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Abstract: Ethanol production from biomass is an economically feasible process that requires microorganisms which produces ethanol 

with a high yield from all sugars. Different fermentation organisms among bacteria, yeasts, and fungi (natural as well as recombinant) 

have been reviewed with emphasis on their performance in fermentation of biomass. Depending on the type of biomass, the process of 

pre-treatment, fermentation and selection of microorganisms have shown to differ. 
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1. Introduction 
 

The microorganism producing bioethanol through 

fermentation should possess the following characteristics: 

(a) fermentation of carbohydrate, (b) characteristics of 

flocculation and sedimentation, (c) genetic stability, (d) 

osmotolerance (i.e. capacity to ferment concentrated 

carbohydrate solution), (e) ethanol tolerance and the 

capacity to generate highly concentrated bio alcohol, (f) 

high call activity to repeated recycling and (g) temperature 

tolerance.  

 

The microorganisms (yeast/bacteria) are used to produce 

significant amount of bioethanol as listed in Tables 1 and 2. 

 

Table 1: Ethanol producing yeast and their substrate 
Microorganism Substrate 

Saccharomyces species  

S. cerevisiae & S. uvarum 

(Carlsbergenesis) 

Glucose, fructose, galactose, 

Sucrose, maltose, maltotriose and 

xylulose 

S. diastaticus Glucose, maltose, dextrin and 

starch (glucoamylase) 

S. rouxii Glucose, fructose, maltose and 

sucrose (osmophilic) 

Kluyveromyces fragilis 

and lactis 

Glucose, galactose and lactose 

Candida species  

C. pseudotropicalis Glucose. galactose and lactose 

C. tropicalis Glucose, xylose and xylulose 

Pachysolen tannophilus Glucose and xylose 

Schwanniommyces 

species 
 

S. alluvius Dextrin and starch (glucoamylase 

and α-amylase) 

Castellii Dextrin and starch (glucoamylase 

and α-amylase) 

Endomycopsis fibuligera Dextrin and starch (glucoamylase 

and α-amylase) 

 
Table 2: Ethanol producing bacteria and their substrate 

Microorganism Substrate 

Zymomonas mobilis Glucose, fructose, and sucrose 

Clostridium Species  

C. thermocellum Glucose, cellobiose, and 

cellulose (thermophilic 

C. thermohydrosulfuricum Glucose, xylose, cellobiose, 

sucrose, and starch 

(thermophilic) 

Thermobacterioides 

brockii 

Glucose, sucrose, cellobiose, 

and starch (thermophilic) 

Thermobacterioides 

acetoethylicus 

Glucose, sucrose and 

cellobiose (thermophilic) 

 
The production of bioethanol through fermentation involves 

the following three phases (Figure 1). 

 Phase-I: biochemical phase or pretreatment phase. 

 Phase II: fermentation phase, i.e. the production of 

bioethanol occurs from fermentation of glucose or 

another fermentable substrate. 

 Phase III: post fermentation phase that involves 

distillation, dilution, etc. 

 

 
Figure 1: Steps involved in production of bioethanol 

through fermentation process 

 

There are a number of well explained metabolic pathways 

to elucidate the production of bioethanol but the selection of 

pathway depends on the selection of microorganisms. 

 

Vitality change by living cells is a crucial property. Living 

cells create valuable vitality ATP, which is viewed as the 

cell’s vitality cash. Yeast has the property of keeping up a 

load of ATP, which is conceivable because of the utilization 

of sugars like glucose and fructose. Sucrose is the principle 

segment of sugarcane juice and every particle of sucrose 

comprises of one glucose atom appended to one atom of 

fructose [1-5].  

 

The initial step of yeast's action is to break and separate the 

glucose and fructose unit which enters the vitality 
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metabolization apparatus to give vitality. In the event that 

yeast develops in oxygenated medium, the sugar will be 

separated well ordered into littler and littler atoms toward 

the end carbon dioxide is freed. If there is little or no 

oxygen accessible to the yeast, then the arrangement of 

compound separate procedures cannot be finished and the 

sugar is separated into ethanol, a fuel. 

6 12 6 2 5 22 2C H O C H OH CO   , G
0
 = 56 Kcal 

Glucose is broken down into two particles of pyruvic acid 

by means of the responses of glycolysis. Alcoholic 

maturation and vigorous corruption take after a similar 

response succession up to this point [6-16]. While aging, 

pyruvic acid is debased enzymatically to ethanol and carbon 

dioxide. 

 

For the yeast like saccharomyces and other yeasts, the 

formation of bioethanol can be explained with help of 

Embden -Meyerhof-Parnas pathway (Figure-2 and 3). 

 
Figure 2: Formation of ethanol from glucose through 

Embden-Meyerhof-Parnas pathway 

 
Figure 3: Formation of ethanol from glucose by inducible 

Entner-Doudoroff pathways 

 

Life forms, for example, yeast, which is involved in 

alcoholic fermentation, contains the protein pyruvate 

decarboxylase (pyruvate decarboxylase-2-oxoacid 

carboxylase) that catalyses the decarboxylation of pyruvate 

to acetaldehyde by an irreversible response. The protein has 

been discovered in plant tissues till now. In the last reaction 

of alcoholic maturation, acetaldehyde is converted to 

ethanol by NADH within the sight of alcohol 

dehydrogenase. The chemical is generally conveyed and 

found in the liver, retina and serum of the organisms, in 

seeds and leaves of higher plants and numerous 

microorganisms including yeasts. Clearly the catalyst is not 

confined to tissues which deliver a lot of ethanol [17-24]. 

 

One of the vital processes to acquire ethanol from cellulose 

and hemicellulose is the enzymatic hydrolysis or the 

chemical hydrolysis of polysaccharides into disaccharides 

and monosaccharides for further fermentation. However, 

the recalcitrance of this lignocellulosic material requires 

pretreatment to facilitate enzymatic reaction [25, 26]. 

Several approaches of plant biomass pretreatment have 

been studied, for e.g., milling [27], acid treatment [28, 29], 

irradiation [30], hydrothermal treatment [31, 32], 

hydrothermal alkaline [33], pyrolysis [34], steam explosion 

[35, 36], catalyzed steam explosion [37-39], carbon dioxide 

[40], chlorine dioxide, nitrogen and sulfuric acid [41], 

organo solvation [42], microwave and alkaline therapies 

[43] and organic remedies [28, 44-48]. The lists different 

substrates, microorganisms, pretreatments and fermentation 

processes for ethanol production discussed by various 

researchers are given in Table 3. 

 

 

 

 

 

Paper ID: ART20194217 10.21275/ART20194217 524 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor (2018): 7.426 

Volume 8 Issue 1, January 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 3: Production of cellulosic ethanol from different pre-treatments, microorganisms and bioprocesses 

Microorganisms Substrate Pre-treatments Bioprocess 
Alcohol 

yield(g/g) 
Ref 

Escherichia coli Wheat straw Acid digestion, over liming Batch/SHF 0.21 [47] 

Escherichia coli Wheat straw Acid digestion Batch/SHF 0.24 [47] 

Escherichia coli Wheat straw Acid digestion, over liming Batch/SSF 0.21 [47] 

Escherichia coli Wheat straw Acid digestion Batch/SSF 0.17 [47] 

Escherichia coli Rice husks Alkaline digestion Batch/SHF 0.21 [48] 

Escherichia coli Rice husks Alkaline digestion Batch/SSF 0.20 [48] 

Kluyveromyces marxianus Wheat straw Steam explosion Batch/SSF 0.32 [49] 

Kluyveromyces marxianus Wheat straw Steam explosion Batch/SSF 0.27 [50] 

Kluyveromyces marxianus Waved old paper Acid digestion Batch/SSF 0.31 [51] 

Mucor indicus Rice straw Acid digestion, steam Batch/SHF 0.43 [30] 

Pachysolen tannophilus Sugarcane bagasse 
Acid digestion, steam, 

electrodialysis 
Batch 0.53 [52] 

Pichia stipitis Wild sugarcane bagasse Acid digestion, steam Batch/SSF 0.35 [53] 

Pichia stipitis Sugarcane bagasse Acid digestion, steam explosion Batch/SSF 0.39 [54] 

Pichia stipitis Sugarcane bagasse Milled Batch/SSF 0.29 [55] 

Pichia stipitis Sugarcane bagasse Milled Batch/SHF 0.27 [55] 

Pichia stipitis Corn cobs Acid digestion, steam Batch/ SHF 0.44 [56] 

Pichia stipitis Algarroba 
Acid digestion, steam, 

delignification 
Batch/SHF 0.39 [57] 

Rhizopus oryzae Rice straw Acid digestion, steam Batch/SHF 0.41 [58] 

Saccharomyces cerevisiae Cotton stalks None Batch/SSB/SHF 0.004 [59] 

Saccharomyces cerevisiae Cotton stalks None Batch/SHF 0.027 [59] 

Saccharomyces cerevisiae Cotton husks and straw Alkaline digestion Batch/SSF 0.48 [60] 

Saccharomyces cerevisiae Canola straw Acid digestion, hydrothermal Batch/SHF 0.21 [61] 

Saccharomyces cerevisiae Wheat straw Acid digestion, steam explosion Batch/SSF 0.13 [62] 

Saccharomyces cerevisiae Wheat straw Acid digestion, steam Batch/SSCF 0.35 [63] 

Saccharomyces cerevisiae Sugarcane bagasse Acid digestion, steam explosion Batch/SSF 0.44 [54] 

Saccharomyces cerevisiae Sugarcane bagasse 
Acid digestion, steam explosion, 

delignification 
Batch/SSF 0.32 [64] 

Saccharomyces cerevisiae Sugarcane bagasse Acid digestion, steam explosion Batch/SSF 0.29 [64] 

Saccharomyces cerevisiae Sugarcane bagasse Acid digestion, steam explosion Batch/SHF 0.30 [80] 

Saccharomyces cerevisiae Sugarcane bagasse 
Acid digestion, steam explosion, 

delignification 
Batch/SHF 0.35 [80] 

Saccharomyces cerevisiae Corn cobs Acid digestion, steam Batch/SSCF 0.39 [65] 

Saccharomyces cerevisiae Algarroba 
Acid digestion, steam, 

delignification 
Batch/SHF 0.49 [66] 

Saccharomyces cerevisiae Rice straw Acid digestion, steam Batch/SHF 0.45 [67] 

Saccharomyces cerevisiae Rice straw Acid digestion, steam Batch/SSF 0.09 [68] 

Saccharomyces cerevisiae Spruce Acid digestion, steam explosion Batch/SSF 0.44 [69] 

Saccharomyces cerevisiae Spruce Acid digestion, steam explosion Feed batch/SSF 0.43 [69] 

Saccharomyces cerevisiae Waved old paper Acid digestion Batch/SSF 0.32 [70] 

A. ellipticus, A. fumigatus, S. 

cerevisiae NCIM 3570 
Banana pseudo stem Enzymatic hydrolysis SSF 0.171 [71] 

S. diastaticus Liquefied cassava starch Enzymatic hydrolysis 

Monoculture or 

mixed culture 

fermentation 

with yeasts 

0.34 [72] 

Trichoderma reesei, Sugar cane leaves Alkaline digestion. SSF 0.35 [73] 

S. cerevisiae NRRL-Y-132, 

Kluyveromyces fragilis NCIM 3358,. 
Alfalfa fibers hot water treatment, SSF/SHF 0.64 [74] 

Candida shehatae FPL-702 Alfalfa fibers Without LHW SSF/SHF 0.96-1.8 [74] 

Clostridium thermocellum &thermo 

saccharolyticum 
Banana leaves 

Alkaline digestion/acid 

digestion/hot water digestion 

Co-culture 

fermentation 
2.2 [75] 

Saccharomyces cerevisiae Apple waste Enzymatic hydrolysis. SSF/SmF 0.615 [76] 

Saccharomyces cerevisiae Grapes waste 
Acidic hydrolysis/enzymatic 

hydrolysis 
SSF/SmF 0.804 [77] 

Saccharomyces cerevisiae Papaya waste Hot water treatment SSF/SmF 0.818 [78] 

Saccharomyces cerevisiae 
Water melon (Citrullus 

canatus) 
Acidic hydrolysis SmF 1.010 [80] 

Saccharomyces cerevisiae 
Mosambi (Citrus 

cimetta 
Acidic hydrolysis SmF 0.623 [80] 

 

The thermophilic pentose-aging anaerobe, Clostridium 

thermo saccharolyticum, is developed in mix with C. 

thermocellum. This blend culture has appeared to age both 

solkafloc and cornstover to ethanol, and furthermore, 
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deliver expansive amounts of acidic corrosive agents like 

lactic acid [49, 50, 52-54, 56-58]. 

 

Petite yeasts yield up to twice as much alcohol as their 

typical relatives. An ordinary yeast strain (IZ-1904) 

produced 41% of alcohol, and the petite vemon of the yeast 

Z. mobilis was utilized for agave juice fermenter in Central 

America. It ferments sugar all the more proficiently to 

alcohol [59-65]. 

 

During World War II, mixing of methanol and ethanol in 

different amount with petrol was carried out in Europe. 

Thereafter, blending of alcohol with petrol was used as 

transport fuel, which started after the oil crisis in 1973. The 

use of ethanol in combination with petrol was made 

compulsory in Brazil by 1931. This country has been the 

second highest sugar producer in the world; therefore, large 

quantity of alcohol is produced from sugarcane and cassava. 

Amid World War II, blending of methanol and ethanol in 

various sum with petroleum was completed in Europe. In 

1985, Brazil propelled a program of mixing 20% ethanol 

(produced from sugarcane and cassava) with oil and in this 

way spared around 40% of its petroleum utilization. In 

1990, it delivered around 20.5 billion litres of alcohol from 

molasses and spared 11 billion dollars of remote trade. This 

nation promoted around one million autos running on 

ethanol alone (as extra heat exchanger is required to ignite 

the engine of an auto, which is higher for alcohol as 

compared to gas). In 1986, Brazil offered work to 3.5 

million individuals from 14 billion litres of sloshed fuel 

[66-70].
  

 

In 1980, U.S.A popularized the 'gasohol' (20% liquor added 

to petroleum). This work supported liquor generation in the 

nation even from grains. Additionally, the option of 

methanol (a wood liquor) in oil has just gotten in the US 

with the creation of 10,000 alternative fuel vehicles. 

Methanol fired autos would soon hit the American market. 

India is sufficiently blessed for having numerous sources of 

biomaterials to be utilized as a part of ethanol preparations. 

The legislature is confronting an emergency on account of 

molasses. Consistently, potatoes have spoiled for absence of 

purchasers. Cassava is developed on extensive scale in 

Kerala and a few sections of Tamil Nadu. Countless are in 

activity and numerous more are to be set up. The usage of 

sugary and bland materials for the generation of ethanol 

would be a decent advance to chop down the oil cost and 

take care of the fuel demand in nation [71-75]. 

 

As of late Lubrizol India Limited, Bombay (a joint effort 

between the govt. of India Corporation, USA) has begun to 

fabricate the uncommon execution of synthetics and 

substance added to give the qualities required in oil-based 

goods, especially in motor oils, equip oils, car transmission 

liquids, and other mechanical and marine greases. This 

organization has chosen to guide its task to accomplish two 

goals: to create concoction added substances to decrease 

utilization of powers and greases, and to make the modern 

items ecologically protected [76-79, 81-86]. 

 

 

 

 

2. Methods of Culturing 
 

For the most part, there are a few techniques for refined 

microorganisms on substantial scale. These are: (I) surface 

culture techniques, (ii) submerged culture strategy and (iii) 

semisolid or strong state culture strategy. 

 

Surface Culture Method 
In this technique, the microbes are allowed to develop on 

liquid medium’s surface with no agitation. Then it is 

followed by culture filtrate separation for the product 

recovery. For e.g., alcohol, beer and citric acid production is 

done via this method. This implemented method is time 

consuming that also needs more area [87-89]. 

 

Submerged Culture Process 

In this procedure, the life forms are developed in a fluid 

medium which has air circulation through it and is unsettled 

in vast tanks called fermenter, which could be either an 

open tank or a shut tank that are by and large made of non-

destructive sort of metal or glass lined or of wood. In group 

maturation, the life form is developed in a known measure 

of culture medium for a characterized timeframe and after 

that the cell mass is isolated from the fluid before additional 

handling. In this, the microbes grow in a liquid medium 

with aeration. Fermentor are used for this process, which 

are basically large tanks (open or closed types). In case of 

batch fermentation, the culture is prepared in a known or 

fixed amount of medium within specified time frame.  This 

is followed by cell mass separation. In case of continuous 

culture, the medium of culturing is withdrawn with addition 

of fresh culture medium. Most aging businesses today 

utilize the submerged procedure for the creation of 

microbial items [90-93]. 

 

Semisolid or Solid Method 

In this, the medium is impregnated, for example, bagasse, 

wheat grain, potato mash, and so forth, and the life form is 

permitted to develop on this. This technique permits more 

noteworthy surface zone for development. The creation of 

the attractive substance and the recuperation is for the 

mostly less demanding and agreeable. 

 

In the course of fermentation, medium’s composition plays 

an important role in determining the end product 

characteristics. For instance, a sucrose containing culture 

medium boosts better production of alcohol by S. cerevisiae 

than any other sugars. However, in addition to this, there 

are few fermentation governing factors that needs to be 

optimized, such as the pH, incubation temperature, air 

circulation and so on.  There is raised concern over use of 

cheap raw materials that would lower the production cost of 

the whole process and the end product as well [94-100]. 

 

Alcoholic Fermentation 

In yeast and other microorganisms, the reactions of 

glycolysis up to pyruvate formation are identical to those 

described for anaerobic glycolysis and the difference occurs 

only in its terminal steps. In contrast to animals, which 

utilize lactate dehydrogenase reaction for the oxidation of 

NADH to generate NAD
+
, the yeast cells utilize two 

enzymatic reactions for the purpose, as lactate 

dehydrogenase is not found in them [101-116]. 
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