Prevalence of Male Infertility with Poor Semen Quality and Correlation with Trace Metal Concentration in and around Chennai, India

K. Palani1*, A. Abdul Jabbar1, N. Jagannathan2, S. S. Muthiah3, N. Jothi Narendiran4

1Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai-600 014, Tamil Nadu, India
2Department of Biotechnology, School of Life Sciences, Vels University, Chennai-600 117, Tamil Nadu, India
3Institute of Bio-Medical Research, Chennai-600 017, Tamil Nadu, India
4Department of Zoology, Government Arts College (Autonomous), Nandanam, Chennai-600 035, Tamil Nadu, India

Abstract: Present work carried out to determine the relationship of the concentration of trace metal ions present in seminal plasma with semen parameters and reproductive endocrine function in men in and around Chennai. The semen analysis results revealed that the most affected age group was 31–40 years. The abnormalities of semen were observed high in smokers, alcoholics and non-vegetarians, respectively. Mean value of trace metal ions levels present in seminal plasma were significantly higher in Azooospermia, Asthenozoospermia, Asthenoteratozoospermia, Oligoasthenozoospermia and Oligoasthenoteratozoospermia participants, when compare to Normozoospermia participants and shows adverse effect on male infertility. This study concludes that life style changes and its associated factors have high impact on incidence of male infertility among in and around Chennai population.

Keywords: Sperm, Seminal fluid, Trace metals, Normozoospermia, Azooospermia, Asthenozoospermia, Asthenoteratozoospermia, Oligoasthenozoospermia, Oligoasthenoteratozoospermia

1. Introduction

Infertility is a reproductive disease, is one of the most tragic of all marital problems and it is a social stigma in our society. Infertility is a major problem in a developed and developing countries due to modern life style. According to WHO estimation, there is 60–80 million infertile couple worldwide (8–12%). About 40–50% of infertility is totally or in part due to male factor in worldwide and, the unexplained infertility varies from 10–20%, which is affecting 10–15% of reproductive age of couples [1]. Recent report reveals that the male infertility rate younger than age 30 years has also increased worldwide by 15% [2], and the it shows the male infertility in worldwide, 59% in France, 36% in South Africa, Indonesia and Finland, 35% in Nigeria and some parts of sub-Saharan Africa including the Republic of Sudan and Cameroon, 26–32% in Kashmir Valley (India) and UK, 15.7% in Denmark and 10% in USA [3–10].

The Multi centric study conducted by WHO from 1982–1985 indicates 20% of infertility cases were due to male factors, 38% of female factors, 27% of both, and 15% could not be satisfactorily attributed to either partner [11]. A recent report in India states that nearly 50% of infertility is related to reproductive anomalies or disorders in the male.

Male infertility is the inability to fertilize by a male after one year of unprotected sexual intercourse with a healthy fertile female and it is most important health crisis today all over the world including India which is evaluated by semen analysis (SA). The known causes of male infertility are relatively abundant. It has been coupled with numerous genetic and non-genetic conditions, such as hypogonadotrophic hypogonadism, testicular maldescence, and structural abnormalities of the male genital tract, Anti-sperm anti-bodies, chronic illness, endocrine disturbance, genital infections, impotency, previous scrotal or inguinal surgery, retrograde ejaculation, systemic diseases, testicular cancer, testicular trauma, varicoceles, medications and exposure to chemicals and various environmental factors [12,13].

Male infertility caused by a variety of other factors which includes environmental (pollution, chemicals, etc.), lifestyle (smoking and chewing, alcohol, caffeine, some dietary components and some modern electronic gadgets etc.) and occupational (exposing of heavy metals, stress, high temperature etc.) factors. All the above said factors are affecting the male fertility by interfering with spermatogenesis, spermiogenesis, sperm motility, sperm morphology, sperm DNA, sperm chromatin integrity and hormonal regulations or by reducing the fertilizing capacity of spermatozoa [14, 15].

In recent times there has been a decline in the semen quality of young healthy men worldwide, which is significant associations have been reported between impaired semen quality and exposures to heavy metals, mycotoxins, pesticides, industrial chemicals and endocrine disturbing factors, testicular maldescence, impotency, varicoceles, scrotal surgery, chronic illness and structural abnormalities of the male genital tract [16, 17].

Some of the trace elements have been essential for testicular development and spermatogenesis. Zinc, magnesium, calcium, sodium, potassium etc. are some of the important metal ions to play in the physiology of spermatozoa [18–20]. But some of the heavy metals such as lead, mercury, chromium, copper, manganese, arsenic, iron and etc. directly linked with male fertility by decreasing semen quality, sub-

Volume 7 Issue 9, September 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
fertility, and change in birth sex ratio, sexually transmitted infections, genito-urinary tract infections/inflammations, deficiencies of dietary antioxidant nutrients and an increase in the prevalence of developmental abnormalities of the male reproductive tract [21, 22].

Present work carried out to determine the relationship of the concentration of trace metal ions present in seminal plasma with semen parameters and reproductive endocrine function in men.

2. Experimental Methods

2.1 Study Area

This analytical study was conducted at the Department of Andrology, Kanmani Fertility Centre Pvt. Ltd, Thiyagaraya Nagar, Chennai, India. The study was approved by the Research Ethics committee of The New College Institutional Ethical Committee and informed consent was given by the individual participant.

2.2. Study sample size

A total number of 70 infertile men from in and around Chennai, were participated in this study. Sample size was calculated using sample size determination in health studies formula and a prevalence of 10% [23].

2.3. Inclusion criteria

Male subjects aged 20-40 years who had history of infertility for more than year and who sought help for infertility from the Kanmani Fertility Centre Pvt. Ltd. Chennai, Tamil Nadu was recruited.

A collected data from the questionnaire survey regarding age, marital status, duration of infertility, history of infertility in the family, occupation, lifestyle, environmental factors, medical histories, health problems and parity. Mainly a history of trace metals exposure or resided in areas known to have a trace metal contaminations, alcoholic consumers, tobacco user.

2.4. Semen collection and analysis

Human ejaculate was obtained 2-7 days after period of sexual abstinence. Samples were incubated for 15-30 minutes at 37°C for liquefaction. A routine semen analysis was performed upon liquefaction according to WHO 2010criteria to measure volume, pH, sperm concentration, motility, viscosity, viability and morphology. The remaining semen sample was centrifuged at 1000 rpm for 10 min; the seminal plasma was separated and stored at −70°C until further analysis. Morphology was determined according to WHO criteria using the papanicolaou’s staining procedure. At least 300 cells were examined at a final magnification of ×1000. Viscosity of the liquefied sample was estimated by introducing a glass rod into the sample and observing the thread that forms on withdrawal of the rod. Threads obtained from normal samples should not exceed 2 cm in length. Motility was expressed as a percentage of motile spermatozoa and their mean velocity. The conventional analysis is recommended in which a fixed volume of semen is delivered into a clean glass slide and covered with cover slip [24]. The preparation is then examined at a magnification of 400×s. The microscopic field is scanned systematically, and the motility of each spermatozoon encountered is graded A, B and C. At least 100 spermatozoa are classified in this way. The presence of 32% or more with forward progression (categories A and B) were considered as normal results. Sperm motility was calculated by multiplying sperm concentration and semen volume (ml).

2.5. Estimation of trace metals

The following protocols were used to determine the metal ions in the seminal plasma. The reagents for copper, zinc, calcium, sodium, potassium and magnesium analysis were purchased from Coral Clinical Systems, Tulip Group, Chennai, Tamil Nadu, India.

2.5.1. Determination of seminal plasma zinc [25]

The semen zinc was estimated by color nitro-PAPS method. 1 ml of zinc working reagent and 0.05 ml of standard, or distilled water (blank), 0.05 ml of seminal plasma were mixed well, and incubated at room temperature (25 °C) for 5 min. The absorbance of standard (Abs.S) and test sample (Abs.T) were measured against the blank within 20 min by using spectrophotometer at 570 nm (yellow filter). Zinc concentrations calculated from the calibration curve.

2.5.2. Determination of seminal plasma copper, magnesium and calcium [26]

The seminal plasma copper, magnesium and calcium were estimated by Di-Br-PAESA(Copper), Calmagite (Magnesium) and OCPC (Calcium)spectrophotometer methods, respectively. To working buffer reagent, R1 (Cu, 0.5 ml; Mg,0.5 ml;Ca, 0.5 ml) and color reagent, R2 (Cu, 0.5 ml; Mg, 0.5 ml; Ca, 0.5 ml), added seminal plasma (Cu, 0.05 ml; Mg,0.01 ml; Ca, 0.02 ml), standard, or distilled water for reagent blank, and mixed well, incubated at room temperature (Cu,25 °C for 10 min; Mg,25 °C for 5 min; Ca,25 °C for 5 min). The absorbance of standard (Abs.S) and test sample (Abs.T) were measured against the blank within 30 min for copper and magnesium, 60 min for calcium by using spectrophotometer (Cu, 580 nm; Mg, 510 nm; Ca, 570 nm). All the metal ions concentrations calculated from the calibration curve.

2.5.3. Determination of seminal plasma sodium and potassium [26]

Sodium and potassium ions were determined on the basis of ion selective electrode method (ISE).Seminalplasmasamples were collected and analyzed using direct ISE analyzer (Elite-3i, Tulip Diagnostics, India). Standard operating procedure was prepared and strictly adhered to during sample collection to avoid pre-analytical errors. The auto-analyzer was routinely calibrated every 24hours by linear calibration.

2.5.4. Determination of lead, chromium and selenium [26]

Amount of lead, chromium and selenium in seminal plasma was estimated with electrothermal atomic absorption spectrophotometer. Approximately 100µl of seminal plasma sample was hydrolysis with 500µl of super-grade 0.8 M HNO₃ in a reaction tube. The mixture was dissolved in 1 ml
2.5.5. Statistical analysis

The experiments conducted in triplicates in this study were subjected to various statistical analysis using ANOVA software that the standard error mean (SEM) and p value significance were estimated and the results were inferred for logical interpretations.

3. Results and Discussion

The enrolled study participants were categorized into the following six groups on the basis of sperm count, motility and morphology (Table 1 and Figure 1). Normozoospermia (12.8%, n=9), azoospermia (15.7%, n=11), asthenozoospermia (21.4%, n=15), asthenoteratozoospermia (18.5%, n=12), oligoasthenozoospermia (14.2%, n=10) and oligoasthenoteratozoospermia (17.1%, n=12).

Table 1: Subjects were categorized into six groups on the basis of sperm count, motility and morphology

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diagnosis</th>
<th>Results in % (n = No. of Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normozoospermia</td>
<td>12.8 (9)</td>
</tr>
<tr>
<td>2</td>
<td>Azoospermia</td>
<td>15.7 (11)</td>
</tr>
<tr>
<td>3</td>
<td>Asthenozoospermia</td>
<td>21.4 (15)</td>
</tr>
<tr>
<td>4</td>
<td>Asthenoteratozoospermia</td>
<td>18.5 (13)</td>
</tr>
<tr>
<td>5</td>
<td>Oligoasthenozoospermia</td>
<td>14.2 (10)</td>
</tr>
<tr>
<td>6</td>
<td>Oligoasthenoteratozoospermia</td>
<td>17.1 (12)</td>
</tr>
</tbody>
</table>

Figure 1: Study participants were categorized into six groups on the basis of sperm count, motility and morphology

3.1. Age and Male Infertility

Among the study participants, 38.5% (n=27) of them in age group 20-30 years and 61.5% (n=43) of them in age group 31-40 years. The collected data shows that normozoospermia, azoospermia, asthenozoospermia, asthenoteratozoospermia, and oligoasthenozoospermia was found maximum in age group 31-40 years and oligoasthenoteratozoospermia was found high in age group in 20-30 years (Table 2 and Figure 2). A study conducted by Jung et al. [27] shows similar results that that the overall semen quality will be decreased in higher age group. Hellstorm et al. [28] also states that the overall semen quality will be gradually decreased in age group of 30-40 years. Levitas et al. [29] also concluded in his study that maximum infertility seen in the age group 30-40 years. A meta analysis study conducted by Kidd et al. [30] and Levitas et al. [29] also suggest that azoospermia and asthenoteratozoospermia were observed maximum in the age group 30-40 years. Elzanaty, [31] and Henkel et al. [32] also states that age related modification in accessory sex organ may decline sperm motility.

Table 2: Relationship between study participants age and semen quality

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diagnosis</th>
<th>20–30 Age group Results in % (n = No. of Pts)</th>
<th>31–40 Age group Results in % (n = No. of Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normozoospermia</td>
<td>22.2 (2)</td>
<td>77.8 (7)</td>
</tr>
<tr>
<td>2</td>
<td>Azoospermia</td>
<td>36.4 (4)</td>
<td>63.6 (7)</td>
</tr>
<tr>
<td>3</td>
<td>Asthenozoospermia</td>
<td>33.4 (5)</td>
<td>66.6 (10)</td>
</tr>
<tr>
<td>4</td>
<td>Asthenoteratozoospermia</td>
<td>30.7 (4)</td>
<td>69.3 (9)</td>
</tr>
<tr>
<td>5</td>
<td>Oligoasthenozoospermia</td>
<td>50.0 (5)</td>
<td>50.0 (5)</td>
</tr>
<tr>
<td>6</td>
<td>Oligoasthenoteratozoospermia</td>
<td>58.4 (7)</td>
<td>41.6 (5)</td>
</tr>
</tbody>
</table>

Figure 2: Positive correlation between age of study participants and semen quality.

3.2. Smoking and Male Infertility

Correlation of smoking habit of study participants and semen analysis reports clearly shows that 70.0% (n=49) were smoker and 30.0% (n=21) were nonsmoker. The study results shows that azoospermia, asthenozoospermia, asthenoteratozoospermia, Oligoasthenozoospermia and oligoasthenoteratozoospermia were seen maximum in participants having smoking habit when compared to participants not having smoking habit and 10.2% (n=5) of smoker were normozoospermia (Table 3 and Figure 3). These findings also similar to Gaur et al. [33] indicate a strong dose-dependent relationship between smoking and a decrease in semen quality. Various toxic substances in cigarette and tobacco products have shows high impact on seminal volume, liquefaction time, viscosity and leads to various male infertility [34]. Bhasin et al. [35] also have similar results and states that testosterone production was reduced by chronic smoking. Active and passive smoking have strong impact on sperm and egg production in both male and female infertility [36]. A study conducted by Durphy et al. [37] shows that smoking can decreased the chances of conception in couples. A research study conducted by Zhang et al. [38] shows that there is a strong relationship between the number of the cigarettes smoked per day and decline in sperm motility. Our obtained results were similar with the study conducted by Sharma et al. [39] shows that smoker are high risk of asthenozoospermia, when
compared to non smoker. Briggs [40], reported that the person who smoked 30 cigarettes per day shows the reduction of blood serum testosterone when compared to non smokers.

Table 3: Relationship between study participants smoking and semen quality

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diagnosis</th>
<th>Smoker 70.0% (n = No. of Pts)</th>
<th>Non-Smoker 30.0% (n = No. of Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normozoospermia</td>
<td>10.2 (5)</td>
<td>19.0 (4)</td>
</tr>
<tr>
<td>2</td>
<td>Azooospermia</td>
<td>18.3 (9)</td>
<td>9.5 (2)</td>
</tr>
<tr>
<td>3</td>
<td>Asthenozoospermia</td>
<td>24.4 (12)</td>
<td>14.2 (3)</td>
</tr>
<tr>
<td>4</td>
<td>Asthenoteratozoospermia</td>
<td>22.4 (11)</td>
<td>9.5 (2)</td>
</tr>
<tr>
<td>6</td>
<td>Oligoasthenoteratozoospermia</td>
<td>18.3 (9)</td>
<td>14.2 (3)</td>
</tr>
</tbody>
</table>

![Figure 3: Correlation between smoking habit of study participants and semen quality.](image)

3.3. Alcohol consumption and Male Infertility

Association of alcoholic habit of study population and semen test report shows that 57.1% (n=40) of participants were alcoholic and 42.8% (n=30) of population were non alcoholic. From the Table 4 and Figure 4, it is clear that azoospermia, asthenozoospermia, asthenoteratozoospermia, oligoasthenozoospermia and oligoasthenoteratozoospermia were seen high in participants having alcoholic habit when compared to participants not having alcoholic habit. 17.5% (n=7) of normozoospermia population were also having alcoholic habit. Many of the participants of this experiment had abnormal sperm morphology who was chronic alcoholic. Similarly, results was obtained by Soares et al, [41] and Colagar et al, [42] revealed that alcohol had detrimental effects on sperm count, motility and morphology. These results were in similar with previous studies by Joo et al, [43] states that alcoholic consumption has significant correlation with male infertility. Chronic alcoholism can leads to ejaculatory dysfunction and has been associated with poor reproductive function [44]. In this present study the correlation between alcohol consumption and poor semen quality was supports to the research findings by Jensen et al, [45]; Kalyani et al, [46] and Dhaliwal et al, [47]. Moderate or heavy alcoholic are more affected with male infertility. Many earlier research studies supports our results that continues alcohol intake cause male infertility [48-49]. In addition, semen volume can be drastically decreased when the persons drinks more than 30 times in a month [50]. A research conducted by Kucheria et al, [51] shows that alcohol dependence syndrome male have positive correlation with low seminal fluid volume and low sperm concentration.

Table 4: Relationship between study participants alcoholic habit and semen quality

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diagnosis</th>
<th>Alcoholic Results in % (n = No. of Pts)</th>
<th>Non-Alcoholic Results in % (n = No. of Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normozoospermia</td>
<td>17.5 (7)</td>
<td>6.6 (2)</td>
</tr>
<tr>
<td>2</td>
<td>Azooospermia</td>
<td>25.0 (10)</td>
<td>3.3 (1)</td>
</tr>
<tr>
<td>3</td>
<td>Asthenozoospermia</td>
<td>22.5 (9)</td>
<td>20.0 (6)</td>
</tr>
<tr>
<td>4</td>
<td>Asthenoteratozoospermia</td>
<td>17.5 (7)</td>
<td>20.0 (6)</td>
</tr>
<tr>
<td>5</td>
<td>Oligoasthenozoospermia</td>
<td>20.0 (8)</td>
<td>6.6 (2)</td>
</tr>
<tr>
<td>6</td>
<td>Oligoasthenoteratozoospermia</td>
<td>22.5 (9)</td>
<td>14.2 (3)</td>
</tr>
</tbody>
</table>

![Figure 4: Correlation between alcoholic habit of study participants and semen quality.](image)

3.4. Food Habit and Male Infertility

Combination of food habits and semen analysis of the participants shows that 62.8% (n=44) of participants are mainly consume non vegetarian regularly and 37.1% (n=26) of participants having vegetarian food habit. The data on the study population with different food habits namely vegetarian and non vegetarian shows that high incidence of normozoospermia, azooospermia, asthenozoospermia, asthenoteratozoospermia, oligoasthenozoospermia and oligoasthenoteratozoospermia was found with persons who had the non vegetarian food habit (Table 5 and Figure 5). Evidence suggests that high intake of dietary fatty acids (FAs) may have reasonable effects on male fertility. Our study results also support to Abhishek et al, [52] that consuming the animal meat will results in decreasing the concentration of estrogen hormone and may alter the production of sperm. Diet with trans fats and saturated fats have negative impact on sperm production and the testicular lipid metabolism [53]. Bakos et al, [54] reported that high fat containing diet which induces obesity results in decreasing the sperm motility and fertilizing capacity. Morgan et al, [55] also reported that elevated blood cholesterol level is directly affects the elevated levels of plasma cholesterol induced by a cholesterol-rich diet negatively affected spermatogenesis, which support our results.

Table 5: Relationship between study participant’s food habit and semen quality

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Diagnosis</th>
<th>Vegetarian Results in % (n = No. of Pts)</th>
<th>Non-Vegetarian Results in % (n = No. of Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normozoospermia</td>
<td>11.5 (3)</td>
<td>13.6 (6)</td>
</tr>
<tr>
<td>2</td>
<td>Azooospermia</td>
<td>15.3 (4)</td>
<td>15.9 (7)</td>
</tr>
<tr>
<td>3</td>
<td>Asthenozoospermia</td>
<td>19.2 (5)</td>
<td>22.7 (10)</td>
</tr>
<tr>
<td>4</td>
<td>Asthenoteratozoospermia</td>
<td>3.8 (1)</td>
<td>27.2 (12)</td>
</tr>
<tr>
<td>5</td>
<td>Oligoasthenozoospermia</td>
<td>7.69 (2)</td>
<td>18.1 (8)</td>
</tr>
<tr>
<td>6</td>
<td>Oligoasthenoteratozoospermia</td>
<td>11.5 (3)</td>
<td>20.4 (9)</td>
</tr>
</tbody>
</table>
3.5. Trace metals concentration in seminal plasma and Male Infertility

Concentration of trace metal ions in seminal plasma and semen quality in infertile males were analysed and represented in Table 6. Correlation of trace metal concentration and poor semen quality were expressed in Figures 6 & 7. The Mean and SEM of all trace metal ions has shown significance in their concentration within the study group. Since p value for all trace metal elements is less than 0.05 the trace elements in seminal plasma have shows positive correlation with poor semen quality in selected study participants.

3.5.1. Zinc concentration and Male Infertility

Among the study participants high concentration of zinc was observed in normoazooospermia, and low concentration was observed in azoospermia. Prasad, [56] study also support our results that low zinc level is positively correlative with poor semen quality. Batra et al, [57] concludes that high deposition of heavy metals in testicular tissues may reduce the seminal plasma zinc levels. Many research studies shows that correlation of zinc concentration and semen quality is not conclusive but Fuse et al, [58]; Chia et al, [59]; Wong et al, [60]; Liu et al, [61]; Madding et al, [62] reported positive correlation between zinc and poor semen quality. Nine studies conducted by Colagar et al, [63]; Li et al, [64]; Liao et al, [65]; shi et al, [66]; Xu, et al, [67]; Zhang et al, [68]; Zheng et al, [69] reported that the zinc concentrations in seminal plasma from infertile men were significantly lower than those from normal men.

Table 6: Concentration of trace metal ions in seminal plasma and semen quality in infertile Males

<table>
<thead>
<tr>
<th>Elements</th>
<th>Normo Mean ± SEM</th>
<th>Azoo. Mean ± SEM</th>
<th>Astheno. Mean ± SEM</th>
<th>Astheno terato Mean ± SEM</th>
<th>Oligo astheno Mean ± SEM</th>
<th>Oligo astheno terato Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn (mg/dl)</td>
<td>6.3±0.03</td>
<td>1.3±0.09</td>
<td>5.0±0.06</td>
<td>4.6±0.10</td>
<td>5.4±0.01</td>
<td>2.6±0.03</td>
</tr>
<tr>
<td>Mg (mg/dl)</td>
<td>2.6±0.01</td>
<td>2.0±0.02</td>
<td>2.3±0.07</td>
<td>2.1±0.06</td>
<td>2.3±0.09</td>
<td>2.2±0.10</td>
</tr>
<tr>
<td>Pb (µg/l)</td>
<td>19.3±0.1</td>
<td>40.2±0.19</td>
<td>46.3±0.17</td>
<td>153.2±0.17</td>
<td>155.4±0.2</td>
<td>167.4±0.2</td>
</tr>
<tr>
<td>Cu (µg/dl)</td>
<td>81.0±0.16</td>
<td>73.0±0.16</td>
<td>89.0±0.10</td>
<td>149.0±0.13</td>
<td>138.0±0.19</td>
<td>153.0±0.2</td>
</tr>
<tr>
<td>Na (mEq/l)</td>
<td>138.3±0.23</td>
<td>139.0±0.20</td>
<td>139.4±0.23</td>
<td>139.0±0.20</td>
<td>139.8±0.15</td>
<td>140.2±0.2</td>
</tr>
<tr>
<td>K (mEq/l)</td>
<td>11.9±0.05</td>
<td>18.8±0.09</td>
<td>23.2±0.03</td>
<td>22.8±0.04</td>
<td>22.4±0.10</td>
<td>22.6±0.07</td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>13.2±0.01</td>
<td>9.6±0.05</td>
<td>13.5±0.08</td>
<td>13.6±0.05</td>
<td>22.6±0.06</td>
<td>24.2±0.06</td>
</tr>
<tr>
<td>Se (µg/l)</td>
<td>178.2±0.31</td>
<td>77.6±0.10</td>
<td>124.2±0.25</td>
<td>60.4±0.10</td>
<td>47.3±0.20</td>
<td>47.2±0.16</td>
</tr>
<tr>
<td>Cr (µg/l)</td>
<td>2.2±0.01</td>
<td>4.8±0.05</td>
<td>2.6±0.09</td>
<td>4.2±0.07</td>
<td>3.8±0.04</td>
<td>4.9±0.08</td>
</tr>
</tbody>
</table>

3.5.2. Magnesium concentration and Male Infertility

The magnesium concentration obtained in normoazooospermia participants and minimum in azoospermia participants in this study showing similar results of Deger and Akkus [70] reported 6.9±2.1 mg/dl in azoospermia participants and 11.9±3.0 mg/dl in normoazoospermia participants. But zarghami et al [71] and Hsieh et al [72] mentioned that high level of seminal magnesium was recorded in asthenozoospermic subjects rather than the normoazooospermia subjects. Our study shows a strong correlation between Mg in seminal plasma and semen quality, while other studies conducted by Sorensen et al, [73] and Fakih et al, [74] did not show any correlation between Mg and semen quality. Viski et al, [75] mentioned that magnesium therapy shows positive significant in semen quality in infertile males.

3.5.3. Lead concentration and Male Infertility

Among the study subjects high concentration of lead was found in oligoasthenoteratozoospermia (167.4±0.200 µ/l) and low concentration was seen in normoazoospermia (19.3±0.100 µ/l). Morita et al, [76] and Meirnow et al, [77] states that environmental toxicants exposure results in poor gamete formation in male. A study conducted by Wu et al, [78] mention that low level of lead accumulation was observed in infertile men who were not occupational exposure to lead. Seminal plasma lead concentration may increase due to smoking habit and leads to male infertility [79]. The mean lead value was significantly higher than normal range for
normozoospermia, and similar ranges reported by Xuezhi et al. [80] and Robins et al. [81] in men occupationally exposed to lead. The median values of semen lead concentrations were slightly higher in oligozoospermia than in the normozoospermia and this obtained data was similar to El-Zohairy et al. [82]. Semen lead concentrations in study population showed significant correlation with semen quality and this is in contrast to Fatima et al. [83] who found blood and semen lead concentrations not significant correlation with semen parameters.

3.5.4. Copper concentration and Male Infertility
The obtained data shows that high copper concentration was observed in oligoasthenoteratozoospermia and low concentration was seen in normozoospermia. Similar results by Maryam et al. [84], Jockenhovel et al. [85] shows significant correlations between seminal plasma copper concentration and sperm concentration, pH, vitality, motility and normal morphology. Aydemir et al. [86] showed that copper levels in seminal plasma in azoospermia participants were significantly higher than those in normozoospermia participants. Shinohara et al. [87] found significant correlations between poor semen quality and copper concentration. Katayose et al. [88] demonstrated that higher concentrations of copper had significant adverse effects on sperm motility which is supportive to our results.

3.5.5. Sodium, Potassium and Calcium Concentration and Male Infertility
The mean value of sodium and potassium level in seminal plasma not significant with semen quality which in contrast to results obtained by Abdel-Rahman et al. [89] shows sodium level have strong impact on semen quality. Vickram et al. [90] mentioned higher concentrations of potassium and sodium in seminal plasma have important role in acrosomal reactions. Our study results is in contrary to the results by Kaya et al. [91] who mentioned negative correlation between Na and K concentrations and semen quality. Research studies conducted by Abdul – Wahab et al. [89] ; Battersby and Chandler, [92] ; Bondani et al. [93]; Gaffuri et al. [94]; Girgis et al. [95]; Gusani et al., [96] shows the positive correlation of sodium and potassium concentration and semen quality and Skandhan et al. [97]; Kaya et al.[98] ; Kanwal et al. [99]; Wong et al. [100] shows negative correlations of trace elements and semen quality. This study showed that the seminal plasma calcium level was significantly higher in the oligoasthenoteratozoospermia and oligoasthenozoospermia participants compared to the normozoospermia participants but in contrast Wong et al. [100] in his study in Netherland reported low Ca in the seminal plasma of infertile men which accounts for hypomotility. Finding by logoglu et al. [101] suggest that infertility seen in normozoospermic subjects may be due to significantly decreased seminal calcium. Higher concentration calcium in seminal plasma in infertile male was recorded and this may due to consume calcium pills during treatment. In a pilot study performed by Umeayama et al. [102] seminal calcium level were almost similar in both fertile and infertile men, and the highest level was determined in the normozoospermia subjects. However, another study conducted by Arver [103] indicating that a sperm motility was decreased due to high concentration of calcium confirms our results. Fraser [104] reported that, to successful fertilization an optimal calcium level is required. Abou-Shakra et al. [105] determined the lowest concentration in the normozoospermic infertile group, being non significant in relation to infertility classification, which support our results.

3.5.6. Selenium concentration and Male Infertility
The results of the present study were showed that there was significant low concentration of selenium in all groups when compared with that of normozoospermia. Study conducted by Xu et al. [106]; Xu et al. [107]; Shinohara et al. [108]; Behne et al. [109]; also agree with our findings that low level seminal plasma selenium concentration was observed in infertile groups. Saaranen et al. [110] and Akinloye et al. [111] observed significant increase of selenium concentration in azoospermic, when compared with oligozoospermic subjects and normozoospermia contrast to our findings. Our results demonstrated that there was positive significant correlation between selenium and semen quality. Our findings are not agreed with those of other studies conducted by Xu B et al., [112]; Oldereid et al., [113] but agreed with Behne et al [109].

3.5.7. Chromium concentration and Male Infertility
This study determined the chromium concentration in seminal plasma, and obtained results shows that maximum concentration was observed in azoospermia and oligozoospermic subjects, when compared to normozoospermia. Umeyama et al. [114]; Skandhan et al. [115], also observed similar results that the oligozoospermic subjects had the high mean value in seminal chromium of all the study groups. Occupational exposure of chromium and heavy metals associated with poor semen quality. The concentration of chromium in seminal fluids in welders was significantly high when compare to non welders [116]. Li et al. [117] shows that sperm counts and sperm motility was reduced half during occupational exposure. Previous studies by Rosen and Weintraub, [118] in virile oligozoospermics have shown a correlation between high serum FSH (but not LH) and low sperm counts by occupational exposure. High chromium concentration in seminal plasma has adverse effect on sperm production, motility and sperm count in oligozoospermic and azoospermic infertile men [119].

4. Conclusion
This study concludes that trace metal ions present in seminal plasma due to life style changes and its associated factors have high impact on incidence of male infertility among in and around Chennai population.

References

