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Abstract: A theoretical model of nonlinear computation of wood beams section has been developed. Here, we had the opportunity to 

study the mechanical behavior of a console beam. The digital model uses 3D Vlasov beams. The equilibrium equations are obtained 

using the virtual works principles. In the literature, analytical solutions called critical loads of Euler exist to estimate the critical loads 

value. These analytical solutions have a restricted field of application. The beam finite element model was developed and allowed us to 

better appreciate the nonlinear behavior of the beam in the presence of instabilities. 
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1. Introduction 
 

In general, the modeling of material is a means of 

transcribing its laws of behavior through mathematical, 

mechanical and physical formulations. A structure under the 

stresses effect (bending, torsion, compression ...) usually 

results in a loss of geometric stability. This modifying effect 

of the equilibrium nature can lead to its ruin (material or 

geometric) has been the subject of many discussions in the 

past. in order, to overcome this instabilities problem 

presented by structures (beams and columns), the critical 

spill load determination becomes thus an ultimate concern 

because it appears here as an instability phenomenon 

indicator. For the study concerning (material or geometrical) 

instability phenomena, several approaches exist to estimate 

the critical spill  load of wood beams and columns. 

Analytical solutions exist but their scope application is 

limited. The direct methods as for them [Batoz j.L. et al., 

1990; Ayina et al, 1996; Ayina et al, 1998], does not provide 

information on the post-critical behavior of the beam. The 

incremental method itself [Ayina et al, 1985; F. MOHRI et 

al, 2009; H. Zarhouni, 1998; D. Dureisseix, 2014; M.Duval, 

2016], allows a good predictability of the critical load based 

on the post critical  analysis behavior of the structure. 

 

Also remember that most of the work done by the many 

authors as [Ayina et al, 1985; F. MOHRI et al, 2009; H. 

Zarhouni, 1998; D. Dureisseix, 2014; M.Duval, 2016] using 

the incremental method was a base on the metal structures 

for both beams and plates. 

 

These works deal the solid or reconstituted wood beams 

instability phenomenon. The critical spill load prediction is 

our main concern. In the present work, we are interested in  

wood beams columns of high height with cross section 

[Ayina, 2002]. 

 
The present works contribute to the valorization of the 

woods of the Congo Basin campaign. Many authors have 

already participated in this campaign to valorize the wood of 

the Congo Basin, we can cite for example [Ayina et al, 

1998] work based on the torsional behavior of the wood 

material more precisely the Movingui and the Bilinga ; [J. 

Kisito Mvogo et al., 2008] based on the vibration analysis of 

the Congo Basin woods; [N. Manfoumbi, 2012] on 

Contribution to the adaptation of Eurocode 5 to tropical 

species in their environment, studies made in France ville in 

Gabon; [Oum Lissouck et al, 2014] on Multicriteria 

Classification and Structural Bonding of Wood Species in 

the Congo Basin, Limiting the Impact on Biodiversity[J L 

Nsouandélé1 et al, 2016] Experimental Determination of 

Volume   Masses of Some Tropical Timbers Function of 

Their Moisture and the Temperature ... It should be recalled 

here that most of the work carried out by these different 

authors was experimental in nature. As we know, the 

experimental study requires large means, and the 

experimentation time is often very long (several weeks, 

several months, year, see more). We, poor world countries, 

do not always have well-equipped laboratories to carry out 

our experiments. In most cases, we are often required to 

travel extensively to developed countries to acquire results 

in state-of-the-art laboratories. The digital model that we 

will build will not only reduce the time of acquisition of the 

results but also, will allow us to have only our computer as 

our working material. 

 

We propose here to present concretely a numerical 

modelisation of the nonlinear computation of a wood 

material adapted to the study of the geometrical instabilities 

phenomena in particular the estimation of the critical loads 

and the simulations of the dumping of the big beams as well 

as those relating to the buckling of the columns. We will 

highlight the definite advantages of using the non-linear 

geometric model developed by [AYINA et al, 1998]. It is a 

model whose instantaneous elemental stiffness matrix is 

derived from 3-D elements of Vlasov type. Numerical 

simulations will allow us to follow post-critical 
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deformations after the bifurcation by updating elementary 

stiffness matrices through an incremental formulation. 

 

The choice of our incremental resolution method will have 

to take into account several factors: 

 The type of non-linearity predominant or not; 

 Convergence speed and Accuracy  [A.Legay et 

al, 2002]; 

 The divergence risk. 

 

Notations 

W : virtual axial displacement (following Z axis) 

U : virtual displacement following X direction 

V : Virtual displacement following Y direction  

L : beam lenght 

           : rotation associated to  flexion in ZY plan 

 : warping 

 : rectangular beam section 

 :virtual work of internal forces 

       : virtual work of external forces 

          : elastic stiffness matrix 

          : tangent stiffness matrix 

         : Transposed nodal field vector of displacement   

B            : beam thickness croos-section 

h : High of the beam cross-section 

E : MOE 

G :Sliding modulus 

 : nodal force vector 

         : behavior matrix of material. 

  : shape functions matrix derivatives 

 

2. Non-Linear Problems Resolving Methods 
 

Non-linear problem solving algorithms have become a 

necessity in the development of complex behavioral models. 

It becomes essential to have reliable and efficient resolution 

algorithms. The classical resolution algorithms used in the 

finite element method are incremental and iterative 

algorithms, which often have convergence problems mainly 

related to the limit of  points in loads existence , 

displacements or both at the same time. However, these 

resolution algorithms generally depend on the nonlinear 

problem type that one wishes to deal with. 

 

The methods of resolution that we will present in what 

follows, will be based on incremental processes. They 

consist of applying in successive increments a load level and 

to find for each given increment, the structure response. The 

latter is obtained after having linearized in each increment 

the equilibrium equations [H. Zarhouni, 1998; D. 

Dureisseix, 2014; M.Duval, 2016]. 

 

These incremental methods are divided into two types: 

 Pure incremental methods; 

 Iterative incremental methods. 

 

2.1 Pure Incremental Method 

 

In this method, a increment load is imposed, the tangent 

stiffness matrix allows to have the increase of the 

corresponding displacement. Indeed, the equilibrium is not 

corrected which leads most often to a divergence of the 

desired solution (see Figure 1 below). 

 

 
Figure 1: Pure incremental method 

 

2.2  Incremental Iterative Method 

 

The incremental iterative method uses the same process as 

the previous method. Here, a balance correction is 

introduced on each increment using an iterative process. 

This correction can be done in several ways depending on 

the type of stiffness matrix used (initial, tangent). Defining 

several incremental iterative methods, the best known of 

which is Newton-Raphson. 

 

2.2.1 Newton-Raphson Tangent Stiffness Method 

This Newton-Raphson method uses the tangent stiffness 

matrix recalculated at each iteration for the correction of the 

equilibrium (see figure 2 below) 
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Figure 2: Newton-Raphson method, KT updated at each iteration 

 

2.2.2 Modified Newton-Raphson Method 

The modified Newton-Raphson method is identical to the 

previous one but uses the tangent stiffness matrix 

recalculated at the beginning of each increment and kept 

constant for all the iterations for the correction of the 

equilibrium (see figure3 below). 

 

 

 
Figure 3: Modified Newton-Raphson method, KT is constant on each increment 

 

Indeed, in the pure incremental method, the equilibrium is 

not corrected which often leads to a divergence of the sought 

solution this problem can be avoided by using very small 

increments, which makes the method heavy. 

 

The modified Newton-Raphson method has a less rapid 

convergence than the previous one, but it has the advantage 

of keeping the stiffness matrix constant for each increment, 

which makes it possible to have a significant gain in the 

calculation time. 

Newton-Raphson's method with tangential rigidity has a 

very fast convergence, but its main disadvantage lies in the 

computation time of the updating of the stiffness matrix 

tangent to each iteration. 

 

At the introduction, we specified that the choice of a method 

in computation in the calculation of the structures should 

take into account several criteria namely the type of 

predominant nonlinearity and the speed of convergence. In 

the rest of our present work, we will use the Newton-
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Raphson iterative method with tangent rigidity because it is 

better adapted to our problem. Currently, the Newton-

Raphson tangent stiffness resolution method is the basis of 

the most popular resolution algorithms for solving non-

linear structure problems [H. Zarhouni, 1998; A.Legay et al, 

2002; O.Boudrioua et al, 2002; D. Dureisseix, 2014; 

M.Duval, 2016]. Note that in this method, we always win in 

terms of the number of iterations resulting in rapid 

convergence. 

 

3. Methodology 
 

After building our 3D beam element Vlasov type, we will 

bring out the kinematics and equilibrium equations, then we 

will establish the main stiffness matrices of our problem. 

 

3.1 Kinematic Equations 

 

Let Hencky's beam [Ayina et al, 2000] below move in space 

in a dual XYZ and global coordinate system xyz [Ayina, 

1999]. 

 
Figure 4: field of displacements of a point P of the beam 

 

The Vlasov theory gives us the virtual field displacements of 

point P (x, y) of   a material from the virtualized generalized 

displacements of the center of gravity O (0,0) of the cross 

section. 
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Equation (2) is the kinematics equation of the problem. The 

term  
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is the equation that governs 

the description of the motion of a rigid body in Eulerian 

description.  The term   '' yvxudw
 
is the linear 

component of axial displacement caused by torsion and 

 '' yvxu   
specifically represents the numerical 

quantity which translates the respective contributions of 

inflections along the x and y directions. The linear part of 

relation (2) is the analytical expression of virtual kinematic 

relations associated with the warping of thin-walled sections 

usually known as Vlassov's theory. 

 

The resulting deformation field is given by: 
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3.2 Stiffness Matrices 

 

The virtual works principle allows us to write: 

 
 

The discretized expression of the complete form of the 

virtual works principle in updated Lagrangian description 

developed. when we express the displacements, the 

deformations and their variations in the usual discretized 

forms used in the finite element method, the complete form 

of the equilibrium equations of a structure discretized in 

updated Lagrangian description is given by the equation 

system(6) below translating the equilibrium equation . 

 
 

The Kt

 matrix is the elastic stiffness matrix that is 

classical at the date t while the sum of the 
321   ,  , 







 KKK
matrices is the incremental stiffness 

matrix of the large displacements, as a function of the 

increase in nodal displacements between the date t and the 

date τ 

 

For a beam element with 2 nodes A and B, the field vector 

of the transposed nodal displacements is written as follow: 
=     

              (7) 

 

The tangent stiffness instantaneous matrix 
  j

Tk K  at the 

time   corresponds to an intermediate position at the end of 

the first interaction with respect to the initial configuration 

0Г. 

 

It is obtained by the formula:  

 

 
 

where:  

 
4. Digital Approach Results and Discussions 
 

We recall that the load that causes the lateral bifurcation of 

the beam or the buckling of the column is called the critical 

load. To observe it experimentally, we proceed as follows; 

from deformation state 0  corresponding to an initial charge 

P0,   load increments ip
 
are gradually increased to previous 

loads, thus defining configuration states i  
If the bifurcation 

takes place in the configuration state
0i


, so 10 

i  
is the 

critical configuration state and the critical load is equal to 

Pcr=P0+




1

1

0i

n

np

 
 

The non-linear curve of forces / displacements or of stresses 

/deformation resulting from this operation previously 

(progressive addition of incremental loads) described thus 

illustrates the geometric instability phenomenon . 

 

On a numerical level, we will use the tangent stiffness 

Newton-Raphson method. In the following lines, we will 

briefly explain the main steps of this method. 

 

Calculations steps: 

1) We solve the static problem  and 

determined  

2) The tangent stiffness matrix is calculated 

]= + ]+2 ]+4 ]+2

] 

3) We constructed the incremental load vector ∆F 

4) We are constructed = +∆F  
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5) We calculate = +∆u 

6) Actualization of  the tangent stiffness matrix  

using Sherman-Morrison formula[M.Duval, 2016] 

 

5. Application 
 

The table1 above illustrates the simulations parameters used 

for the digital processing, resulting from a console beam of 

Movingui ( Distemonanthus Benthamianus) 

 

Table 1: Simulations Parameters 
Désignations Numerical values 

L    beam column Length 1,46 m 

B   width of the cross-section of the beam 0,01 m 

h     Height of the beam cross-section 0,1 m 

E    Elasticity modulus 17333 MPA 

G    Sliding modulus 894 MPA 

 

Application to a Console Beam 

 

Figure (4) below shows a console beam 

 

 

Figure 4: Console beam 

 

The figure (5) below is the modeling of our discretized 

console beam into four finite elements is five nodes. 

 

 
Figure 5: Modeling of theconsole beam discretized into four 

elements 

 

By applying the finite element method to the incremental 

Newton-Raphson method, we obtain the following results. 

 

6. Results 

 

 
Figure 6: nonlinear curve loads / displacements, illustration of the load / displacement curve, at node 1, Number of iterations 

243, spill load of problem 541N 

 

Illustration de la courbe charges/déplacements, au nœud 1, Nombre d’itérations 243, charge de  déversement du problème 

541N. 
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Figure 7: nonlinear curve loads / displacements, illustration of the load / displacement curve, at node 2, Number of iterations 

243, spill load of problem 541N 

 

 
Figure 8: nonlinear curve loads / displacements, illustration of the load / displacement curve, at node 3, Number of iterations 

243, spill load of problem 541N 
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Figure 9: nonlinear curve loads / displacements, illustration of the load / displacement curve, at node 4, Number of iterations 

243, spill load of problem 541N 

 

7. Results and Analysis 
 

1) At node 1, at 541N load , the beam breaks suddenly 

2) At node 2, the beam begins to present geometric 

instabilities from 541N. 

3) At node 3 and node 4, the load / displacement curve first 

shows linear behavior. Then the curve becomes one 

which afterwards stabilizes at 541N. after the loss of 

stability occurs. 

4) The critical load of the problem is 541N. 

 

8. Conclusion 
 

The Vlasov type 3D beam model with croos section was 

presented. The equilibrium equations are derived from the 

virtual works principle. We have had the opportunity to 

calculate the tangent stiffness matrix this in the hypothesis 

of large displacements. The relevance of the finite element 

method to the study of geometrical instability phenomena 

has been put to the design. The figures obtained allowed us 

to analyze the post-critical behavior of the beam with 

instabilities. 

 

We plan to continue this work by integrating the notions of 

creep and defects because the very complex aspect of the 

wood material by the nature of its constitution, its structure 

(orthotropy and hypotheses of heterogeneity with or without 

defects) and finally the nature loading suggests using all 

these different conventional approaches for calculating 

critical loads. 
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