
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Dynamic Application Security Testing for Payment

Applications: A Comprehensive Guide

Pavan Kumar Joshi

Fiserv, USA

Abstract: Dynamic Application Security Testing (DAST) plays a crucial role in identifying vulnerabilities in payment applications during

their operational phase. As digital payment platforms evolve, security has become an ever-increasing priority, given the rising complexity

of cyber threats. While payment applications provide essential services to users in the financial sector, their widespread accessibility makes

them prime targets for cyberattacks. This paper explores the security challenges faced by payment applications and highlights the

significance of DAST as an essential method for detecting and mitigating these vulnerabilities. The paper presents a comprehensive review

of DAST methodologies, including application mapping, security scanning, vulnerability detection, and exploitation analysis, which help

developers enhance the security of payment systems. Specific security risks, such as injection attacks, cross-site scripting (XSS), Insecure

Direct Object References (IDOR), and misconfigurations, are examined to illustrate how DAST tools effectively detect these threats.

Furthermore, the paper provides an in-depth evaluation of the most widely used DAST tools, analyzing their functionality and effectiveness

in safeguarding financial data. By emphasizing the importance of integrating security testing into the development life cycle of payment

applications, this paper aims to minimize customer risks and reinforce trust in digital payment systems. Ultimately, this study contributes

to improving the overall security, reliability, and trustworthiness of payment applications, ensuring safer and more secure transactions

for users.

Keywords: Dynamic Application Security Testing (DAST), payment application security, cybersecurity, Cross-Site Scripting (XSS), SQL

injection. information security, application development life cycle, application vulnerabilities remediation

1. Introduction

This is why Dynamic Application Security Testing (DAST) is

so useful because it identifies problems during the dynamic

use of web applications. This testing is conducted within the

test and operation phases of the Software Development Life

Cycle (SDLC) of web applications [1]. On the other hand, it's

not easy to trace every step of how web apps execute.

Additionally, it checks for security vulnerabilities, such

as Cross-Site Scripting (XSS), that might be caused by input

values using a specified attack string [2]. Therefore, security

flaws in online applications that use filters to limit user input

are difficult to discover. The creators of IAST (Interactive

Analysis Security Testing) set out to address these issues [3].

When Dynamic Application Security Testing (DAST) and

Static Application Security Testing (SAST) work together,

they form IAST, which improves the quality of security tests

by overcoming the limitations of individual security analyses

[4][5].

Online marketplace apps rely on payment as a core element.

Many Fintech businesses have introduced various forms of

digital money, such as e-money, which functions as an

alternative payment option, along with the advancement of

technology. These days, the majority of the steps involved in

processing online payments, including those involving e-

money, are handled by the Payment Gateway. In the realm of

creating new forms of payment systems, IT breakthroughs

have become increasingly important [6]. To that purpose,

cutting-edge services like online banking and electronic

payments have recently emerged. The Internet has provided a

new delivery method for banks to reach their customers, and

Internet banking has become the most popular form of

electronic banking in India. The traditional banking system is

giving way to electronic-based business models, and nearly all

banks are re-evaluating their approaches to customer

relationship management and business process architecture.

Particularly in the wake of demonetization in India, the digital

payment system has gained tremendous traction [7].

The motivation for this paper stems from the increasing

reliance on digital payment applications, which have become

essential in modern financial transactions. As these

applications facilitate seamless and convenient monetary

exchanges, they also attract malicious actors seeking to exploit

security vulnerabilities. Given the sensitive nature of financial

data involved, ensuring robust security in payment

applications is paramount. This paper aims to highlight the

importance of implementing DAST in the development and

maintenance of payment applications to enhance security,

protect user data, and foster trust in digital payment systems.

The research is intended to guide financial institutions and

developers in adopting best practices for securing payment

applications against evolving cyber threats.

A. Organization of the paper

The paper is structured as follows: Section II covers the

overview of payment applications. Section III Details the

fundamentals of dynamic application security testing. Section

IV provides the DAST Vulnerabilities In Payment

Applications; Section V discusses the various tools and

techniques in DAST for payment applications. Then Section

VI presents a Literature review, and identifies research gaps,

and VII offers conclusions and future work.

2. Overview of Payment Application

Payment applications, also known as payment apps,

are software programs that allow users to make payments from

their mobile devices or computers. They can be used to make

peer-to-peer payments, pay bills, or pay businesses for

products [8]. A "digital payment" is one in which no actual

currency, such as cash or checks, are exchanged but rather a

variety of internet-based payment methods. Digital payment

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1567

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

methods are becoming increasingly popular due to their ease

of use, convenience, and the fact that they allow customers to

make payments from any location at any time. This makes

them a great alternative to more traditional payment methods

and drastically reduces the time it takes for transactions to be

completed [9].

1) PayPal: PayPal Holdings, Inc. is an American

multinational financial technology company operating an

online payments system in most countries that

support online money transfers; it serves as an electronic

alternative to traditional paper methods such

as checks and money orders. The company operates as a

payment processor for online vendors, auction sites and

many other commercial users, for which it charges a fee.

[10].

2) Google Pay: One form of digital wallet and online

payment system created by Google is Google Pay, which

goes by several names: G Pay, Pay with Google, and

others. When compared to other digital payment systems,

Google Pay has a stellar reputation for safety. Google

would stop at nothing to ensure the safety of its

customers' data stored in the cloud.

3) MobiKwik: As a digital wallet and mobile payment

system, MobiKwik is another app developed by an Indian

company. App creators Bipin Singh and Upasana Taku

launched MobiKwik in 2009. Loans, insurance

(including life, accident, and fire policies), and mutual

funds are all part of Mobikwik's financial offerings.

2.1 Advantage of payment application

There are some advantages of payment applications in

the digital way [11].

• Customers Comfort: Small business owners can make it

easier for customers to pay by accepting mobile payments.

Customers can use their cellphones to pay with ease, rather

than using credit cards, cash, or checks.

• Ease of use: Pay with only one click, no need to enter

sensitive information like credit card numbers or

passwords. You can also pay instantly by linking your debit

or credit card to your bank account. Instantaneous currency

conversion and transfers are now a reality.

• Accessibility: Everyone should have access to a pricing

device if they want to send or receive payments. Access to

cellular pricing gadgets can be had whenever and wherever

it's needed.

• Safety and Reliability: To ensure that payments reach

their intended recipients on schedule, encryption (cease-

customers) of a charging device might be available at the

predicted moment. The gadget is user-friendly, therefore

there will be no future losses from fraudulently gathered

facts as a result of using it. While device contributors

offering guarantees of various kinds might help with some

of these issues, the most basic solution is to redesign the

device.

3. Fundamentals of Dynamic Application

Security Testing (Dast)

Security testing that is executed on an application while it is

operating is known as dynamic application security testing

(DAST) [12], as opposed to testing static code. Discovering

and cataloguing security flaws and misconfigurations is the

objective of dynamic application security testing [13]. This

security testing methodology and the tools that implement it

are both encompassed by the name DAST. Although there is

no hard and fast rule regarding which apps or tools can

undergo dynamic application security testing, there are two

things that are typically true for the methodology and the

technologies that employ it:

• The apps that have been tested are web apps. Due to the

multiplicity of historical application user interfaces, no

known tools have been developed to apply DAST to legacy

desktop apps, although in theory it may be possible. The

availability of DAST tools for mobile applications has

recently expanded.

• Automated processes are an integral aspect of DAST

solutions' design. Manually performing dynamic security

testing would fall under the purview of penetration testing.

Variable application security testing is also known as outside-

in testing, vulnerability scanning, or black-box testing in the

application security (AppSec) community [14]. Figure 1

shows the Dynamic Application Security Test Processes.

Figure 1: Dynamic Application Security Test Processes

Dynamic Application Security Testing (DAST) is a method

for finding vulnerabilities in web applications while they're

running. DAST tools simulate automated attacks on an

application to identify potential security flaws[2].

2.2 Application Mapping

Applications are made up of a variety of elements—web

servers, applications servers, database servers, middleware,

network, and storage, to name just a few—that work together

and depend on each other to operate. Application mapping is

the process of discovering and mapping the interdependencies

between applications and all the supporting elements to help

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1568

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

businesses understand how their applications, services,

resources, etc. work together and depend on each other to

provide the expected output or functionality[15].

a) Security and Crawling

Scan the security of a website, web-based program, network,

or file system for vulnerabilities or undesired file changes.

This process goes by many names, but one common definition

is vulnerability scanning. Application scanning cannot be

performed without crawling. By indexing and traversing the

site's many pages and states, it facilitates exploration and

provides data for testing, which in turn yields findings [16].

b) Vulnerability Detection

In the realm of smart contract security, vulnerability

identification is a highly active area of research. As one of the

best defenses against contract attacks, it has widespread

recognition. The three most popular traditional detection

approaches are symbolic execution, formal verification, and

fuzz testing [17].

c) Exploitation

In its noun form, "exploit" refers to a piece of code or an entire

program that sneaks into a system and starts a denial-of-

service (DoS) attack or installs malware like viruses, worms,

Trojan horses, adware, or ransomware by exploiting security

holes in the system [18].

d) Reporting and Remediation

Reporting and remediation are processes that can help identify

and address issues, and then visualize and communicate the

results:

• Remediation: Involves identifying and fixing issues, such

as errors in data, red flags, or cyber threats. For example,

data remediation can involve removing duplicate records,

standardizing data types, or filling in missing values. In

cybersecurity, remediation can involve identifying and

mitigating threats to a network or business.

• Reporting: Involves visualizing data to highlight trends,

patterns, or outliers. Reports can help identify areas for

improvement and gather data to make informed decisions.

For example, reports can highlight vulnerabilities, issues,

or non-compliance with standards.

Figure 2: DAST vulnerabilities in payment applications

4. Dast Vulnerabilities in Payment

Applications

DAST can help detect various vulnerabilities in payment

applications that could be exploited by attackers, as shown in

Figure 2. Here’s a detailed overview of the main

vulnerabilities it can identify:

a) Injection Attacks (SQL and Command Injection)

Finds SQL or command injection flaws that could allow

attackers to access or manipulate sensitive data[19].

• SQL Injection: DAST finds weaknesses in input fields

that allow an attacker to insert malicious SQL queries. This

is especially risky for payment applications since it gives

hackers access to private client information and allows

them to alter records or get past verification.

• Command Injection: When user input is sent to the

system shell or another command execution environment

via the application, this happens. DAST tools search for

incorrect input validation, which can provide an attacker

access to the server to run arbitrary commands.

b) Cross-Site Scripting (XSS)

Identifies inappropriate input handling that could allow

malicious scripts to be injected into the program by attackers.

• Stored, Reflected, and DOM-based XSS: DAST finds

cases where attackers are able to inject harmful scripts

because user inputs are not properly sanitized. These

scripts may take over the victim's session, steal their

cookies, or execute their every command. Due to the

potential for XSS attacks to result in fraudulent payments

or the theft of client passwords, payment applications are

especially at risk.

• Sanitization Testing: DAST checks to make sure user-

generated content, URLs, and input fields are properly

cleaned to avoid script injection.

c) Insecure Direct Object References (IDOR)

Finds vulnerabilities where users can change parameters to

access resources without authorization.

• Unauthorized Access Testing: An instance of IDOR

occurs when an application secretly makes accessible an

internal object reference, such as a database key or file.

DAST is useful for finding cases when malicious actors

can examine another user's financial information or

transaction details by directly manipulating URLs or

parameters to access restricted resources.

• Access Control Verification: To make sure no

unauthorized people may access sensitive information, it

verifies that adequate access control measures are in place.

d) Security Misconfigurations

Finds vulnerabilities in the application that could be exploited,

such as default settings or missing security headers.

• Default Configurations: DAST assists in identifying

situations in which the payment application may be

susceptible due to idle pages, unpatched software versions,

or default accounts. Allow attacks to be made against the

application.

• Missing Security Headers: To prevent attacks like

clickjacking, cross-site scripting, or MIME-sniffing,

security headers are essential. DAST finds potentially

vulnerable applications by identifying incorrectly set

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1569

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

headers, such as Content-Security-Policy or X-Frame-

Options.

• Debugging Information: Additionally, DAST looks for

accessible debugging information, which can provide

hackers access to important data.

e) Cross-Site Request Forgery (CSRF)

Makes sure that CSRF defenses are in place to stop attackers

from requesting things that aren't authorized on behalf of

users.

• CSRF Token Testing: DAST checks to see if CSRF

safeguards are present on payment pages. CSRF attacks

can be especially dangerous in payment applications since

they can lead to unapproved money transfers.

• Testing Sensitive Actions: It makes sure that all crucial

actions—like entering payment information or modifying

account details—are appropriately safeguarded using

CSRF tokens, which stop hackers from deceiving users

into taking unwanted actions.

f) Authentication and Session Management Issues

Finds weaknesses in session management or insufficient

authentication that could allow unwanted access.

• Broken Authentication: If an application's authentication

mechanisms—such as weak passwords, ineffective

password reset procedures, or exposed login endpoints—

are susceptible, DAST can assist in determining this.

• Session Hijacking: DAST verifies whether the session

management is robust—testing for secure cookie attributes

like HttpOnly and Secure, and checking if sessions are

invalidated correctly upon logout.

5. Various Tools and Techniques in Dast for

Payment Applications

Dynamic Application Security Testing (DAST) is a crucial

part of the application security lifecycle, especially for

payment applications where sensitive data is processed. Table

1 shows the various tools and techniques along with their

features and applications for DAST in payment applications.

Table 1: Various Tools and Techniques in DAST For Payment Applications
Tool/Technique Description Key Features Use Case

OWASP ZAP[20] A web application security scanner that is open-

source and can help uncover those pesky

vulnerabilities.

Automated scanners,

spidering, and intercepting

proxy

Testing web applications for

OWASP Top Ten

vulnerabilities.

Burp Suite[21] A comprehensive platform for web application

security testing with a variety of tools for different

testing phases.

Proxy, scanner, repeater,

intruder, and extensions

Manual and automated testing

of payment applications.

Acunetix[22] A web application vulnerability scanner that

identifies vulnerabilities like SQL Injection and

XSS.

Automated scanning,

compliance reporting, and

scheduling

Scanning e-commerce websites

for vulnerabilities.

Netsparker[23] An automated web application security scanner that

identifies vulnerabilities in web applications.

Proof-based scanning, easy

integration with CI/CD

Continuous security testing in

DevOps environments.

Qualys Web

Application

Scanner[22]

A cloud-based scanner that provides vulnerability

management for web applications.

Continuous monitoring,

detailed reporting

Regular assessments of

payment gateways and APIs.

AppScan[22] A DAST tool from IBM that analyses web

applications for security vulnerabilities.

Integrates with SDLC,

supports various compliance

standards

Scanning for vulnerabilities in

banking applications.

Snyk[22] A security tool focusing on open-source and

container security, with capabilities for DAST.

Continuous monitoring,

automatic fixes for

vulnerabilities

Assessing security for

applications using third-party

libraries.

Cenzic

Hailstorm[22]

A web application security testing tool designed for

dynamic testing.

Integration with

development and security

tools

Automated testing during the

development phase of payment

applications.

W3af[24] A framework for auditing and attacking online

applications that is open-source and helps uncover

vulnerabilities.

Plugin architecture,

extensive attack capabilities

Testing web applications for

various security issues.

HTTP/HTTPS

Fuzzing[25]

A method for finding security flaws in online

applications by flooding them with random data.

Customisable payloads,

testing for error messages

Finding input validation issues

in payment applications.

6. Literature Review

In this section, provide some previous work on dynamic

application security testing for payment applications.

In [26], due to the growing complexity of online systems,

security testing is essential for ensuring that these systems

meet all necessary security standards. In this study, they use

model-based active testing to tackle this issue. Using IF

formalism, they initially describe the behavior of the Web

system. Secondly, they use particular algorithms to

incorporate security rules modelled in the Nomad language

into this IF model. Then, they use a specialized tool that we

developed in our lab, HJ2If, to generate tests automatically. As

a last step in proving our framework's validity, they provide a

quick overview of a travel agency system.

In [27], This section outlines a sequential method for doing

search-based application security testing. In the first step,

potential candidate tests that could result in good security tests

are searched for in the input space. The second step is to

narrow the search to a manageable number of options, and then

use those candidates to choose and parameterize specific

search methods. Based on exploratory security testing, this

method begins with evaluating tests for their relation to one

another and their capacity to elicit vulnerability symptoms.

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1570

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

One possible way to test the performance of this tiered strategy

is by using web application vulnerability scanners as a

baseline.

In [28], following static analysis and penetration testing, the

study established a standard method for testing the mobile

client, transmission, client application, deployment

environment, and background application security. This study

presents a comprehensive and effective mobile application

security risk testing procedure. Pre-line safety review

technical advice.

In [29], suggest a web application security evaluation model

and state its defining characteristics using the Analytic

Hierarchy Process (AHP). They assess the impact of a

vulnerability test on the IPB BBS application using the

evaluation method suggested in this research. The relationship

between the number of vulnerabilities discovered in the

security test and the evaluation value calculated by the

evaluation function is positively correlated, according to the

experimental results. It demonstrates the practicality and

reliability of the security evaluation method suggested by this

study.

In [30] provides a framework to let analysts test Android app

security to address this difficulty. App stores are changing how

people get software. This strategy allows for fast acquisition,

introduction, maintenance, and enhancement of consumer

software. However, this paradigm change has created new

security issues. Rapidly assessing market applications'

security and robustness is the biggest challenge. The tool suite

automatically develops and performs several test scenarios

and reports security vulnerabilities to the analyst for an

application.

In [31], Continuous software-as-a-service (SaaS) security

certification checks if an application meets security standards

regularly and automatically. Since SaaS apps leverage web

application technology, web application testing looks

appropriate for security checks. These methods generally use

discrete security tests, which are manually triggered and

assessed by humans. They explain significant obstacles and

give experimental test results of utilizing SQL Map to

continually test for SQL injection vulnerabilities.

In [32], large standardization initiatives and attempts to

establish compatible ecosystems and business models use

Near Field Communication technology. In this regard, the

Global Platform consortium released specifications to allow

various actors to handle card material anonymously and adapt

the platform to the UICC in Mobile Profile. Experiment, test,

and validate these standards. VACAMS (Validation of

Content Application Systems) seeks this. Otter Card Systems,

Trusted Labs, and GREYC will contribute smart card

engineering, testing methodology, and secure electronic

transaction knowledge. Developing a UICC Secure Element

that meets global Platform criteria and profile and loading and

personalizing a payment application "over the air" following

mobile device issuance will be the experiment. It will take

place on ENSICAEN's experimental electronic payment

infrastructure.

In [33], Smartphones, PCs, PDAs, and other devices use NFC

for contactless data transmission. Since Bluetooth and it are

short-range communication technologies, they are similar.

NFC lets consumers pay using their phones. They believe

cloud computing can solve many NFC application

management challenges, and in this paper, they present our

strategy to simplify NFC ecosystem management. They

evaluated several SE architectures and discussed our preferred

model.

The following Table 2 provides the Comparative analysis of

related work for DAST in Payment applications.

Table 2: Comparative analysis of related work for DAST in Payment applications

Reference Study Focus Methodology
Tools/

Frameworks

Application

Domain
Key Contributions Limitations

[26]
Security testing

of web systems

Model-based active

testing, IF formalism,

Nomad language

HJ2If

Web applications

(Travel agency

system)

Introduced a model-based

framework for integrating

security rules and

automated test generation

Limited to specific

modelling languages;

not tested on payment

apps

[27]

Search-based

application

security testing

Staged approach for

test generation and

selection

Not specified Web applications

Developed a staged security

testing approach for

generating and refining

security tests

Lack of specific tools

mentioned;

exploratory testing

focus

[28]

Mobile

application

security testing

Static analysis,

penetration testing, and

security mechanisms

Common test

technique for

mobile apps

Mobile

applications

Proposed a comprehensive

mobile application security

risk testing framework

Focused on mobile

apps, lacks emphasis

on payment-specific

applications

[29]

Security

evaluation for

web applications

Security evaluation

using Analytic

Hierarchy Process

(AHP)

Not specified
Web applications

(BBS application)

Created a security

evaluation model

correlating vulnerabilities

with testing effectiveness

Limited application

scope; not directly

related to payment

systems

[30]
Android app

security testing

Automated test

development and

execution for Android

apps

Custom tool

suite

Android

applications

Developed a framework to

automatically test Android

app security

Limited to Android

apps; manual testing

remains costly

[31]

Continuous

security

certification for

SaaS

Continuous security

checks, SQL Map for

vulnerability testing

SQL Map SaaS applications

Developed methods for

continuous security

certification using

automated web app testing

Needs improvement

for continuous testing

adaptability

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1571

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[32]

NFC payment

application

security

Security validation for

UICC-based NFC

systems

VACAMS,

UICC Secure

Element

NFC payment

systems

Experimented with secure

NFC payment infrastructure

and content management

Focus on

standardization; not

directly applicable to

payment apps

[33]

NFC application

management

security

Evaluated SE

architectures,

suggested NFC cloud-

based model

Not specified NFC applications

Proposed a secure and

manageable NFC

application ecosystem

Focused on

architecture rather

than DAST for

payment security

7. Conclusion and Future Work

A kind of testing, Dynamic Application Security Testing

(DAST), has now become indispensable when developing

payment applications as more transactions shift online and

become easier targets for hackers. Payment applications are

very important in facilitating the efficient provision of digital

payment services but are open to various cyber-related risks.

DAST has emerged as a crucial process needed to protect

payment applications from risk situations that may result in

severe financial and image loss. The consequences of cyber

threats will continue to increase, hence calling for increased

security measures like DAST. By conducting application

mapping, proper vulnerability scanning, and identifying the

problem and solving them, their security level will be

improved and user data will be better protected. In this way,

the various tools and techniques described in the current guide

allow developers and security teams to perform efficient

dynamic testing that not only helps to find vulnerabilities but

also increases the overall security of applications against

modern threats. Lastly, the application of DAST into SDLC is

critical for enhancing consumer trust as well as compliance

with the regulatory framework in the dynamic environment on

digital payments.

Future developments as part of DAST should include (i) AI

and machine learning for better detection, (ii) improved API

security testing, (iii) inclusion of continuous monitoring in

CI/CD processes and (iv) the use of preparedness for post-

quantum cryptography. Furthermore, integration of DAST

into Zero Trust Architecture (ZTA) could provide better

security to the payment application. These innovations shall

enhance protection against new threats while at the same time

satisfying the laid down regulations.

References

[1] M. D. Ernst, “Static and dynamic analysis: synergy and

duality,” WODA 2003 ICSE Work. Dyn. Anal., 2003.

[2] J. Im, J. Yoon, and M. Jin, “Interaction platform for

improving detection capability of dynamic application

security testing,” in ICETE 2017 - Proceedings of the

14th International Joint Conference on e-Business and

Telecommunications, 2017. doi:

10.5220/0006437104740479.

[3] [3] K. Ooms et al., “Combining user logging with eye

tracking for interactive and dynamic applications,”

Behav. Res. Methods, 2014, doi: 10.3758/s13428-014-

0542-3.

[4] [4] S. B. Vishwa V Kumar, Salik R Yadav, Frank W

Liou, “A digital interface for the part designers and the

fixture designers for a reconfigurable assembly

system,” Math. Probl. Eng., no. 1, 2013, [Online].

Available:

https://onlinelibrary.wiley.com/doi/full/10.1155/2013/

943702

[5] [5] M. T. VISHWA VIJAY Kumar, MUKUL Tripathi,

SATISH KUMAR Tyagi, SK Shukla, “An integrated

real-time optimisation approach (IRTO) for physical

programming based redundancy allocation problem,”

Proc. 3rd Int. Conf. Reliab. Saf. Eng. Udaipur,

Rajasthan, India, pp. 692–704, 2007.

[6] [6] Z. Bezhovski, “The Future of the Mobile Payment

as Electronic Payment System,” Eur. J. Bus. Manag.,

2016.

[7] [7] P. Pukkasenunk and S. Sukkasem, “An efficient of

secure mobile phone application for multiple bill

payments,” in Proceedings - IEEE 30th International

Conference on Advanced Information Networking and

Applications Workshops, WAINA 2016, 2016. doi:

10.1109/WAINA.2016.63.

[8] [8] S. B. R. Kumar, S. A. Rabara, and J. R. Martin, “A

system model and protocol for mobile payment

consortia system,” in Proceedings of the International

Symposium on Test and Measurement, 2009. doi:

10.1109/ICTM.2009.5413011.

[9] [9] M. Massoth and T. Bingel, “Performance of

different mobile payment service concepts compared

with a NFC-based solution,” in Proceedings of the

2009 4th International Conference on Internet and

Web Applications and Services, ICIW 2009, 2009. doi:

10.1109/ICIW.2009.112.

[10] Wikipedia.com https://en.wikipedia.org/wiki/PayPal.

[11] X. Li, W. Zhu, and M. He, “Secure remote mobile

payment architecture and application,” in 3CA 2010 -

2010 International Symposium on Computer,

Communication, Control and Automation, 2010. doi:

10.1109/3CA.2010.5533752.

[12] A. Dissanayaka, U. D. Annakkage, B. Jayasekara, and

B. Bagen, “Risk-based dynamic security assessment,”

IEEE Trans. Power Syst., 2011, doi:

10.1109/TPWRS.2010.2089809.

[13] S. G. Priya Pathak, Akansha Shrivastava, “A survey on

various security issues in delay tolerant networks,” J

Adv Shell Program., vol. 2, no. 2, pp. 12–18, 2015.

[14] J. Ren, Y. Qi, Y. Dai, X. Wang, and Y. Shi, “AppSec,”

ACM SIGPLAN Not., 2015, doi:

10.1145/2817817.2731199.

[15] P. K. Sahu and S. Chattopadhyay, “A survey on

application mapping strategies for network-on-chip

design,” Journal of Systems Architecture. 2013. doi:

10.1016/j.sysarc.2012.10.004.

[16] G. Jain and Y. Mehandiratta, “Chronicle security

against covert crawling,” in ACM International

Conference Proceeding Series, 2012. doi:

10.1145/2490428.2490434.

[17] P. Liu, J. Su, and X. Yang, “Research on software

security vulnerability detection technology,” in

Proceedings of 2011 International Conference on

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1572

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Computer Science and Network Technology, ICCSNT

2011, 2011. doi: 10.1109/ICCSNT.2011.6182335.

[18] J. L. Bronstein, “The exploitation of mutualisms,”

Ecol. Lett., 2001, doi: 10.1046/j.1461-

0248.2001.00218.x.

[19] S. Goel, K. Gupta, M. Garg, and A. K. Madan, “Ethical

Hacking and Its Countermeasures,” Int. J. Adv. Res.

Innov., 2014, doi: 10.51976/ijari.231408.

[20] D. Guaman, F. Guaman, D. Jaramillo, and M.

Sucunuta, “Implementation of techniques and OWASP

security recommendations to avoid SQL and XSS

attacks using J2EE and WS-Security,” 2017. doi:

10.23919/cisti.2017.7975981.Testing application

security with aspects,”

[21] Z. Panczel and C. Walker, “Burp Suite(up) with fancy

scanning mechanisms,” SANS Inst., 2015.

[22] L. Suto, “Analyzing the Accuracy and Time Costs of

Web Application Security Scanners,” San Fr. Febr.,

2010.

[23] C. Joshi and U. Kumar, “Security Testing and

Assessment of Vulnerability Scanners in Quest of

Current Information Security Landscape,” Int. J.

Comput. Appl., 2016, doi: 10.5120/ijca2016910563.

[24] A. Barinas López, A. C. Alarcón Aldana, and M.

Callejas Cuervo, “Vulnerabilidad de Ambientes

Virtuales de Aprendizaje utilizando SQLMap, RIPS,

W3AF y Nessus [Vulnerability in Virtual Learning

Environments using SQLMap, RIPS, W3AF and

Nessus],” Vent. Inform., 2014, doi:

10.30554/ventanainform.30.276.2014.

[25] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D.

Song, “NetworkProfiler: Towards automatic

fingerprinting of Android apps,” in Proceedings -

IEEE INFOCOM, 2013. doi:

10.1109/INFCOM.2013.6566868.

[26] M. Jain and D. Gopalani, “in 2016 International

Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), 2016, pp. 3161–

3165. doi: 10.1109/ICEEOT.2016.7755285.

[27] S. Türpe, “Search-Based Application Security Testing:

Towards a Structured Search Space,” in 2011 IEEE

Fourth International Conference on Software Testing,

Verification and Validation Workshops, 2011, pp.

198–201. doi: 10.1109/ICSTW.2011.96.

[28] J. Guo, H. Jiang, and C. Zhou, “Research on risk

analysis and security testing technology of mobile

application in power system,” in 2017 IEEE

Conference on Energy Internet and Energy System

Integration (EI2), 2017, pp. 1–6. doi:

10.1109/EI2.2017.8245498.

[29] D. Jing-Nong and L. Yan-Sheng, “An Effect

Evaluation Model for Vulnerability Testing of Web

Application,” in 2010 Second International

Conference on Networks Security, Wireless

Communications and Trusted Computing, 2010, pp.

382–385. doi: 10.1109/NSWCTC.2010.94.

[30] S. Malek, N. Esfahani, T. Kacem, R. Mahmood, N.

Mirzaei, and A. Stavrou, “A Framework for

Automated Security Testing of Android Applications

on the Cloud,” in 2012 IEEE Sixth International

Conference on Software Security and Reliability

Companion, 2012, pp. 35–36. doi: 10.1109/SERE-

C.2012.39.

[31] P. Stephanow and K. Khajehmoogahi, “Towards

Continuous Security Certification of Software-as-a-

Service Applications Using Web Application Testing

Techniques,” in 2017 IEEE 31st International

Conference on Advanced Information Networking and

Applications (AINA), 2017, pp. 931–938. doi:

10.1109/AINA.2017.107.

[32] V. Alimi and M. Pasquet, “Post-Distribution

Provisioning and Personalization of a Payment

Application on a UICC-Based Secure Element,” in

2009 International Conference on Availability,

Reliability and Security, 2009, pp. 701–705. doi:

10.1109/ARES.2009.98.

[33] P. Pourghomi and G. Ghinea, “Managing NFC

payment applications through cloud computing,” in

2012 International Conference for Internet

Technology and Secured Transactions, 2012, pp. 772–

777.

Paper ID: SR180701095322 DOI: https://dx.doi.org/10.21275/SR180701095322 1573

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

