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Abstract: Due to the increasing demand for cloud services and the threat of privacy invasion, the user is suggested to encrypt the data 

before it is outsourced to the remote server. The safe storage and efficient retrieval of d-dimensional data on an untrusted server has 

therefore crucial importance. The paper proposed a new data distribution model which offers spatial order-preservation for d-

dimensional data. In our Research Hybrid HASH based naïve bayes classification system can be calculated using symmetric keys. We 

have similarly involved a specification of possessions of an distributed hash arrangement when using it to convinced use and matched 

our suggestion beside it. We have presented a security investigation of our method beside with recognized and enhance of the system 

using MATLAB 2014Ra. 
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1. Introduction 
 

A complex spatial data set (which generally describes any 

kind of data where the location in space of object holds 

importance). We based this research on the analysis of some 

spatial characteristics of certain objects. We began with 

describing the spatial pattern of events or objects with 

respect to their attributes; we looked at how to describe the 

spatial nature/characteristics of entities in an environment 

with respect to their spatial and non-spatial attributes. We 

also looked at modeling (predictive knowledge management 

of complex spatial systems), querying and implementing a 

complex spatial database (using data structure and 

algorithms). Critically speaking, the presence of spatial auto-

correlation and the fact that continuous data types are always 

present in spatial data makes it important to create methods, 

tools and algorithms to mine spatial patterns in a complex 

spatial data set. This work is particularly useful to 

researchers in the field of data mining as it contributes a 

whole lot of knowledge to different application areas of data 

mining especially spatial data extraction.  

 

1.1. Geospatial, Time-Series datasets: 

 

Data with spatio-temporal properties are commonly found in 

epidemiology, atmospheric and climate modeling, 

environmental and ecological systems, traffic and 

congestion analysis, and commercial sales tracking systems. 

Observations or features of interest are measured across 

geographical locations over long periods.  

 

1.2. Hashing and Storage Methodology 

 

Galileo supports streaming data that incrementally enters the 

system from a variety of sources. These data items are 

constantly evolving over time and can share a number of 

common attributes. Therefore, simply applying a standard 

hash function on the incoming data results in an 

approximately even distribution of files across all the nodes 

in the system, but does not account for similarity in the data 

being stored.  

 

1.3. Geohash: Spatial Hashing Algorithm 

 

To obtain a location-based hash for spatial groupings, we 

applied the Geohash Algorithm on incoming data [24]. A 

Geohash is a string-based representation of a bounding box 

around a location created by interleaving bits obtained from 

latitude and longitude pairs. For example, the latitude and 

longitude coordinates of N 39.54, W 107.32 fall within the 

Geohash bounding box of 9x58vy4. Longer Geohash strings 

represent more precise spatial regions, a characteristic which 

can be exploited during the hashing process to obtain a 

specific granularity for positioning data in the system. 

 

1.4. Feature Hashing  

 

Once a group has been chosen for a data item based on its 

spatial characteristics, an additional level of hashing is 

required to select a destination node within the group. At 

this stage in the hashing process, any number of the 

remaining available data dimensions can be used as input for 

the hash function. Our particular dataset has a temporal 

range associated with each data item, so we used the initial 

recording time as input to the SHA-1 hash algorithm and 

then divided the hash space among the nodes in each group. 

 

1.5. Data Distribution and Load Balancing Evaluation 

  

To determine the impact of our hierarchical hashing scheme 

on how files are distributed in the system, we compared the 

distribution results of our controlled dispersion strategy 

against the same data inserted using a flat SHA-1 hash of all 

metadata values. 
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1.6. Indexing and Retrieval  

 

Once data has been stored across the nodes in the system, an 

efficient means for retrieval is necessary. In a traditional 

DHT a hash function is used for both storage and retrieval 

operations, which constrains the expressiveness of the 

queries that can be performed during retrieval. We address 

this weakness with our indexing system. Additionally, data 

storage needs often evolve over time and may require 

changes to be made to the hashing hierarchy, meaning that 

all previously-stored data would not be reachable using a 

new set of hash functions. 

 

1.7. Feature Graph Implementation and Structure 

 

Any node in the system can be contacted to perform a 

storage operation, which will then route the request directly 

to its destination node. Upon arrival, the data is fully 

inspected to determine its attributes, which could include 

spatial location, temporal information, features, and details 

about the device that generated the data. 

 
Figure 1.1: A simplified view of a feature graph for three 

dimensions. References to storage node IDs are included at 

each vertex in our implementation, but they are omitted in 

this example for clarity. 

 

2. Related Work 
 

Below are various reviews as per author studies: 

 

MongoDB [2] shares several design goals with Galileo, butis 

a document-centric storage platform that does not support 

analytics directly. However, MongoDB has rich geospatial 

indexing capabilities and supports dynamic schemas through 

its JSON-inspired binary storage format, BSON. MongoDB 

can usethe Geohash algorithm for its spatial indexing 

functionality, and is backed by a B-tree data structure for 

fast lookup operations. For load balancing and scalability, 

the system supports sharding ranges of data across available 

computing and storage resources, but imposes some 

limitations on the breadth of analysis that can be performed 

on extremely large datasets. 

 

SciDB [4] is a scalable scientific storage system that 

supports multidimensional data. Although its name implies a 

link with relational databases, SciDB is not concerned with 

providing ACID guarantees or strong transaction support. 

Instead, SciDB focuses on incremental scalability and 

petabyte scale datasets. The system also provides built-in 

computation and analysis tools, whereas Galileo is only 

concerned with storage; analysis can be performed outside 

the system within the Granules framework or some other 

distributed computation engine. Metadata is stored in a 

centralized system catalog implemented as a PostgreSQL 

database, contrasting with the combination of feature graph 

and metadata graphs used in Galileo. 

 

Citing the use of hierarchies in traditional distributed 

applications such as multicast and DNS, Ganesan, 

Gummadi, and Garcia-Molina [6] propose a paradigm called 

Canon, which provides a hierarchy on top of existing flat 

DHTs. Canon subdivides system computational nodes into 

domains, which provide logical groupings of resources. 

Domains can contain any number of subdomains, and a 

domain that contains system nodes is referred to as a leaf 

domain. Leaf domains are structured in the same way as a 

traditional flat DHT 

 

2T-DHT [7] implements a two-tier DHT hierarchy for 

publish/subscribe systems. In 2T-DHT, the hierarchy is used 

to organize nodes based on their uptime and available 

resources. All nodes begin in a lower tier and then migrate to 

the higher tier as they demonstrate their stability. The 2T-

DHT network is implemented as multiple Chord rings, 

which reduces the amount of communication required to 

publish. 

 

3. System Model 
 

In research methodology discovery Graph improves upon 

(and supersedes) the feature and metadata graphs by making 

knowledge extraction part of the indexing process. As 

records are streamed into the system, the Discovery Graph 

maintains a variety of statistics at each vertex that describe 

the underlying data distributions and their interactions. 

Maintaining this information boosts index fidelity, greatly 

improves the speed of queries meant to generate synopses, 

and serves as a platform for development of functionality. 

 

a) Query MapReduce Framework 

While the summary statistics and models in the Discovery- 

Graph are lightweight and incur minimal processing costs, 

they provide nuanced insights about the underlying dataset. 

Galileo includes rich retrieval functionality to allow this 

information to be queried and used individually by end 

users, aggregated across dimensions, or used to locate 

phenomena and features of interest autonomously. 

 

b) Detecting and Quantifying Feature Relationships 

Most real-world systems involve several interrelated 

features. These relationships may represent dependencies or 

correlations between events or variables; for instance, 

absolute humidity is impacted by temperature and pressure, 

and precipitation may be classified as rain, hail, or snow 

depending on the current temperature (along with other 

atmospheric conditions). 

 

c) Artificial Neural network 

Our framework includes an interface that enables arbitrary 

models and prediction methods to be placed at graph 

vertices in a similar fashion to the multiple linear regression 

instances, and can produce output datasets in the form of 

classifications, function approximations, or forecasts. We 

have incorporated support for online artificial neural 
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networks (ANNs) machine learning library to accommodate 

nonlinear predictive models. Compared to the linear 

methods discussed in previous sections, ANNs generally 

involve more complex computations for training. 

Furthermore, they often do not completely converge on one 

final set of model parameters, so training is an inexact and 

iterative process. 

 

d) Time-series Forecasting: ARIMA 

Autoregressive integrated moving average (ARIMA) models 

are specifically designed for time-series data and allow 

predictions to be made on non-stationary data types. 

ARIMA models are parameterized by three parameters, p, d, 

and q, which correspond to the autoregressive, integrated, 

and moving average components of the model, respectively. 

Our implementation allows these parameters to be chosen 

autonomously by the system or specified at query time by 

client applications. 

 

e) A Naive Bayes classifier 

Uses the probabilities associated with events or features in 

the dataset to make predictions. The key assumption of this 

type of model is that all features are independent: 

completely unrelated to any of the other features. 

 

Despite the fact that this assumption may not always hold, 

naive Bayes has proven to be effective in practice for a 

variety of classification tasks, including text categorization 

and medical diagnosis. To classify a given set of samples, 

naive Bayes uses the combined probabilities of the events to 

choose the most probable outcome. 

 

4. Result and Discussion 
 

This work introduces the mixture cryptography of the 

examination we surveyed the best aggregate methodologies 

in the cryptography of a piece figure framework for 

Geospatial on cloud.  

 

The resultant of distributed key Processes is symmetric, that 

is to roughly use to encode the content or given content by 

client is not the same as the key used to decode the message. 

The encryption key, distinguished as the Public key which 

used to encode a correspondence, yet the message must be 

deciphered through the data that has the decoding key, 

perceived as the private key.  

 

This kind of encryption has an amount of focal points over 

regular symmetric Ciphers.  

 

It implies that the beneficiary can make their open key 

roughly accessible somebody inadequate to send them a 

correspondence uses the strategy and the collector's open 

key to do as such. A watcher may have both the 

methodology and the general population key, yet will in any 

case not be competent to unravel the content. Individual the 

beneficiary, with the private key can unscramble the 

message.  

 

 
Figure 1: Distribution of Test Dataset such as high frequent 

clustered location in dark color and black datapoints are 

different location of dataset  

 

 
Figure 2: Searching time improvement for Distribution of 

Test Dataset with query size minimization inis different 

location, red mark specification for base work fluctuation of 

time as far our proposed approach having sequential time. 

 

 
Figure 3:  Different location , CDF when m=1000, 

specification for our proposed approach having sequential 

data sizes using proposed hash naïve byes classification. 
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5. Conclusion and Future Work 
 

The partitioning and indexing scheme we have implemented 

in Galileo allows clients to make efficient exact-match and 

range queries across a number of dimensions, a feature not 

supported by traditional DISTRIBUTED HASH storage 

systems. This functionality is made possible by:  

1) Ensuring that data items with some similarity, e.g., 

spatial locality, time series, or another attribute are stored 

using our controlled dispersion strategy.  

2) Indexing the location of these data items. 

3) Reasoning about the data stored in the system at a lower 

resolution, thus providing a higher-level or general view 

of the information to reduce network traffic and memory 

consumption. 

 

In Future, Artificial Neural Networks could be used to 

predict and react to changing query workloads or new 

resource constraints and provide information that could be 

used to reorient our feature graph dynamically. 

Reinforcement learning techniques could be employed for 

query optimization, load balancing, and fault tolerance 

operations. 
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