
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Enhancement for Geospatial Time-

Series Data Prediction using Hash-Naive Bayes

(HNB) Classification

Gyati Mittal
1
, Mohini Mittal

2

1K P Engineering College (UPTU), Uttar Pradesh, India

2Indraprastha College IPEC (UPTU) , Uttar Pradesh, India

Abstract: Due to the increasing demand for cloud services and the threat of privacy invasion, the user is suggested to encrypt the data

before it is outsourced to the remote server. The safe storage and efficient retrieval of d-dimensional data on an untrusted server has

therefore crucial importance. The paper proposed a new data distribution model which offers spatial order-preservation for d-

dimensional data. In our Research Hybrid HASH based naïve bayes classification system can be calculated using symmetric keys. We

have similarly involved a specification of possessions of an distributed hash arrangement when using it to convinced use and matched

our suggestion beside it. We have presented a security investigation of our method beside with recognized and enhance of the system

using MATLAB 2014Ra.

Keywords: Distributed hash, Big data, geo spatial, naïve HASH table, data mining etc

1. Introduction

A complex spatial data set (which generally describes any

kind of data where the location in space of object holds

importance). We based this research on the analysis of some

spatial characteristics of certain objects. We began with

describing the spatial pattern of events or objects with

respect to their attributes; we looked at how to describe the

spatial nature/characteristics of entities in an environment

with respect to their spatial and non-spatial attributes. We

also looked at modeling (predictive knowledge management

of complex spatial systems), querying and implementing a

complex spatial database (using data structure and

algorithms). Critically speaking, the presence of spatial auto-

correlation and the fact that continuous data types are always

present in spatial data makes it important to create methods,

tools and algorithms to mine spatial patterns in a complex

spatial data set. This work is particularly useful to

researchers in the field of data mining as it contributes a

whole lot of knowledge to different application areas of data

mining especially spatial data extraction.

1.1. Geospatial, Time-Series datasets:

Data with spatio-temporal properties are commonly found in

epidemiology, atmospheric and climate modeling,

environmental and ecological systems, traffic and

congestion analysis, and commercial sales tracking systems.

Observations or features of interest are measured across

geographical locations over long periods.

1.2. Hashing and Storage Methodology

Galileo supports streaming data that incrementally enters the

system from a variety of sources. These data items are

constantly evolving over time and can share a number of

common attributes. Therefore, simply applying a standard

hash function on the incoming data results in an

approximately even distribution of files across all the nodes

in the system, but does not account for similarity in the data

being stored.

1.3. Geohash: Spatial Hashing Algorithm

To obtain a location-based hash for spatial groupings, we

applied the Geohash Algorithm on incoming data [24]. A

Geohash is a string-based representation of a bounding box

around a location created by interleaving bits obtained from

latitude and longitude pairs. For example, the latitude and

longitude coordinates of N 39.54, W 107.32 fall within the

Geohash bounding box of 9x58vy4. Longer Geohash strings

represent more precise spatial regions, a characteristic which

can be exploited during the hashing process to obtain a

specific granularity for positioning data in the system.

1.4. Feature Hashing

Once a group has been chosen for a data item based on its

spatial characteristics, an additional level of hashing is

required to select a destination node within the group. At

this stage in the hashing process, any number of the

remaining available data dimensions can be used as input for

the hash function. Our particular dataset has a temporal

range associated with each data item, so we used the initial

recording time as input to the SHA-1 hash algorithm and

then divided the hash space among the nodes in each group.

1.5. Data Distribution and Load Balancing Evaluation

To determine the impact of our hierarchical hashing scheme

on how files are distributed in the system, we compared the

distribution results of our controlled dispersion strategy

against the same data inserted using a flat SHA-1 hash of all

metadata values.

Paper ID: ART20191034 DOI: 10.21275/ART20191034 118

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.6. Indexing and Retrieval

Once data has been stored across the nodes in the system, an

efficient means for retrieval is necessary. In a traditional

DHT a hash function is used for both storage and retrieval

operations, which constrains the expressiveness of the

queries that can be performed during retrieval. We address

this weakness with our indexing system. Additionally, data

storage needs often evolve over time and may require

changes to be made to the hashing hierarchy, meaning that

all previously-stored data would not be reachable using a

new set of hash functions.

1.7. Feature Graph Implementation and Structure

Any node in the system can be contacted to perform a

storage operation, which will then route the request directly

to its destination node. Upon arrival, the data is fully

inspected to determine its attributes, which could include

spatial location, temporal information, features, and details

about the device that generated the data.

Figure 1.1: A simplified view of a feature graph for three

dimensions. References to storage node IDs are included at

each vertex in our implementation, but they are omitted in

this example for clarity.

2. Related Work

Below are various reviews as per author studies:

MongoDB [2] shares several design goals with Galileo, butis

a document-centric storage platform that does not support

analytics directly. However, MongoDB has rich geospatial

indexing capabilities and supports dynamic schemas through

its JSON-inspired binary storage format, BSON. MongoDB

can usethe Geohash algorithm for its spatial indexing

functionality, and is backed by a B-tree data structure for

fast lookup operations. For load balancing and scalability,

the system supports sharding ranges of data across available

computing and storage resources, but imposes some

limitations on the breadth of analysis that can be performed

on extremely large datasets.

SciDB [4] is a scalable scientific storage system that

supports multidimensional data. Although its name implies a

link with relational databases, SciDB is not concerned with

providing ACID guarantees or strong transaction support.

Instead, SciDB focuses on incremental scalability and

petabyte scale datasets. The system also provides built-in

computation and analysis tools, whereas Galileo is only

concerned with storage; analysis can be performed outside

the system within the Granules framework or some other

distributed computation engine. Metadata is stored in a

centralized system catalog implemented as a PostgreSQL

database, contrasting with the combination of feature graph

and metadata graphs used in Galileo.

Citing the use of hierarchies in traditional distributed

applications such as multicast and DNS, Ganesan,

Gummadi, and Garcia-Molina [6] propose a paradigm called

Canon, which provides a hierarchy on top of existing flat

DHTs. Canon subdivides system computational nodes into

domains, which provide logical groupings of resources.

Domains can contain any number of subdomains, and a

domain that contains system nodes is referred to as a leaf

domain. Leaf domains are structured in the same way as a

traditional flat DHT

2T-DHT [7] implements a two-tier DHT hierarchy for

publish/subscribe systems. In 2T-DHT, the hierarchy is used

to organize nodes based on their uptime and available

resources. All nodes begin in a lower tier and then migrate to

the higher tier as they demonstrate their stability. The 2T-

DHT network is implemented as multiple Chord rings,

which reduces the amount of communication required to

publish.

3. System Model

In research methodology discovery Graph improves upon

(and supersedes) the feature and metadata graphs by making

knowledge extraction part of the indexing process. As

records are streamed into the system, the Discovery Graph

maintains a variety of statistics at each vertex that describe

the underlying data distributions and their interactions.

Maintaining this information boosts index fidelity, greatly

improves the speed of queries meant to generate synopses,

and serves as a platform for development of functionality.

a) Query MapReduce Framework

While the summary statistics and models in the Discovery-

Graph are lightweight and incur minimal processing costs,

they provide nuanced insights about the underlying dataset.

Galileo includes rich retrieval functionality to allow this

information to be queried and used individually by end

users, aggregated across dimensions, or used to locate

phenomena and features of interest autonomously.

b) Detecting and Quantifying Feature Relationships

Most real-world systems involve several interrelated

features. These relationships may represent dependencies or

correlations between events or variables; for instance,

absolute humidity is impacted by temperature and pressure,

and precipitation may be classified as rain, hail, or snow

depending on the current temperature (along with other

atmospheric conditions).

c) Artificial Neural network

Our framework includes an interface that enables arbitrary

models and prediction methods to be placed at graph

vertices in a similar fashion to the multiple linear regression

instances, and can produce output datasets in the form of

classifications, function approximations, or forecasts. We

have incorporated support for online artificial neural

Paper ID: ART20191034 DOI: 10.21275/ART20191034 119

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

networks (ANNs) machine learning library to accommodate

nonlinear predictive models. Compared to the linear

methods discussed in previous sections, ANNs generally

involve more complex computations for training.

Furthermore, they often do not completely converge on one

final set of model parameters, so training is an inexact and

iterative process.

d) Time-series Forecasting: ARIMA

Autoregressive integrated moving average (ARIMA) models

are specifically designed for time-series data and allow

predictions to be made on non-stationary data types.

ARIMA models are parameterized by three parameters, p, d,

and q, which correspond to the autoregressive, integrated,

and moving average components of the model, respectively.

Our implementation allows these parameters to be chosen

autonomously by the system or specified at query time by

client applications.

e) A Naive Bayes classifier

Uses the probabilities associated with events or features in

the dataset to make predictions. The key assumption of this

type of model is that all features are independent:

completely unrelated to any of the other features.

Despite the fact that this assumption may not always hold,

naive Bayes has proven to be effective in practice for a

variety of classification tasks, including text categorization

and medical diagnosis. To classify a given set of samples,

naive Bayes uses the combined probabilities of the events to

choose the most probable outcome.

4. Result and Discussion

This work introduces the mixture cryptography of the

examination we surveyed the best aggregate methodologies

in the cryptography of a piece figure framework for

Geospatial on cloud.

The resultant of distributed key Processes is symmetric, that

is to roughly use to encode the content or given content by

client is not the same as the key used to decode the message.

The encryption key, distinguished as the Public key which

used to encode a correspondence, yet the message must be

deciphered through the data that has the decoding key,

perceived as the private key.

This kind of encryption has an amount of focal points over

regular symmetric Ciphers.

It implies that the beneficiary can make their open key

roughly accessible somebody inadequate to send them a

correspondence uses the strategy and the collector's open

key to do as such. A watcher may have both the

methodology and the general population key, yet will in any

case not be competent to unravel the content. Individual the

beneficiary, with the private key can unscramble the

message.

Figure 1: Distribution of Test Dataset such as high frequent

clustered location in dark color and black datapoints are

different location of dataset

Figure 2: Searching time improvement for Distribution of

Test Dataset with query size minimization inis different

location, red mark specification for base work fluctuation of

time as far our proposed approach having sequential time.

Figure 3: Different location , CDF when m=1000,

specification for our proposed approach having sequential

data sizes using proposed hash naïve byes classification.

Paper ID: ART20191034 DOI: 10.21275/ART20191034 120

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 9, September 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion and Future Work

The partitioning and indexing scheme we have implemented

in Galileo allows clients to make efficient exact-match and

range queries across a number of dimensions, a feature not

supported by traditional DISTRIBUTED HASH storage

systems. This functionality is made possible by:

1) Ensuring that data items with some similarity, e.g.,

spatial locality, time series, or another attribute are stored

using our controlled dispersion strategy.

2) Indexing the location of these data items.

3) Reasoning about the data stored in the system at a lower

resolution, thus providing a higher-level or general view

of the information to reduce network traffic and memory

consumption.

In Future, Artificial Neural Networks could be used to

predict and react to changing query workloads or new

resource constraints and provide information that could be

used to reorient our feature graph dynamically.

Reinforcement learning techniques could be employed for

query optimization, load balancing, and fault tolerance

operations.

References

[1] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A

framework for clustering evolving data streams. In

Proceedings of the 29th international conference on Very

large data bases-Volume 29, pages 81–92. VLDB

Endowment, 2003.

[2] A. Bialecki, M. Cafarella, D. Cutting, and O.

OMALLEY. Hadoop: a framework for running

applications on large clusters built of commodity

hardware. Wiki at http://lucene. apache. org/hadoop,

2005.

[3] E. Brewer. Cap twelve years later: How the” rules” have

changed. ComputerIEEE Computer Magazine, 45(2):23,

2012.

[4] P.G. Brown. Overview of scidb: large scale array storage,

processing and analysis. In Proceedings of the 2010

international conference on Management of data, pages

963–968. ACM, 2010.

[5] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R.E.

Gruber. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.

[6] P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon

in g major: designing dhts with hierarchical structure. In

Distributed Computing Systems, 2004. Proceedings. 24th

International Conference on, pages 263–272. IEEE,

2004.

[7] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.

Clustering data streams. In Foundations of computer

science, 2000. proceedings. 41st annual symposium on,

pages 359–366. IEEE, 2000.

[8] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

amazons highly available key-value store. In In Proc.

SOSP. Citeseer, 2007.

Paper ID: ART20191034 DOI: 10.21275/ART20191034 121

