A Comparative Study of Acetaminophen and Combination of Acetaminophen with Gabapentin for Post-Operative Analgesia for Open Cholecystectomy

Dr Kasirajan G1, Dr Senthilkumar S2

1Assistant Professor, Department Anaesthesiology, Govt Sivagangai Medical College Hospital, Sivagangai, Tamilnadu, India 630561
2Associate Professor, Department Anaesthesiology, Govt Sivagangai Medical College Hospital, Sivagangai, Tamilnadu, India 630561

Abstract: Background: The relief of pain has always been a part of the anaesthesiologist's role in the most immediate postoperative period and the development of acute postoperative pain services has extended this interest beyond the post-anesthesia care unit. To evaluate the effects of premedication with acetaminophen and combination of acetaminophen with gabapentin for post-operative pain relief, postoperative analgesic requirement and side effects in patients undergoing open cholecystectomy under general anesthesia.

Methods and materials: This prospective randomized double blinded control study was conducted amongst sixty patients of ASA physical status I and II, age between 25-50 years, two groups 30 in each group to receive either Group A patients received tablet acetaminophen 15 mg/Kg, Group AG patients received tablet acetaminophen15 mg/kg and Capsule gabapentin 20 mg/kg two hours prior to the surgery. Patients were observed 12 hours postoperatively for pain via visual analogue scale (VAS), analgesic requirement and side effects.

Results: It was observed that patients in gabapentin group had statistically significant lower pain score during the entire observation period in comparison to acetaminophen group. The total postoperative analgesic duration i.e. time from spinal analgesia to first dose of analgesic was 2.36 ± 0.71 hours in Group A whereas 10.69 ± 1.55 hours in Group AG, which was highly significant (P < 0.0001). The mean number of rescue analgesic dose requirement in the gabapentin group (1 ±0) was substantially lower than that of the acetaminophen group (2.72 ±0.46). The mean sedation scores were always higher in gabapentin group (4.36±0.49) as compared to acetaminophen group. Conclusions: Gabapentin significantly reduces post-operative pain and post-operative tramadol consumption with very minimal adverse effects.

Keywords: open cholecystectomy, Postoperative pain, Gabapentin, acetaminophen, general anaesthesia

1. Introduction

Postoperative pain relief is basic human right. Pain occurring after surgery is due to tissue damage. Post-operative pain is a major concern for both patients and physicians, [1, 2, 3] which, when reduced, not only promotes comfort and recovery of the patient but also leads to a faster return to normal life, reduced length of stay and cost of treatment.[4, 5] Furthermore, patients with reduced post-operative pain have better pulmonary function tests.[7] The classic method of using opioids to control pain during and after surgery[5] is associated with a number of dose-related side effects (respiratory depression as the most important), which can be reduced with the co-administration of non-opioid analogues to lower the opioid dosage.[8]

Various other drugs such as nonsteroidal anti-inflammatory drugs, local anaesthetic drugs, gabapentin, clonidine, and dexmedetomidine have been used to decrease the post-operative pain via different mechanism.

According to recent findings, aspirin and acetaminophen (paracetamol) are among the non-steroidal anti-inflammatory drugs (NSAIDs) that are probably more effective (either alone or in combination with opioids) than were previously considered.[10, 11] Gabapentin is another compound recently used in pain management studies.[12] It is a structural analogue of ɣ-aminobutyric acid which acts through central and peripheral mechanisms.[3] Gabapentin has been used orally in many studies to reduce post-operative pain.[13-16]

The aim of present study was to evaluate post-operative analgesic benefit in patients administered gabapentin and acetaminophen as premedication for surgery under general anaesthesia for open cholecystectomy and to compare their postoperative efficacy with respect to duration of analgesia, total post-operative requirements of analgesics and to study the side effects.

2. Method and Materials

After institutional Ethics committee approval was obtained and Patients were subjected to pre-anesthetic assessment and informed consent was obtained from all the patients. In a prospective randomized double blinded control study was conducted amongst sixty patients scheduled for undergoing open cholecystectomy. Inclusion criteria with ASA physical status I and II, age between 25-50 years, weight 40 to 65 kg, and exclusion criteria with chronic analgesic therapy, MAO inhibitor, corticosteroids drugs acting on central nervous system, pregnancy, lactation Suffering from nausea & vomiting. Eight hours for nil per mouth. Divided two groups 30 in each group to receive either Group A patients received tablet acetaminophen 15 mg/Kg, Group AG patients received tablet acetaminophen15 mg/kg and Capsule gabapentin 20 mg/kg two hours prior to the surgery with sips of water. Before administration of premedication monitoring the blood pressure, pulsrate, oxygen saturation, visual analogue scale, level of sedation. No other premedication was instituted. The patient was shifted to operation room and was connected for continuous monitoring of blood pressure.
heart rate, ECG, end tidal carbon dioxide and oxygen saturation.

Surgery was conducted in similar way in all patients using injection Thiopentone sodium 5mg/kg, atracurium 0.5mg/kg and fentanyl 2μg/kg and maintained with Isoflurane 0.5% to 1.5% and nitrous oxide 60% and oxygen 40% and atracurium in titrated dose. Patients were reversed with 0.05mg/kg, Neostigmine and 0.01mg/kg glycopyrolate.

Heart rate, blood pressure, pulse rate, oxygen saturation, respiratory rate, VAS score, any episode of nausea/vomiting and level of sedation were noted on arrival to the PACU and this was recorded as the baseline score (0 hours). These were also noted hourly for 4 hours and subsequently at 6, 8, 12, 16, 20 and 24 hours. Tramadol was used as rescue analgesic based on patient’s demand and the time and frequency and total consumption of rescue analgesic was noted. Nausea, vomiting and other side effects are noted. Two or more emetic episodes were treated with Intravenous metoclopramide 0.2mg/kg. Sedation was scored using Ramsay sedation score.

Levels 1-3: Patient awake
Level 1-Anxious, agitated or restless or both
Level 2-Cooperative, oriented and tranquil
Level 3-Responds to commands only.
Levels 4-6 Patient asleep
(Responds to light glabellar tap or loud auditory stimuli)
Level 4- Brisk response
Level 5. Sluggish response
Level 6. No response.

Pain was assessed postoperatively by visual analogue scale immediate postoperatively and every two hourly thereafter, which was explained to the patient during preoperative visit. The 10cm VAS was used and shown to all the patients on pre-operative visit, its two end points: 0 or 10 corresponding to “No Pain” or “Worst Imaginable Pain” respectively statistically significant. Yate’s chi square test was selected for discrete samples.

3. Results

Demographic data (age, sex, weight and duration of surgery) was comparable in two groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group A (n = 30)</th>
<th>Group AG (n = 30)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>38.4 ± 7</td>
<td>38.5 ± 7</td>
<td>0.9535 (>0.05)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>53.6 ± 5.96</td>
<td>52.6 ± 5.92</td>
<td>0.8432 (>0.05)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>24</td>
<td>30</td>
<td>0.7405 (>0.05)</td>
</tr>
<tr>
<td>Female</td>
<td>76</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery [hrs]</td>
<td>2.76 ± 0.34</td>
<td>2.68 ± 0.33</td>
<td>0.33 (>0.05)</td>
</tr>
</tbody>
</table>

Table 2: Statistical comparison of rescue analgesics in both groups

The average time of first rescue analgesic consumption for group A, and AG was 2.36 ± 0.71 and 10.69 ± 1.55 hours respectively. When all the groups were compared together, the difference was highly significant (p-value<0.01). The average number of rescue analgesics given to the patients in group A, 2, 3 and AG was 2.72 ± 0.46 and 1 ± 0 (significant...
difference when compared together). The average total rescue analgesic consumption for group A and AG was 282.4 ±41.3 and 104.8 ±11.9 mg respectively (significant, when compared together). Ramsay sedation score level both group A and AG was 1.28 ±0.46 and 4.36± 0.49 respectively (significant, when compared together). Intergroup comparisons are given in Table 2. Visual analogue scale when compared (table3) in both groups together have significant difference. On comparing group A with group AG the difference in pain after surgery was highly significant at 2, 3, 4, 6 hours (P Value<0.05). No other significant complications.

Table 3: VAS SCALE in both groups

<table>
<thead>
<tr>
<th>Level</th>
<th>Group A</th>
<th>Group AG</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>1 ±0</td>
<td>1 ±0</td>
<td>_</td>
</tr>
<tr>
<td>Post operative 0 hr</td>
<td>1 ±0</td>
<td>1 ±0</td>
<td>_</td>
</tr>
<tr>
<td>1 hr</td>
<td>1 ±0</td>
<td>1 ±0</td>
<td>_</td>
</tr>
<tr>
<td>2hrs</td>
<td>2.6±2.2</td>
<td>1.4±0</td>
<td>0.0001 Significant</td>
</tr>
<tr>
<td>3hrs</td>
<td>3.96±2.34</td>
<td>1.2±0.5</td>
<td>0.0001 Significant</td>
</tr>
<tr>
<td>4hrs</td>
<td>1.96±0.35</td>
<td>2.08±0.28</td>
<td>0.0185 Significant</td>
</tr>
<tr>
<td>6hrs</td>
<td>2 ±0.29</td>
<td>2.62±0.33</td>
<td>0.0393 Significant</td>
</tr>
<tr>
<td>8 hrs</td>
<td>2.96±0.61</td>
<td>2.96±0.54</td>
<td>0.9258</td>
</tr>
<tr>
<td>12hrs</td>
<td>5.364±0.91</td>
<td>5.48±0.59</td>
<td>0.8777</td>
</tr>
<tr>
<td>18hrs</td>
<td>2.8±0.82</td>
<td>2.64±0.49</td>
<td>0.6342</td>
</tr>
<tr>
<td>24hrs</td>
<td>4±0.29</td>
<td>3.9±0.2</td>
<td>0.5716</td>
</tr>
</tbody>
</table>

Table 4: PONV

<table>
<thead>
<tr>
<th>Level</th>
<th>Group A no of patient 3(10%)</th>
<th>Group AG no of patient 5(16.66%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5742</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>not Significant</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Post-operative pain is one of the most feared and is probably the most prevalent of all pain conditions, yet in many cases it continues to be inadequately controlled. Various drugs through different routes have been tried to produce adequate analgesia in patients after surgery. Gabapentin is a newer antiepileptic drug with minimal side-effects which has been used for post-operative analgesia.

Preincisonal analgesia has been shown to be more effective in control of postoperative pain by protecting the central nervous system from deleterious effects of noxious stimuli and resulting allodynia, and increased pain. Gabapentin have anti allodynic and anti hyperalgesic properties useful for treating neuropathic pain and may also be beneficial in acute postoperative pain. Several studies have reported the usefulness of Gabapentin and pregabalin in perioperative settings resulting in reduced postoperative pain, postoperative analgesic requirement, side effects, prolongation of analgesia, and higher patient satisfaction.18-21

Demographic variables were comparable the two Groups. The duration of surgery and anaesthesia were also comparable among the two Groups (P>0.05)(table 1).

Fassoulaki and others did not observe any difference in time of first rescue analgesic consumption after preoperative administration of 1200mg of oral Gabapentin but on the contrary Turan and associates21 found a highly significant difference between the Gabapentin and Placebo Groups.

In our study, we also observed a very highly significant difference in the time of first rescue analgesic consumption in patients who consumed acetaminophen and combination of Gabapentin with Acetaminophen. which indicates that Gabapentin might have potentiated the analgesic effect of Acetaminophen.

The difference in number of rescue analgesic consumption was very significantly reduced in patients who consumed combination of Gabapentin with Acetaminophen (Group AG) in comparison to patients who did consume Acetaminophen.

Similar results were observed in patients of ear-nose-throat surgery in a study conducted by Turan and associates. In the present study Gabapentin and Acetaminophen combination (Group 4) reduced the total analgesic requirement (Tramadol) by 51% in comparison to the control Group (P<0.001).

The difference in total rescue analgesic consumption noticed by addition of Acetaminophen and Gabapentin on comparison to acetaminophen alone was statistically found to be significant during first 24 hours post-operatively which could be because of short half-life of acetaminophen of just 2-3 hours and a weak anti-inflammatory action.

Similarly patients who consumed Gabapentin along with Acetaminophen had lower VAS scores at all time intervals in comparison to the patients who consumed Acetaminophen alone but the difference was statistically significant only at 1, 2, 3, 4 and 6 hours post-operatively.

In this study incidence of Postoperative nausea and vomiting not significant in both groups (table 4).Uses of tramadol as rescue analgesic in the present study don’t increase the incidence of PONV. Some of the few studies statistically increase in the incidence of PONV was also noticed. 1, 2, 3, 22, 23, 24

Sedation was discovered to be another major drawback due to consumption of Gabapentin. A significantly high number of patients group AG (patients who consumed Gabapentin) had sedation of level 4, 5 or 6 in comparison to in Group A (patients who did not consume Gabapentin). Similar increase in level of sedation as a result of administration of Gabapentin was noticed in some research works of postoperative analgesia 1, 2, 3, 4, 5, 23, 24. The above mentioned results of our study demonstrated that it may be possible to protect the patient and the patient’s nociceptive system, from the negative effects of noxious stimuli by protective premedication with combination of various antihyperalgesic and analgesic drugs and Gabapentin is a useful agent.
5. Conclusion

The total postoperative analgesic duration increased in AG group was 10.69 ± 1.55 hours. The mean number of rescue analgesic dose requirement in the gabapentin group was substantially lower than that of the acetaminophen group. The mean sedation scores were always higher in gabapentin group (4.36 ± 0.49) as compared to acetaminophen group.

Premedication with antihyperalgesic and analgesic agents helps to reduce the postoperative pain scores and effective for providing better postoperative pain relief. Lower and delayed requirements of rescue analgesics and higher levels of sedation with other minimal side effects.

References

