The Students' Mathematical Communication Ability in Learning Ethnomathematics-Oriented Realistic Mathematics

Wahyu Widada¹, Dewi Herawaty², Dwi Yanti³, Dena Izzawati⁴

1, 2, 3, 4 The Graduate Program of Mathematics Education, Universitas Bengkulu, Jl. WR SupratmanKandangLimun Bengkulu, Indonesia 38371

Abstract: The purpose of this study was to determine the contribution of realistic mathematics learning and ethnomathematics to mathematical communication skills. This research is a quasi experimental study using a 2x2 factorial design. The sample is 60 students, who are chosen with the whole group technique. The experimental class was given an ethnomathematics-based realistic mathematics learning approach, and a control class with a traditional approach. Data collection is done by using a mathematical communication ability test. Data were analyzed by ANCOVA. The result, if the two groups of students were given the ethnomathematics material, the students' mathematical communication skills were taught with a higher realistic learning approach used by traditional learning approaches.

Keywords: ethnomathematics, mathematical communication, realistic mathematics learning

1. Introduction

The learning mathematics requires students to communicate actively, both verbal and written communication. Widada (2016) suggested the implementation of a meaningful learning model in students' information processing systems. It has been able to improve the mathematical communication process of students in every level of thinking. They have been able to achieve mathematical communication activities ranging from actions, processes, objects and schemes (Widada, 2015, 2016a).

Students have been able to communicate mathematics meaningfully until they reach the extended-trans level (Widada & Herawaty, 2018b). Oleh karena itu, pembelajaran matematika harus dimulai dengan masalah nyata dalam kehidupan sehari-hari atau dekat dengan pikiranya (Widada, 2017). Pembelajaran ethnomathematics menjadipilih yang tepat (d'Ambrosio, 1989).

Ethnomathematics merupakan the concept relies on a model of individual behavior based on the cycle: reality - individual - action – reality (d'Ambrosio, 1985). According to Marsigit (2016), one aspect that can be developed for learning innovation is local local culture. Local wisdom is a learning that is close to the mind of students and their life activities. This is a realistic learning with the starting point are contextual problems (Herawaty & Widada, 2018).

The ethnomathematics-based realistic mathematics learning approach enhances the concept understanding ability (Widada & Herawaty, 2017). According to Widada & Herawaty (2018a), that mathematical communication of students taught using realistic mathematics learning was higher than those who taught using the traditional method (the learning materials in both groups was non-ethnomathematics oriented). Second, mathematical communication of students learned the ethnomathematics oriented material was higher than those learned non-ethnomathematics oriented materials (realistic mathematics learning applied in both groups). Third, mathematical communication of students who learned the ethnomathematics oriented materials was lower compared to the students learned the non-ethnomathematics materials (the traditional learning method applied in both groups).

The description shows that learning with an ethnomathematics-based realistic mathematical approach has been able to improve mathematical abilities, including mathematics communication. According to Pourdavood & Wachira (2015) through mathematical communication, teachers can foster student engagement and participation while focusing on the deep conceptual understanding.

The mathematical communication was carried out by students through interaction in realistic mathematics learning (Fauzan, Slettenhaar, & Plomp, 2002). Students can be use the surrounding environment as a beginning of learning. Local culture makes it easier for students to do the horizontal mathematizing (Van den Heuvel-Panhuizen & Drijvers, 2018). Also, it facilitates students in the process of abstraction, idealization and generalization. Students can achieve mathematical concepts formally. Students get it through a good mathematical communication processes.

Students learn with an ethnomathematics-based realistic mathematical approach to improve verbal and written communication. The results of (Fauzan, Ahmad; Slettenhaar, Dick; Plomp, 2002), the first pilot with realistic mathematics education had many positive impacts on the teaching-learning process in the classrooms. The difference in the learning behavior of the pupils found from day to day showed that the realistic mathematics education is a potential approach for teaching and learning mathematics.

The similar results were obtained by (Widada & Herawaty, 2017), the realistic mathematics learning model based on ethnomathematics can help students in the process of
abstraction, idealization and generalization by utilizing the model off and model for. By implementation of the realistic mathematics learning based on Bengkulu ethnomathematics can improve students' cognitive level. The highest level of cognitive level of students is from Level 0 to Level 1 by 32%. According to (Van den Heuvel-Panhuizen & Drijvers, 2018) the realistic mathematics education is undeniable a product of its time and cannot be isolated from the worldwide reform movement in mathematics education that occurred in the last decades.

The description provides recommendations for implementing the realistic mathematics education with starting point ethnomathematics to improve the mathematical communication abilities.

2. Method

The research is a quasi-experimental study using a factorial 2x2 design. The population of this study were all students of SMA Negeri 2 Bengkulu City. The sample was 60 students, selected by intact group technique. The experimental class was given the Bengkulu-based mathematics mathematics realistic learning approach, and the control class with traditional approaches, and the combine. Data collection is done by using mathematical communication ability instruments. Data were analyzed with ANCOVA statistics.

3. Result and Discussions

The data of mathematical communication abilities in realistic mathematics learning with ethnomathematics learning at SMA Negeri 2 Bengkulu is carried out inferential statistical analysis. Covariance analysis was carried out by controlling the initial ability of students of mathematical communication. The results were presented in Table 1.

Table 1: Levene’s Test of Equality of Error Variances

<table>
<thead>
<tr>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.683</td>
<td>3</td>
<td>56</td>
<td>.181</td>
</tr>
</tbody>
</table>

Based on Table 1, Tests the null hypothesis that the error variance of the dependent variable is equal across groups. It can be seen that F = 1.683 with df (3, 56) concluded p-value = 0.181 > 0.05. This indicates that Ho was accepted, which means that the variance of the four groups is the same or homogeneous. Furthermore, there were tested the regression parallels of the four sample groups. See Table 2 below.

Table 2: Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected M.</td>
<td>8672.025</td>
<td>7</td>
<td>1238.861</td>
<td>7.102</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>8000.040</td>
<td>1</td>
<td>8000.040</td>
<td>45.864</td>
<td>.000</td>
</tr>
<tr>
<td>A * B</td>
<td>1690.654</td>
<td>3</td>
<td>563.551</td>
<td>3.231</td>
<td>.030</td>
</tr>
<tr>
<td>X</td>
<td>2976.832</td>
<td>1</td>
<td>2976.832</td>
<td>17.066</td>
<td>.000</td>
</tr>
<tr>
<td>A * B * X</td>
<td>303.320</td>
<td>3</td>
<td>101.107</td>
<td>.580</td>
<td>.631</td>
</tr>
</tbody>
</table>

Based on data analysis in Table 2, it can be concluded that the regression alignment of the four treatment groups is as follows.

Hypothesis Pair, Ho: (AB) ij X = 0, &Ha: besides Ho.

See column A * B * X, shows that F = 0.580 with df (3, 52) and p-value = 0.631 > 0.05, which means that Ho was accepted. Thus it can be concluded: the regression coefficients of the four groups are homogeneous, or the four regression equations are parallel.

Based on the prerequisite test above, that the data variance of the understanding ability of trigonometry is homogeneous, and the four groups form parallel regression equations, then ANCOVA can be continued as follows.

Table 3: Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>8368.706*</td>
<td>4</td>
<td>2092.176</td>
<td>12.276</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>8279.225</td>
<td>1</td>
<td>8279.225</td>
<td>48.579</td>
<td>.000</td>
</tr>
<tr>
<td>B</td>
<td>940.202</td>
<td>1</td>
<td>940.202</td>
<td>5.517</td>
<td>.022</td>
</tr>
<tr>
<td>A * B</td>
<td>596.418</td>
<td>1</td>
<td>596.418</td>
<td>3.499</td>
<td>.047</td>
</tr>
<tr>
<td>X</td>
<td>4751.306</td>
<td>1</td>
<td>4751.306</td>
<td>27.878</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>9137.628</td>
<td>55</td>
<td>170.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>124424.000</td>
<td>56</td>
<td>209.429</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 shows that Fo (A) = 11.689, df = (1, 55) and p-value = 0.01 < 0.05. That Ho was rejected. This means that there are significant differences in mathematical communication skills between students taught by realistic and traditional mathematics learning approaches.

The column B shows Fo (B) = 5.517, df (1, 55) and p-value = 0.022 < 0.05. That Ho was rejected. This means that there are significant differences in mathematical communication skills between students who are given ethnomathematics-oriented non-ethnomathematics learning materials.

Also, column AB produces Fo (AB) = 3.499, df (1, 55) and p-value = 0.047 > 0.05. Ho was rejected. This is to show that there are interaction effects of the learning approach and the orientation of mathematical material on the ability of mathematical communication skills.

See column X, that Fo (X) = 27.788, df (1, 55) and p-value = 0.00 < 0.05. Ho was rejected. This means that there is an effect of the linear ability of the initial covariate on students' mathematical representation and the ability to understand mathematics.

Finally from Table 3, see the corrected model column, Fo = 12.276, with df (4, 55) and p-value = 0.00 < 0.05 Ho rejected. Thus, the initial ability of students in mathematical communication, learning approaches and orientation of mathematical material together affect the ability of mathematical communication.
students studied using the realistic mathematics (Widada, Nugroho, Sari, & Pambudi, 2018) positive effect on mathematical communication skills.

The results of this study provide a real contribution that traditional learning approach.

Learning approach was lower compared to realistic mathematics learning approaches.

See column \([A=1.00] \times [B=1.00]\) on Table 7, the results of the t-test showing \(t = 2.966\) and p-value \(= 0.004 <0.05\). It was indicating that Ho rejected. Thus, if both groups of students were given ethnomathematics-oriented materials, then mathematical communication ability of students who were taught with a realistic mathematics learning approach was higher than those taught by the traditional learning approach. Furthermore, the t-test result on column \([A=1.00] \times [B=2.00]\) shows that \(t = -3.776\) and p-value \(= 0.000 <0.05\). The meaning was Ho rejected. Therefore, if both groups of students were given mathematics materials of non-ethnomathematics, then mathematical communication ability of students learned using realistic mathematics learning approach was lower compared to the students learned by the traditional learning approach.

The results of this study provide a real contribution that ethnomathematics-based realistic mathematics learning has a positive effect on mathematical communication skills. Therefore, it supports the results of previous research. As, (Widada, Nugroho, Sari, & Pambudi, 2018), that for the students studied using the realistic mathematics learning approach, the mathematics representation ability of students given the ethnomathematics-oriented materials was higher than the students learning with the non-ethnomathematics materials.

Thus, we recommend to teachers and researchers to develop ethnomathematics-based realistic mathematics. In this case, local culture is a favorite to be developed. This can also improve and strengthen character education for students.

References

