dimensional face representation based on ratios of 

distances, areas, and angles [29]. An explicitly defined face 

representation is desirable for an intuitive feature space and 

technique. However, in practice, explicitly defined 

representations are not accurate. Later work sought to use 

holistic approaches stemming from statistics and Artificial 

Intelligence (AI) that learn from and perform well on a dataset 

of face images. Statistical techniques such as Principal 

Component Analysis (PCA) [30] represent faces as a 

combination of eigenvectors [31]. Eigenfaces [32] and fisher 

faces [33] are landmark techniques in PCA-based face 

recognition. Lawrence et al. [34] present an AI technique that 

uses convolutional neural networks to classify an image of a 

face.” 

 

This last technique was presented in 1997 but once again the 

use of CNN‟s has massively increased in recent years due to 

their good performances in such tasks. One of the most recent 

and best-known such approaches is Google‟s FaceNet [35]. 

Finally, as for face detection, research has also turned to 3D 

imagery. Techniques also vary between combining 2D and 3D 

([36], [37]), transforming 3D data to 2D data ([27]) or 

extracting features directly from 3D data ([38], [39], [40]). 

These three last techniques are actually initially designed for 

object recognition and based on neural networks. They 

propose interesting ways on how to use neural networks on 3D 

data. However, due to lack of data and also because there 

seems to be much more research in 2D face recognition, I 

decided to not take into account 3D face recognition 

techniques. 

 

3. Methodology 
 

Face detection 

The choice for selecting the testing benchmark for face 

detection was made keeping in mind the goals of thesis. The 

project contains two very different face detection context. The 

first one is the welcome stations where people we want to 

recognize will generally be in front of the screen at a constant 

distance. Then, as the people are guided through the corridors, 

this distance will vary and there is less guarantee that he/she 

will face the camera. Moreover, in both scenarios, the number 

of people to detect can be very variable, going from a single 

person to a group of 20-30 people, maybe more. In addition, 

while the cameras will be a priori fixed, the variability in 

illumination conditions can be very large. All these conditions 

imply that we need a dataset that allows testing how each 

algorithm perform in these different settings. Among the ones 

that we have presented, the best suited for this idea are MALF, 

WIDER FACE, and IJB-C which provide a high level of 

annotation granularity. The problem with the first one is that it 

contains only 250 testing images while for IJB-C, the size of 

the download is prohibitively large. Concerning WIDER 

FACE, it is manageable in terms of size and has the advantage 

of furnishing evaluation tools. So, based on the elements 

analyzed, we decided to use WIDER FACE as a testing 

benchmark.  

 

1) Testing Approach used by the evaluation toolbox of 

WIDER FACE 

For evaluation and plotting the tool box of WIDER FACE 

comes with a series of functions coded in MATLAB. In 

addition to that, three „. mat‟ files contain data structures 

defining which faces in each image compose the „easy‟, 

„medium‟ and „hard‟ subsets and providing the meta-data 

associated with each face. By looking at the list of faces that 

compose each of these subsets, we can actually notice that the 

„hard‟ set is a superset of the „medium‟ set which is, in turn, a 

superset of the „easy‟ dataset. The total number of faces to 

detect in each subset is 7211, 13319 and 31958 for the easy, 

medium and hard subset respectively. 
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The „.mat‟ files also contain the ground truth for every face, 

even the non-tested or invalid ones. The ground-truth consists 

of rectangular bounding boxes reported as „x1, y1, w, h‟. x1 

and y1 define the position of the upper-left corner of the 

rectangular bounding box, x1 being the position in pixels from 

the left side of the image and y1 the position in pixels from the 

top side of the image. w is the width and h is the height, both 

in pixels, of the image. 

 

To evaluate the face detection performance of an algorithm, 

the evaluation function expects to receive for each image 

containing a face in the evaluation set, a list of bounding boxes 

in the same format as the ground truth, each of which must be 

associated with a confidence score. The list needs to be sorted 

in decreasing order according to this score. The score has 

ideally to be between 0 and 1 but a function is provided to 

normalize it if need be. During the evaluation, thresholds are 

defined ranging from 0 to 0.999 with a step of 0.001 and 

compared against the confidence scores in order to define a 

series of precision-recall points. Indeed, at each threshold, all 

the bounding boxes associated with a score equal or below this 

threshold are not considered for evaluation. This will, 

therefore, make the relative number of true positive, false 

negative and false positive vary and therefore precision and 

recall too. It is important to notice that as the maximum value 

of the thresholds is 0.999, the precision-recall curve might not 

reach the point (1,0). 

 

For a given threshold and a given image, a list of predictions 

will be compared against the ground-truth bounding boxes and 

from this comparison, we can compute precision and recall 

values for this threshold and image. 

 

2) Time Evaluation 

The important part of the project was to find if state-of-the-art 

algorithms can work in a practical environment with a given 

amount of computing power. The time was measured during 

the tests on the validation set of WIDER FACE. This dataset is 

composed of images of constant 1024 pixels height but of 

varying width with a median of 754 pixels. To observe the 

influence of size on the computation time, detection of each 

frame was measured individually. It also enables us to take 

median time over all frames in order to get rid of outliers. 

 

For each image, the time was measured over the whole face 

detection phase and only that, meaning that the time takes into 

account: 

All preprocessing (resizing, ...) and postprocessing (NMS, ...) 

operations 

Not the loading of libraries or networks 

Not the saving of the data. 

 

Both the real and CPU time was measured. The real time gives 

an idea of the practical capabilities of an algorithm whereas 

the CPU times allows a fairer comparison of those capabilities 

across different computing architectures. These times will 

either be expressed by the number of seconds to analyze one 

image or as the number of frames that can be processed per 

seconds (FPS) depending on the situation. The second one 

being computed by dividing 1 by the first one, and vice-versa. 

To analyze these results in more detail, htop command was 

used to keep the information output, which indicates memory 

and CPU usage. Also, nvidia-smi command is used to provide 

data about CPU usage. 

 

The algorithms written in Python 2.7 can easily have access to 

both CPU and real time using functions clock and time library 

respectively. In C++, we can access only CPU time through 

clock function of the ctime library. 

 

Face recognition 

The tests of face recognition algorithms are carried out on the 

MegaFace benchmark. The reason for choosing MegaFace 

benchmark is that it provides precise annotations. These 

annotations are done automatically and also provides full 

evaluation tools. IJB-C possess similar qualities but its size is 

prohibitive (>325GB) as a comparison, MegaFace is only 

64GB. 

 

The MegaFace evaluation code allows testing identification of 

faces from images of the two probe sets, FaceScrub and 

FGNet, against a gallery containing a varying number of 

distractors (from 10 to 1000000). For a given probe set and a 

given number of distractors images, it outputs a CMC curve. 

 

Finally, for both MegaFace (MF) and FaceScrub (FS), 

bounding boxes information is provided and allows to easily 

crop each image to keep only the face. This cropped face is 

then passed through some pre-processing (such as alignment) 

and then feature extraction. 

 

Time Evaluation 

There are two main stages in face recognition that need to be 

analyzed separately in terms of time: feature generation 

(including all preprocessing steps) and feature classification 

(obtained via nearest-neighbors classification). It is important 

to compute the two computations time separately because 

these two tasks can easily be parallelized. Moreover, the 

efficiency of those two phases is equivalently important to 

estimate. Indeed, while we might assume that feature 

generation is the most variable in terms of computation time, 

the length of the generated features will affect linearly the 

computation time of the second phase, which could become 

substantial when the size of the gallery explodes. 

 

For the first phase, the time was measured for each image of 

the MegaFace dataset. I did not compute it over the images of 

FaceScrub because it would have been redundant. It is 

important to notice here that the number of images is equal to 

the number of faces. However, if we consider the full-face 

recognition pipeline, each image will possibly contain several 

faces. To avoid confusion with the FPS used a time metric for 

face detection algorithms, I will use for face recognition the 

term FaPS, referring to the number of faces processed per 

seconds. This per-face time will take into account the 

alignment and feature extraction step but not the cropping 

because it does not depend on the chosen algorithm. 
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For the second phase, it was not possible to obtain 

computation time per image because the testing code was only 

available in the form of executable working on the whole 

probe and gallery set used for the test and that could not be 

modified. The only possible differentiation was to compute 

time for different gallery sizes. However, as the testing code 

was written in Python, I had access to both real and CPU time. 

Moreover, as this time depends only on the size of the 

extracted feature vector, they will be the same for each of the 

tested variations of the 3 algorithms. 

 

The CPU and real timeplus CPU and GPU usage is measured 

using the same functions and commands as in face detection. 

 

4. Results and Discussion 
 

This section contains a series of results obtained through the 

evaluation of the face detection and face recognition 

algorithms that were selected in the previous section. 

 

Face Detection 

The overall result of the different face detection algorithms is 

summarized in figure 3 and table 1. In each case we took the 

best version of each algorithm. 

 

Table 1: Number of frames that can be processed per second, 

in CPU and Real Time with the best versions of four tested 

algorithms, from WIDER FACE. 
Algorithm CPU FPS Real FPS 

VJ-python-scale-1.3-min-10 1.98 34.56 

HOG-C++ 14.45 / 

FRCNN-nms-0.3 7.25 14.96 

SSH-nms-0.5 3.21 5.23 

 

 
Figure 3: Precision-recall curves obtained by the best versions 

of the 4 tested algorithms on the three subsets of WIDER 

FACE. 

 

Clearly SSH performs better in terms of precision-recall 

performance. On easy and medium set FRCNN produces 

similar results but fails on the hardest datasets. On the other 

hand, VJ and HOG perform equally but one level below 

FRCNN and SSH. Now in terms of computation time, for real-

time computation better the algorithm the smaller the number 

of frames per second. FRCNN is more than two times faster 

than SSH because SSH makes a much heavier use of Graphics 

Processing Unit (GPU) when running. More precisely FRCNN 

uses only around 2000 MB of GPU memory whereasSSH uses 

nearly 4500 MB. Hence SSH needs greater computation time. 

 

Finally, Figure 4 shows, for the 4 algorithms, the evolution of 

CPU time with the number of pixels per image. Even if the 

data is quite noisy, we can see that both for VJ and HOG, the 

time seems to increase linearly with the number of pixels. 

However, for FRCNN and SSH, the relation is far from linear. 

This phenomenon is actually linked to the fact that the images 

are reshaped before being fed to the networks. However, 

overall, time seems to increase with the number of pixels even 

if in these two cases it is more difficult to extrapolate for larger 

values. 

 
Figure 4: Development of CPU computation time per image 

with the number of pixels per image for the 4 tested 

algorithms. 

 

Face Recognition 

The face recognition algorithms selected were tested based on 

MegaFace benchmark. MegaFace allows testing identification 

based on two probe sets. FaceScrub and FGNet. The later one 

is used to evaluate face recognition across age variation. So 

here we are only taking FaceScrub dataset into consideration. 

Figure 5 shows the graphs comparing the best versions of each 

face recognition algorithm we tested. The main remark that 

can be made is that Dlib-R and ArcFace are one level above 

OpenFace. The two former algorithms have a similar level of 

performance with Dlib-R being slightly better for the smallest 

number of distractors and ArcFace taking the lead when this 

number increases. 
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(a) Rank-1 identification rate vs number of distractors    (b) CMC curves for varying number of distractors 

Figure 5: Performances obtained by the best versions of the 3 tested face recognition algorithms on MegaFace. (a) shows the 

evolution of rank-1 identification rate with the number of distractors in the gallery while (b) shows the CMC curves for these 

different number of distractors 

 

However, if we look in terms of time, Table 2 shows that for 

CPU time, Dlib-R performs much better. This might be 

explained by the fact that it is written in C++ rather than in 

Python and that it is the algorithm that uses the least GPU 

memory. 

 

Table 2: Medians of the number of faces, coming from 

MegaFace, that can be processed per second, in CPU and Real 

Time, with the best versions of the 3 tested face recognition 

algorithms 
Algorithm CPU FaPS Real FaPS 

OpenFace (Align) 27.98 23.56 

Dlib-R (Align) 238.84 / 

ArcFace 46.54 58.68 

 

As far as computational time is concerned, for classification 

step time only depends on the size of the feature 

representation. As shown in table 3, Dlib-R and OpenFace 

generate the same number of features per face while 

InsightFace generates four times more. 

 

Table 3: Size of the feature vectors generated by the 3 tested 

face recognition algorithms 

Algorithm OpenFace Dlib-R ArcFace 

Feature Vector Size 128 128 512 

Algorithm OpenFace Dlib-R ArcFace 

Feature Vector Size 128 128 512 

 

 
Figure 6: Evolution of classification time (expressed in 

seconds) with the number of distractors for the 3 tested face 

recognition algorithms 

 

Figure 6 shows the evolution of classification time with the 

number of distractors used. We can see that as expected the 

time is greater for ArcFace. We can also see that there seems 

to be a small difference between Dlib-R and OpenFace which 

is unexpected but seems to be mainly noise. If we analyze the 

evolution of time with the number of distractors, it seems like 

we have a linear relation which fits with the complexity of a 

generic nearest neighbor algorithm. Finally, from this graph, 

we can also approximately infer the time needed to make a 

prediction for one image. We know that, in total, the 

identities of 4,000 probes are predicted. Therefore, for the 

largest gallery size, one ArcFace prediction would take 

3.2/4000 = 0.0008s = 0.8ms meaning that 1/0.0008 = 1,250 

identities can be predicted by second with the given testing 

implementation. If we manage to use a testing 

implementation that is as efficient as this one, the 

classification time can be regarded as negligible. 
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5. Conclusion and Future Scope 
 

In this paper I presented a way to search for and evaluate state-

of-the-art algorithms in both face detection and recognition in 

order to allow any team to take informed decisions regarding 

the implementation choices of their computer vision system. 

The goal of my work was two-fold: find algorithms to 

compare one to another and select face detection and face 

recognition benchmarks to test them on. Benchmarks define 

which algorithms are considered state-of-the-art and are thus a 

great source of research. However, comparing the 

performances of algorithms tested on different benchmarks is 

not an obvious task due to their evaluation divergences. The 

option I choose was therefore to select the best performing 

algorithms from several benchmarks and to test them on two 

individual benchmark datasets, one for detection (i.e. WIDER 

FACE) and one for recognition (i.e. MegaFace). 

 

In recent years, the complexity of benchmarks has evolved to 

better represent practical use cases, notably with the switch 

from controlled to „in-the-wild‟ imagery while increasing in 

size. Nevertheless, this change in paradigm was not always 

accompanied by a high-level of annotation precision. While 

for face detection, datasets like WIDER FACE are annotated 

with information such as face pose, level of blur or even 

expression level, even though not always clearly determined, 

face recognition datasets do not provide such rich information 

yet. Moreover, when such information is available, 

benchmarks often lack handy evaluation tools to produce 

detailed results. However, a fine-grained analysis is essential 

to be able to estimate how well algorithms could perform on 

datasets with different underlying distributions. 

 

The selection and description of face detection and 

recognition algorithms was the second main step of my work. 

The selection was following two basic criteria: algorithms 

needed to be well enough documented and open source.  

 

Each algorithm was tested independently to select the best 

parameters. These tests led to the abandoning of one of the 

algorithms which was not reacting correctly. Then, even if I 

proceeded to various tests to see the influence of various 

parameters, the results obtained on WIDER FACE and 

MegaFace were quite consistent and designated the SSH 

algorithm as the winner for detection while in recognition 

Dlib-R and ArcFace were performing similarly, one level 

above OpenFace. The results for detection can be mitigated 

by the fact that SSH was also the slowest algorithm. Being a 

deep learning algorithm, this reflects the well-known 

compromise between speed and accuracy, with neural 

networks often favoring the latter. Nonetheless, increasing 

effort has been put into improving the former with some deep 

learning techniques reaching close-to-real-time performances. 

This last observation puts forward the fact that face 

recognition is far from being a solved problem.  

 

Even if the quality of benchmarks and algorithms has up 

surged in the past few years, a lot of compromises have still 

to be made in a practical context. Moreover, new benchmarks 

and algorithms are constantly appearing. There is still plenty 

of work to get through in order to optimize face recognition. 

This is supported by the fact that techniques like face 

tracking, that can sometimes help to improve accuracy. The 

time between each annotated frame being of nearly 3 seconds, 

annotating more frames could open new evaluation 

possibilities while also generating more reliable results. More 

information could also be provided for each frame specifying 

some facial attributes for example. Extending the dataset 

would mean extending the set of identities it contains and 

could be an opportunity to undertake per-person analysis.  

 

Even though I worked such that those results would be as 

close as possible to the expected results in this practical 

concept (e.g. using the same computer architecture, testing on 

a specific dataset), some additional work is needed. For 

instance, while studying the efficiency of detection and 

recognition algorithms separately, I did not make a 

computing time evaluation of the complete recognition 

system from frame acquisition to prediction. In addition, the 

computing architecture might change in the future in order to 

improve efficiency. Studying the effect of different 

computing architectures on the computing time could be 

useful to make the best choices. 
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