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Abstract: This research has discussed an analysis of the stability of the implicit Scheme for solving nonlinear partial differential 

equations used to investigate MHD free convective flow of an incompressible fluid past an infinite vertical porous plate with joule 

heating in presence of a variable transverse magnetic field .The derivation of the implicit Scheme schemes has been presented. The 

stability and consistency properties of the implicit scheme are described. Von-Neumann method is used to analyze stability of the implicit 

scheme where the eigenvalue of the amplification matrices are tested and confirmed to be less than one. The scheme is confirmed to be 

unconditionally stable. Taylor's series expansion of every term in the scheme is done to analyze consistency of the implicit scheme 

developed where the original PDE (momentum equation) is recovered from the schemes suggesting that they are consistent. The scheme 

is found to be unconditionally stable and convergent. 
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1. Introduction 
 

This section begins with discussion of the linear and 

nonlinear partial differential equations used to investigate 

MHD Stokes free convective flow of an incompressible fluid 

past an infinite vertical porous plate with joule heating in 

presence of a variable transverse magnetic field. A review of 

Finite Difference Method and numerical schemes developed 

in our study is also looked at. Towards the end of the paper, 

the concept of Consistency and Stability analysis of the 

schemes developed are tested and discussed. Many real life 

problems generally do not have analytical solutions. 

Mathematics being one of the scientific research disciplines 

that lead to real life situations requires numerical techniques 

to accomplish non-analytical solutions. Doyo and Gofe 

(2016) considered the convergence rates and stability of the 

Forward Time Centered Space (FTCS) and Backward Time 

Centered Space (BTCS) schemes for solving one-

dimensional, time-dependent diffusion equation with 

Neumann boundary condition. It was found that both 

methods are first order accurate in the spatial dimension. It 

is shown that An Alternating Direction Explicit Scheme is 

stable if the modulus of the Eigenvalue of the Amplification 

matrix should be less than or equal to one. The method is 

unconditionally stable, since finite difference discretization 

converges at the rate of the Truncation Error (TE) if the 

exact solution is smooth enough. The exact solution at the 

mesh points of the scheme is expanded with a Taylor series 

and inserted into the scheme developed to calculate the TE 

(difference between the resulting equation and the original 

PDE) and determine its order in the approximation used. It is 

seen that as the discrete step sizes approach to zero, their TE 

also approaches to zero which indicates that the difference 

approximations are consistent. Drazin (1996) discusses the 

stability of the finite difference schemes for solving the 

nonlinear Klein-Gordon equation. The methods he discusses 

are those that were developed by Kruskal et al 

(1979).Tinega et al (2016) solved the two dimension  Sine-

Gordon equation used in explaining a number of physical 

phenomena including the propagation of fluxons in 

Josephson junctions using Finite Difference Method. An 

Alternating Direction Implicit numerical scheme for the 

equation is developed with concepts of stability tested using 

Matrix Method. The results obtained indicated that the 

Alternating Direction Implicit numerical scheme is 

unconditionally stable. The results also indicate that when 

the surface damping parameter increases, the current flowing 

through the long Josephson junction also increases. Tinega 

et al (2018) considered the stability of the An Alternating 

Direction Explicit Scheme for solving two-dimensional 

Sine-Gordon Equation .The derivation of the An Alternating 

Direction implicit Scheme schemes was presented and 

described the stability and consistency of the scheme 

developed. The scheme was found to be unconditionally 

stable and convergent. Nyachwaya et al  (2014)  solved third 

order seepage parabolic partial differential equation (which 

models the fluid flows) and analyzed stability of the 

schemes developed by two types of finite differences 

methods, which are Alternating Direction Explicit (ADE) 

method and Alternating Direction Implicit (ADI) method 

subject to some boundary and initial conditions. Numerical 

stability of both methods by matrix Method was studied. It 

was observed that both schemes are conditionally stable. 

 

In view of the foregoing pertinent literature presented above, 

it can be inferred that the problem of Magnetohydrodynamic 

laminar unsteady flow of an incompressible fluid past an 

infinite vertical porous plate has received little attention 

particularly in analyzing the basic properties (i.e Stability 

and Consistency) of the schemes developed for the 
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governing equations.  To quantify how well the finite 

difference technique performs in generating a solution to a 

problem, the two fundamental criteria (i.e Stability and 

Consistency) have to be applied and analysed to compare 

and contrast the results for different methods outlined in the 

foregoing literature.  

 

1.2 The Model Equations 

 

The non-dimensionalized general governing equations for 

MHD free convective flow of an incompressible fluid past 

an infinite vertical porous plate with joule heating in 

presence of a variable transverse magnetic field are the 

momentum and energy equations; (Amenya et al, 2013, 

Sigey et al, 2013); 
2 2
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Where Gr, M
2
 , Pr and Ec are the Grashof number, magnetic 

parameter, Prandtl number  and Eckert numbers 

respectively. 

 

2. Stability of the Implicit Schemes 
 

Stability considerations are very important in getting the 

numerical solution of a differential equation using Finite 

Difference Methods. The stability analysis for the implicit 

numerical scheme developed for momentum equation is 

done using either Fourier (Von-Neumann method) or Matrix 

Methods. In the two methods, the matrix method includes 

the effect of boundary conditions while the Von-Neumann 

method excludes the effect of boundary conditions which are 

used to investigate stability. Both methods are attributed to 

John von Neumann. 
 

2.1 Discretization of momentum equation   
 

Discretization of momentum equation (1) is only considered 

in this study. The partial derivatives in momentum equation 

(1)  are replaced by  their finite approximations. This 

discretization gives the scheme  
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multiply (3) by 2 t  throughout , we get implicit 
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2.2 Von-Neumann method for stability analysis of 

implicit scheme (4) 

 

The primary observation in the Fourier or Von-Neumann 

method is that the numerical scheme is linear and therefore it 

will have a solution in the form ( , , ) t Ix Iyu x y t e e  . Thus, 

a numerical scheme is stable provided that 1   and 

unstable whenever 1  Shanthakumar (1989). We can 

apply this method by substituting the trivial solution in finite 

difference method at the time t by ,

n t Ix Iy

i ju e e  when 

x,y >0 , ( 1)I   ; Douglas (1955) and Lapidus and Pinder 

(1982). We assume ,

n t Ix Iy

i ju e e   and Substitute into 

(4) then, we have 
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Dividing (5) by 
t Ixe  , we get 
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Making  λ the subject of the formula (6) 
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By Eulers formula 
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Substituting (8) into (7) we get 
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Upon simplification of (9), we get 
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where λ is the amplification factor. For stable situation we 

require that 1  . Separating the real (Re) and imaginary 

(Im) parts in (10) we get 
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Taking the real (Re) and imaginary (Im) parts of separately 

in (11) 
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And
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For the stability requirement 
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With λ being the amplification factor which tell whether the 

error is bounded for determining stability. 

We determine stability for the largest value of the 

amplification factor λ. For the largest value of  λ  we take 

90o  , Substituting into (14) and (15) ,we get 
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Obviously   will always be less than 1 for the equations 

(16) and (17). The above cases are always satisfied as the 

left inequality of Equations (16) and (17) requires. Thus the 

Implicit difference scheme (4) is stable for all values of  

, 0r    , i.e conditionally stable. 

 

3. Consistency Analysis 
 

Consistency requires that the original equation can be 

recovered from the algebraic Equations. Obviously this is a 

minimum requirement for any discretization. In the 

following it is illustrated how this can be done in terms of a 

Taylor expansion of the discretized of momentum equation 

for implicit scheme (4) developed. 

 

3.1 Consistency of the Momentum Equation 

 

We expand every individual term of the equation (4) using 

Taylors series expansion 
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Substituting (18), (19), (20) , (21), (22), (23)    and (24) into  implicit scheme (4), simplifying and collecting like terms 

together 
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Dividing (26) by 2 t   throughout, we get 
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Where the error is    , 2
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It is noted that the first five terms in equation (28) are  for 

the recovered  PDE that is (momentum equation) and the 

other terms is the truncation error, since the momentum  

equation has been recovered from the algebraic equation of 

the implicit  scheme  developed, we therefore conclude that 

the scheme is consistent with the momentum  PDE. 

 

4. Conclusion 
 

We have analysed the stability and consistency of implicit 

scheme for the governing equations for MHD Stokes free 

convective flow of an incompressible fluid past an infinite 

vertical porous plate with joule heating in presence of a 

variable transverse magnetic field. The implicit scheme is 

found to be unconditionally stable and convergent. 
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