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1. Introduction 
 

Apart from very special cases, PDEs can only be solved 

numerically; the construction of their numerical solutions is 

a fundamental task in science and engineering. Among three 

classical numerical methods that are widely used for 

numerical solving of PDEs the finite difference method is 

the oldest one and is based upon the application of a local 

Taylor expansion to approximate the differential equations 

by difference ones defined on the chosen computational 

grid. The difference equations that approximate differential 

equations in the system of PDEs form its finite difference 

approximation which together with discrete approximation 

of initial or/and boundary conditions is called finite 

difference scheme. 

 

1.1 The Model Equation 

 

This research examines the stability and consistency of 

central difference scheme for solving the one dimension 

advection-diffusion equation 

 
which is frequently used to model the physical processes of 

advection and diffusion in a one dimensional system such as 

one involving fluid flow. The parameter ν is the viscosity 

coefficient and c is the phase speed, and both are assumed to 

be positive. It is a parabolic type partial differential equation 

and is derived on the principle of conservation of mass using 

Fick’s law (Socolofsky and Jirka 2002). Stability analysis of 

finite difference schemes for the Navier-Stokes equations is 

obtained (Rigal 1979).Stability and convergence in fluid 

flow problems is presented (Morton 1971). Stability analysis 

of finite difference schemes for the advection-diffusion 

equation is studied (Chan 1984). A comparison of some 

numerical methods for the advection-diffusion equation is 

presented (Thongmoon and Mckibbin 2006). Stability 

analysis of finite difference schemes for the advection 

diffusion equation is presented (Chan 1984). An analytical 

solution of the advection diffusion equation for a ground 

level finite area source is presented (Park and Baik 2008). 

An explicit finite difference scheme for solving the 

advection diffusion equation is studied. Numerical solution 

of the ADE is obtained by using FTBSCS and FTCS 

techniques for prescribed initial and boundary data. 

Numerical results for both the schemes are compared in 

terms of accuracy by error estimation with respect to exact 

solution of the ADE and also the numerical features of the 

rate of convergence are presented graphically (Azad et al. 

2015). 

 

2. Properties of Numerical Methods 
 

Many techniques are available for numerical simulation 

work and in order to quantify how well a particular 

numerical technique performs in generating a solution to a 

problem, there are four fundamental criteria that can be 

applied to compare and contrast different methods. The 

concepts are accuracy, consistency, stability and 

convergence. The method of Finite Difference Method is 

one of the most valuable methods of approximating 

numerical solution of PDEs. Before numerical computations 

are made, these four important properties of finite difference 

equations must be considered. 

 

Accuracy is a measure of how well the discrete solution 

represents the exact solution of the problem. Two quantities 

exist to measure this, the local or truncation error, which 

measures how well the difference equations match the 

differential equations, and the global error which reflects the 

overall error in the solution. This is not possible to find 

unless the exact solution is known. 

 

A finite difference scheme is stable if the errors made at one 

time step of the calculation do not cause the errors to be 

magnified as the computations are continued. A neutrally 

stable scheme is one in which errors remain constant as the 

computations are carried forward. If the errors decay and 

eventually damp out, the numerical scheme is said to be 

stable. If, on the contrary, the errors grow with time the 

numerical scheme is said to be unstable. When a truncation 

error goes to zero, a finite difference equation is said to be 

consistent or compatible with a partial differential equation. 
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Consistency requires that the original equations can be 

recovered from the algebraic equations. Obviously this is a 

minimum requirement for any discretization. 

 

A solution of a set of algebraic equations is convergent if the 

approximate solution approaches the exact solution of the set 

of PDEs for each value of the independent variable as the 

mesh sizes approaches zero i.e the grid spacing and time 

step goes to zero. 

 

2.1 Stability of the numerical Schemes 

 

Stability considerations are very important in getting the 

numerical solution of a differential equation using finite 

difference methods. The solution of the finite difference 

equation is said to be stable, if the error do not grow 

exponentially as we progress from one step to another. The 

matrix method is employed in the analysis of stability. The 

theory behind matrix method is that the modulus of the eigen 

values of the amplification matrix should be less than or 

equal to unity. The partial derivatives in (1) are 

approximated with the following finite difference 

approximations;  

 

Substituting the partial derivatives in (1) with finite 

approximations in equations (2), (3) and (4)  we get  
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
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2.2 Von-Neumann Stability for the Central Difference 

Scheme 

 

The primary observation in the Fourier or Von-Neumann 

method is that the numerical scheme is linear and therefore it 

will have a solution in the form ,

t Ix

i ju e  .Thus, a 

numerical scheme is stable provided that 1   and 

unstable  whenever 1  , Shanthakumar (1989). We can 

apply this method by substituting the trivial solution in finite 

difference method at the time t by  0x  when  1I  

, 1  (Douglas (1955) and Lapidus and Pinder (1982). 

                              

 

We assume ,

t Ix

i ju e  and substitute into (6) , we have 

     1 ( 1) ( 1)2 2 4 2 2 0t Ix t Ix t I x t I xe e e e                                                                (7) 

Dividing (7) by 
t Ixe  , we get 

     2 2 4 2 2 0I Ie e                                                                                              (8) 

Making λ the subject of the formula (8) 

     2 4 2 2

2

I Ie e     


    
                                                                                                                     (9) 

By Eulers formula 

cos sin

cos sin

I
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e i
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 
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
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(10) 

Substituting (10) into (9) we 

       2 4 2 cos sin 2 cos sin

2

i i        


      
                                                                     

(11) 

 

Upon simplification of (11), we get 

2 4 cos 4
, 0

2

  
 

 
            (12) 

where λ is the amplification factor. For stable situation we 

require 1  . 

2 4 cos 4
, 0

2

  
 

 
            (13) 

We determine stability for the largest and smallest value of 

the amplification factor λ.  

a) For the largest value of λ  we take 0o  , Substituting 

into (13) ,we get 

2 4 4
1 1

2

 


 
  

        

       (14) 
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b) For the smallest value of   λ  we take 90o  , 

Substituting into (13) ,we get 

2 4
1 2

2


 


                          (15) 

Obviously   will always be less than 1 for the equations 

(14) and (15). The above cases are always satisfied as the 

left inequality of Equations (10) and (11) requires. Thus the 

central difference scheme (6) is stable for all values of  

0   , i.e conditionally stable. 

 

3. Consistency of Numerical Schemes 
 

Consistency requires that the original equation can be 

recovered from the algebraic Equations. Obviously this is a 

minimum requirement for any discretization. In the 

following we illustrate how this can be done in terms of a 

Taylor expansion of the discretized of both the Advection 

Diffusion equation for CDS scheme developed in (6).Thus, 

showing the consistency and stability of the finite difference 

scheme is sufficient for convergence. Doyo and Gofe and 

Doyo (2016) considered the convergence rates and stability 

of the Forward Time, Centered Space (FTCS) and Backward 

Time Centered Space (BTCS) schemes for solving one-

dimensional, time-dependent diffusion equation with 

Neumann boundary condition. The derivation of the 

schemes and development of a computer program to 

implement them were presented. The consistency and the 

stability of the schemes were described and used numerical 

problems to determine convergence rates of the schemes. It 

was found that both methods are first order accurate in the 

spatial dimension. The Gerschgorin’s Theorem to determine 

the stability of the methods (Michae,2011), and showed that 

An Alternating Direction Explicit Scheme is stable if the 

modulus of the Eigenvalues of the Amplification Matrix 

should be less than or equal to one. The method is 

unconditionally stable. Since finite difference discretization 

converges at the rate of the Truncation Error (TE) 

(determined by the order of the spatial and temporal 

discretization) if the exact solution is smooth enough, the 

exact solution are expanded at the mesh points of the scheme 

with a Taylor series and insert the Taylor expansions in the 

scheme to calculate the TE (difference between the resulting 

equation and the original PDE) and determine its order in the 

approximation used. Then, it is seen that as the discrete step 

sizes approach to zero, their TE also approaches to zero 

which indicates that the difference approximations are 

consistent.  

 

We expand every term of the CDS scheme in equation (6) 

using Taylors series expansion 
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 Substituting (16),(17),(18) and (20) into (6) and 

simplifying, we get 

     
2

2 2 2 ............. 0t x xxt u t u x u         (20) 

 Let x y t h      . then 1
t

x



 


 and 

2

1

( )

t

x h



 


 . 

The equation (20) becomes 
22 2 2 ............. 0t x xxhu hu h u     (21) 

Dividing equation (21) by 2h  throughout gives 

0t x xxu u u     (22) 

 

It is noted that the equation (22) is the recovered PDE that is 

(Advection diffusion equation).Since the Advection 

diffusion equation has been recovered from the algebraic 

equation of the CDS scheme (6) developed; we therefore 

conclude that the scheme is consistent with the Advection 

diffusion PDE. 

 

4. Convergence 
 

Since convergence is difficult to prove directly, we use an 

equivalent result known as the Lax Equivalence Theorem 

which states that, ‘For a given properly posed linear 

consistent finite difference approximation to Partial 

differential equation (PDE), stability is necessary and 

sufficient for convergence (Randall,1998)’. Lax has proved 

that under appropriate conditions a consistent scheme is 

convergent if and only if it is stable. According to Lax - 

Richtmeyer Equivalence Theorem: ‘Given a properly posed 

linear initial value problem and a finite difference 

approximation to it that satisfies the consistency condition, 

stability is the necessary and sufficient condition for 

convergence’(Richtmeyer and Morton,1967). 
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5. Conclusion 
 

The Equation (14) and (15) satisfies the stability conditions. 

The condition on the right is always satisfied as the left 

inequality requires. All the eigenvalues in Equations (14) 

and (15) are bounded by 1. Thus the CDS (6) scheme is 

conditionally stable. The Advection diffusion PDE is also 

recovered from the CDS scheme in equation (6).It can be 

concluded that the stability of the CDS developed for the 

one-dimensional Advection diffusion equation that 

conditionally stable. And also  consistent with the Advection 

diffusion PDE. 
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