
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Comparison of Streaming Sensory Data Transfer

Methods in Remote Processing Environment

Arush Nagpal
1
, Prashant Singh Rana

2

1Thapar University, Patiala, India

2Assistant Professor, CSED, Thapar University, Patiala, India

Abstract: The advancements in Internet of Things (IOT) has resulted in ubiquitous availability and use of sensors in remote single

board computers like raspberry pi or IOT device specific hardware. Though every device has a local storage and processing component

but it is not fast and scalable enough to process the huge amount of generated by the sensors involved. The data has to be offloaded to

different large computing and processing systems using network. This data can further be used for monitoring, prediction or analysis.

Even though there are different communication protocols and architectural styles, namely REST, SOAP, socket and RPCs to efficiently

transfer this data but no concrete quantitative data is present to show the efficiency of these methods in different environments. This

paper describes these numerous telemetry approaches available to transfer data to a remote server and presents different configurations

where each method can prove to be the most effective with respect to different type of sensor data. It also provides a concrete analysis on

the type of communication mechanism optimum for a particular length of data transmission.

1. Introduction

Each IOT device is bundled with data acquisition, data
processing and data communications module along with the
hardware sensors. The most up-to-date devices (tiny
computers like raspberry PI or mobile devices running on
Android, IOS etc.) provide users with even better resources
with a higher capacity: computing modules(single core/multi
core processors), storage capacity (RAM/storage disks) and
communication modules along with an OS. In spite of such
hardware, there are a lot of practical limitations on the
processing of data that can be done locally on the device.
Enabling support to run complex computations on such
devices like machine learning algorithms (SVMs, neural
networks) or data analytics algorithms (map reduce) would
make the device very expensive and heavy. A natural way to
overcome this limitation is to stream this data to remote
processing systems. Much work has been done to compare
the energy efficiency and use cases comparing one protocol
to another in use cases but no quantitative data is available
which can help choose the right approach and illustrate the
percentage improvements in speed for streaming different
data lengths.

This paper is organized as follows. Section II describes the
type of sensors and the data involved. Section III and IV
discuss the communication protocols available and the
protocols used for our experiment. Section V describes the
method used for the experiment and the section VI sheds
light on results further followed by the conclusion.

2. Sensors and Data Involved in Different

Mobile Devices

There are various types of sensors that can be attached to a
remote device or are already built in. In this paper, we have
discussed five types of sensors and their output data. The
techniques used can also be extended similarly for not only
other sensors but also any type of data required to be sent
over network. Any kind of sensor will emit raw data which
might have to be converted to a different form for its
effective use. This raw data is usually in the form of byte
buffer and is directly obtained from the small hardware

buffer associated with the sensor. For example, a microphone
will output all the recording into a fixed length hardware
buffer memory which can be extracted for processing into the
device memory using a computer program.

The raw data is extracted continuously after fixed interval of
time. This interval varies is decided by the sampling rate of
sensor. Sampling is the reduction of a continuous time signal
to a discrete time signal. Sampling rate is the average number
of samples obtained in one second. Table 1 classifies the
sensors studied along with the significance of raw data
generated by them.

Table 1: Types of sensors and their outputs
Sensor Raw data output Significance of the output

Proximity
Sensor

A single float value
array

The array specifies the distance
between the sensor and a

nearby object in centimeters

Gyroscope
Sensor

An array of three
float values

Each value in the array
specifies the angular velocity

of the device along X, Y and Z
axis in radians/second

GPS Sensor
A typical $GPGGA
message is an array

of 16 values

The array has values of
different GPS parameters like

latitude, longitude, quality,
checksum, altitude etc.

Microphone
sensor

A byte array of
variable length

based on the audio
sampling rate

The unique values in array is
actually the speech data

encoded in a pcm raw data
format

Camera
sensor

Three 2-D arrays of
numbers ranging

from 0 to 255
specifying intensity
of Red, green and

blue colors

A combination of all values in
the three arrays creates a

unique color in each pixel of
the image. The array size is
determined by the camera

resolution.

3. Transmission of Data from Device to A

Remote Server

Each mobile device might accommodate more than one
sensor. For long term post processing of the sensors’ data,
data is required to be streamed from the mobile device to a
different server with large computation and storage capacity.
But the raw data in array form cannot be directly transmitted

Paper ID: ART20191533 DOI: 10.21275/ART20191533 1312

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

over the network. It has to be encoded to a universal format
so that it can be safely transferred over legacy channels
avoiding data corruption. A very popular encoding
mechanism known as Base64 encoding is used for our
experiment. The decoding is done at the end of the server as
soon as the data is received as shown in Figure 1.

Figure 1: Transferring raw data from device to server

4. Encoding raw data output of sensor for

transfer over the network

Each sensor has a different output format which, after
encoding, can result in different lengths of data required to be
transmitted. The length of the data to be transmitted has a
direct correlation with the transfer speed.Hence, we try to
convert the output to base64 encoded format and figure out
the length of the encoded data.

For example, a proximity sensor output seems to be like
[“23.47”]. Encoding it using Base64 gives an output like:
W+KAnDIzLjQ34oCdXQ=

Length: 21 bytes

Table 2: Data length after base64 encoding
Sensor Approximate output length after

base64 encoding (bytes)

Proximity Sensor 21

Gyroscope Sensor 56

GPS Sensor 200

Microphone sensor 5500

Camera sensor (128x128 image) 1440000

5. Method

There are different ways to transfer data over the network

and we decided to evaluate the speed and efficiency of

different communication protocols and architectural styles,

namely REST, SOAP, Socket and gRPC. gRPC (a specific

implementation of RPCs) is chosen due to its efficient

serialization/deserialization and industry accepted standard

for RPC calls. All the experiments were done with a

standard MTU (maximum Transmission Unit) of 1500.

These methods were chosen because they are well

established ways of interoperating data between systems.

We chose an android mobile device for capturing and

transmitting data from the sensors. The device used is a

Google Pixel with 1.6GHz quad-core processor and 4 Gb of

RAM and the android version Android 7.1.The transmission

time is considered only for a unidirectional data flow from

the device to the server because the use case considered is

only to stream the data to the server and not from it.

Data of different lengths was transmitted and the times in

milliseconds was recorded both before sending the data

(from the mobile device) and after receiving the data (on the

server). Both the devices were put on a dedicated network

with no other data transmission happening over the network

in order to count only the transmission delay and not the

routing delay. Each length of data was transmitted 30 times

and an average of the transmission times was taken to count

for the occasional network delay. The lengths of

transmission data taken included sensor data as well as

different data lengths so as to include all lengths of data.

6. Results

The results obtained have been split into two graphs

according to the size of data due to the behavior depicted by

the transmission times. Figure 2 shows

Figure 2: Time taken for data transmission for data upto

17700 bytes (~17.29kB)

Figure 3: Time taken for data transmission for data beyond

17700 bytes (~17.29kB)

For small data (less than 18 kB), UDP and TCP seem to be
much faster than REST or gRPC. UDP seems to be much
fastertillarounddatasizeof90000bytes(9kB) but as the size
increases UDP transfer time becomes comparable to TCP[6].
It is because any TCP library handles large files
automatically (splits into multiple packets) but for UDP, it
needs to be handled manually. REST takes longer time than
all the other three mechanisms and as the size increases,
REST becomes even moreslow. Data transfer using gRPC is
consistently faster than REST. The same trend continues till a
size of 1Mb, after which gRPC slows down. It is due to the
fact that to support gRPC to transfer more than 1 Mb in a
single shot, 2 packets have to be formed manually and sent
over the network.

UDP might seem to be the fastest but it carries along many

limitations. UDP does not guarantee all the data to reach the

server. Even if one packet is dropped due to network

latency, it leaves it and continues to send the nextpacket.

ATCP socket is the next best choice which offers great speed
but only when the data is of the same form. For example, ifa
device has more than 2 sensors and the data from all the
sensors has to be sent, TCP will have to open multiple
connections to send the packets. gRPC, on the other hand is
optimized to send different data in a single go, optimized on

Paper ID: ART20191533 DOI: 10.21275/ART20191533 1313

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the data structure [4]. gRPC is the best choice when the data
contract is known between the two parties and there are
different types of data involved. Instead of opening different
connections. gRPC can bundle all data in a single packet in
binary format and stream it faster than any other type of
communication[5].

Receiving architecture- Based on the type and sampling rate,
the mobile device and the server can be configured in 4
different ways to receive all the data:
a) Stream direct process direct (SDPD) – Data is streamed

to the server directly as soon as it is captured by the

mobile device from the sensor. The server operates on
the datadirectly.

b) Stream direct process in batch (SDPB) – Data is

streamed to the server directly but for processing,

theserverkeepsabufferandkeepsonappendingthe data into

the buffer until a fixed size is reached and then

startsprocessing.

c) Stream in batch process direct (SBPD) – Data is

accumulated at the mobile device for some timeand while

the server processes it directly. In this case, the size of

data transmission increases and hence, takes longertime.

d) Stream in batch process in batch (SBPB) – Data is

accumulated before sending as well as while processing.

The size of data transmission increases and it takes a

longertime.

To minimize the transfer time, architectures SDPD and
SDPB should be chosen over SBPD or SBPB because of the
speed at which small packets can be transferred over the
network. Instead of spending memory and computation
capacity on accumulating data on mobile device, the
accumulation process can be done on server side resulting in
fast communication.

Limitations.A lot of challenges were faced during transfer of
such data using the mentioned protocols. Each method has a
maximum packet size which can be sent over the network.
The maximum size of a TCP packet is 65535 bytes. The
same is 65507 bytes for UDP. But due to MTU being fixed at
1500, the effective size is a lot less. gRPC has a maximum
message size of 4 MB. Thus, to calculate the time taken for
data transfer was calculated by programmatically splitting the
data into chunks which were then transferred using the above
protocols. This reduces the effective speed transfer as it
involves Therefore, it is recommendedto keep the payload
size as least as possible.

Effect of sampling rate on data transfer. The rate of data
transfer is limited by the rate at which data is being generated
by the sensors. For example, if microphone sensor is
generating a data of 5500 bytes 20 times in a second, then the
transfer mechanism should take less than 1/20 seconds to
transfer 5500 bytes over the network.

7. Conclusion

The experiment gave a comparative analysis on the efficiency
and speed of different data communication mechanisms. We
were able to discard 2 specific architectures, namely SBPD
and SBPB, of sensory data transfer from mobile devices for
efficient data transfer. Each method has its own specific range
of packet size where it works best. We were able to set up a
convention on when to use either of the protocols. REST is

not recommended in any case. If the loss of data from any
sensor is not important and can be ignored, UDP is the fastest
and most efficient approach. UDP is preferred if the server is
local to the mobile device (same network). TCP should be
used if each packet is important. In case additional data needs
to be sent apart from the base64 encoded string data from
sensors, gRPC is the bestchoice. An effective way to compare
data transfer speeds for all the methods was laid forward. Such
results enable us to verify if a protocol is suitable for data
transfer of sensors generating X bytes with the frequency of Y
times per second.

References

[1] Chamas, C. L. (2017). Comparing REST, SOAP, Socket

and gRPC in computation offloading of mobile

applications: An energy cost analysis. 2017 IEEE 9th

Latin-American Conference on Communications

.Latincom.

[2] M. Halpern, Y. Z. (2016). Mobile CPU’s rise to power:

Quantifying the impact of generational mobile CPU

design trends on performance, energy, and user

satisfaction. High PerformanceComputer Architecture

(HPCA) (pp. 64-76). 2016 IEEE International

Symposium on. IEEE.

[3] Steven Han, R. L. (2016). Teaching the Internet of

Things: Bridging a Path from CPE329.

[4] Wang, X. Z. (1993). GRPC: A Communication

Cooperation Mechanism in Distributed Systems. ACM
SIGOPS Operating Systems Review.ACM.

[5] Carreno, E. D. (2017). IoT Workload Distribution Impact

Between Edge and Cloud Computing in a Smart Grid

Application. High Performance Computing: 4th Latin

American Conference. CARLA2017.

[6] Hofmann, P. C. (2007). Analysis of UDP, TCP and voice

performance in IEEE 802.11 b multihop networks. 13th

European Wireless Conference. IEEE.
[7] K. Kumar, J. L.-H. (2013). A survey of computation

offloading for mobilesystems.
[8] T. Salah, M. J.-Q. (2016). “The evolution of distributed

systems towards microservices architecture. Internet

Technology and Secured Transactions (ICITST. IEEE).

Paper ID: ART20191533 DOI: 10.21275/ART20191533 1314

