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Abstract: Condition monitoring systems have been used to determine the need for equipment maintenance and successful results have 

been achieved, however, these systems in combination with fuzzy logic have not been sufficiently explored, and one area of application 

is wind turbines. In this paper, the state of the art of wind turbine condition monitoring is briefly reviewed and it is proposed to use 

fuzzy logic for the diagnosis of wind turbine condition, in order to detect the abnormal behavior of the signals through a system of fuzzy 

inference that can be used as a fundamental element in the diagnosis of turbine condition. The system is based on data from a Komai 

wind turbine whose specifications were used to model the system. The results of the tests indicate that this system can be used to 

represent human knowledge and the diagnosis is reliable. 
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1. Introduction 
 

Fuzzy inference systems (FIS) have demonstrated the ability 

to solve complex and ambiguous problems, applying this 

technique in wind turbine condition monitoring is important 

because the number and size of turbines increases. At the 

moment the consumption of energy has had a strong increase 

due to the globalization, the demographic growth, the human 

establishment, among other factors; consequently, clean 

energies play a fundamental role in satisfying the demand for 

energy as well as helping to conserve the planet [1].  

 

According to the Mexican Association of Wind Energy in 

Mexico there are 42 wind farms in operation with 1935 wind 

turbines (WT) in operation (2016 data). In addition, the 2.5% 

is the percentage of the world's electricity supplied by wind 

power and it is expected that by 2020 this percentage will be 

between 8-12% and in Mexico 40% of the national 

renewable energy target depend of wind energy [2]. 

Achieving that this type of energy is competitive with other 

sources of energy is crucial, therefore, the availability, 

reliability and life of the turbines should improve [3].  

 

Due to the increase in the production of wind energy it is 

important to monitor the condition of the WT to determine 

their need for maintenance in order to reduce inspection or 

maintenance costs due to the increase in the size and quantity 

of turbines. On the other hand, the remote location of the 

turbines currently used makes availability crucial if 

maintenance is required [4].  

 

The article is organized as follows: section two includes a 

relevant background of the research area. The third section is 

about the importance of a WT condition monitoring. The 

four section shows the methodology for the development of 

the FIS. In the five section the experimental work is shown 

and finally section six is the conclusion about the work done. 

 

 

2. Literature survey 
 

Some of the turbine condition monitoring techniques used are 

vibration analysis that continues to be “the most popular 

technology employed in WT, especially for rotating 

equipment” [5]. the Acoustic monitoring is a technique that 

has some similarities with vibration monitoring but whereas 

“vibration sensors are mounted on the component involved” 

[6] so as to detect movement, acoustic sensors are attached 

with flexible glue with low attenuation and record sound 

directly.  

 

The Ultrasonic testing (UT) techniques are used extensively 

by the wind energy industry for the structural evaluation of 

WT towers and blades. UT is generally employed for the 

detection and qualitative assessment of surface and 

subsurface structural defects [7]. The oil analysis it is used 

for the of guaranteeing oil quality or the condition of the 

various moving parts, “oil analysis is mostly executed off-

line by taking samples” [5].  

 

The radiographic inspection is used to obtain radiographic 

imaging of critical structural turbine components using X-

rays is only rarely used although it does provide useful 

information regarding the structural condition of the 

component being inspected [8]. The thermography is often 

used for monitoring electronic and electric components and 

identifying failure [9]. The technique is only applied off-line, 

and often involves visual interpretation of hot spots that arise 

due to bad contact or a system fault. 

 

Regardless of the technique, the capability of the condition 

monitoring relies upon two basic elements: the number and 

type of sensors, and the associated signal processing and 

simplification methods utilized to extract important 

information from the various signals [10]. 

 

Regarding signal processing methods are the statistical 

methods [11], the trend analysis [12], filtering methods [13], 
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time-domain analysis that are typically used for vibration 

analysis [14] and oil analysis [15], among others methods. 

 

There are also Artificial Intelligence techniques that are 

applied in the field of clean energies in order to optimize 

production costs and have better energy efficiency [1]. Some 

of these techniques are fuzzy logic, neural networks and 

probabilistic reasoning (genetic algorithms, Bayesian 

networks, chaotic systems). 

 

The fuzzy and neuro-fuzzy logic, and the probabilistic 

reasoning deals mainly with the imprecision and approximate 

reasoning, the neural networks of learning and the 

probabilistic reasoning of the uncertainty [16]. To consider 

these efficient techniques, a correct choice of data and the 

technique to be used must be made in order to infer faults or 

anomalies in the turbines in the best way [17]. 

 

Fault detection and diagnosis is an adaptation of condition 

monitoring that involves intelligent algorithms for detection 

of incipient faults [18]. Neural networks have the advantage 

of high data processing speeds due to parallelism [4]. 

Bayesian networks are also used for the intelligent diagnosis 

of WT in order to detect anomalies in the behavior of the 

data [19]. 

 

On the other hand, fuzzy systems are useful for highly 

complex systems whose behavior is not easy to understand, 

they can also be applied where an approximate but fast 

solution is desired [20].  

 

Monitoring equipment condition is important in order to 

detect unexpected failures mainly of large components, 

which can result in excessive downtime, however, failures in 

auxiliary equipment or small components can also cause 

costly downtime. Therefore, it is worthwhile to perform an 

adequate monitoring of the equipment to reduce unscheduled 

downtime and consequently the operation times [10]. 

 

Such monitoring can be online by providing instant feedback 

or offline. With a good data acquisition and adequate 

processing, failures can be detected while the components are 

operating, so appropriate actions can be programmed, this 

results in greater reliability, safety and availability of the 

turbines, thus reducing downtime and thus the costs involved 

in maintenance. 

 

Condition monitoring and the diverse mathematical methods 

for processing signals and data analysis are based on 

different elements of the wind turbine. The techniques 

mentioned are some of those available. 

 

3. Importance of wind turbine condition 

monitoring 
 

Wind turbines are machines that convert the kinetic energy of 

wind into electricity. The amount of electricity produced by a 

wind turbine depends on its size and the wind speed. The 

electrical energy can be stored in batteries or used directly. 

Due to the advantages of using this type of energy as 

inexhaustible, sustainable and non-polluting with a low 

impact on the environment. Wind turbines are a fundamental 

part of wind power generation, so the diagnosis of the 

equipment and the detection of faults help determine the need 

for maintenance of the equipment to prevent major problems. 

  

 Condition monitoring of wind turbines is very important 

nowadays because the size and location of the turbines has as 

a consequence that their availability is crucial. Unexpected 

failures in large or small components lead to costly 

downtimes that can be excessive. Therefore, monitoring the 

condition of the turbines is important in order to reduce the 

unscheduled downtime costs and consequently the operating 

costs [11].  

 

The high temperatures in the components of the turbine, for 

example, can cause overheating of the same and therefore 

generate some failure. These problems have a negative 

impact on the life of the turbine and to make a diagnosis 

expert in the area are needed. However, making diagnoses 

through human operators is slow and may have errors.  

 

Therefore, the development of a fuzzy inference system that 

captures human knowledge and is able to adequately 

diagnose and in the shortest time possible the condition in 

which the turbine is located can help identify the need for 

maintenance and improve its reliability. The condition of the 

turbines in this research work is based on SCADA data. 

 

3.1 Komai wind turbine  

 

For this research work we used data from the SCADA system 

of a turbine brand Komai, model: KWT300. Some features of 

the turbine are: 

 It has a horizontal axis power generation system. It is 

equipped with a gearbox with active pitch regulation of 

three variable speed blades. 

 The generator is a three-phase induction motor of 400V. 

It is connected to the network through an IGBT (Insulated 

Gate Bipolar Transistor) converter with an AC-DC-AC 

link system. 

 

The Komai wind turbine located in the Regional Wind 

Technology Center (CERTE) of the National Institute of 

Electricity and Clean Energies (INEEL), located in Juchitán, 

Oaxaca, México; is the wind turbine from which data were 

obtained for the development of this research and is shown in 

Figure 1. The basic specifications [21] are described in Table 

1, where data are indicated as the power that the turbine is 

capable of generating, the type of turbine, the height, position 

and diameter of the rotor, the wind speed and the rotor, the 

temperature ranges and the life of the turbine. 
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Figure 1: Wind turbine Komai, CERTE 

Table 1: Specifications of the Komai wind turbine 
Rated power 300 kW 

Type Horizontal Axis 

Hub height 43.5 m 

Rotor position Up-wind 

Rotor diameter 33 m 

Rated wind speed 11.5 m/s 

Nominal rotor speed 40.5 rpm 

Cut-in wind speed 3.0 m/s 

Cut-out wind speed 25 m/s (10 min average) 

28 m/s (3 seg average) 

Survival wind speed 70 m/s 

Temperature range in operation 

Temperature range out of operation 

-15 °C to 45 °C 

-20 °C to 55 °C 

Design life time 20 years 

 

The ambient conditions [21] for the turbine to function 

correctly are described in Table 2 where temperature and 

humidity are indicated. 

Table 2: Ambient conditions 
Ambient 

temperature 

Operating temperature: -15 °C a 45 °C 

Idling temperature: -20 °C a 55 °C 

Average temperature: 15 °C 

Humidity Average humidity: 65% a 75% 

 

The turbine Komai KWT300 generates power with the wind 

speed between 3 m / s and 25 m / s. The table 3 shows the 

ideal performance values of the turbine [21] and Figure 2 

shows the behavior. 

 

Table 3: Output performance 
Wind speed (m/s) Rotor rotation (rpm) Generated power (kW) 

3 12.0 0.5 

4 17.4 5.4 

5 21.7 24.2 

6 26.0 43.2 

7 30.4 72.0 

8 34.7 112.3 

9 39.1 165.5 

10 40.5 228.2 

11 40.5 297.7 

12-25 40.5 300.0 

 
Figure 2: Power curve of the wind turbine Komai 

 

4. Modeling of a fuzzy system for monitoring 

the condition of a wind turbine 
 

For the modeling of fuzzy inference system, the following 

methodology was used: 

 

a) Obtain the historical data base of the SCADA system on 

which it will be worked. 

 Select the relevant input signals. 

 Determine the number of linguistic terms for each input 

and output variable. 

 Design a collection of fuzzy rules type If - Then  

b) Represent the behavior model of the wind turbine 

c) Evaluate the model 

d) Interpretation of results 

 

The Figure 3 shows a block diagram of the proposed 

methodology. 

 

 

 
Figure 3: Block diagram of the proposed methodology 

 

4.1 Fuzzy modeling 

 

Generally speaking, how it might construct a fuzzy inference 

system for a specific application. The standard method for 

constructing a fuzzy inference system, a process usually 

called fuzzy modeling, has the following features: The rule 

structure of a fuzzy inference system makes it easy to 

incorporate human knowledge about the target system 

directly into modeling process (domain knowledge).  

 

When the input-output data of a target system is available, 

conventional identification techniques can be used for fuzzy 

modeling (numerical data also plays an important role in 

fuzzy modeling) [16]. 

 

The fuzzy modeling can be pursued in two stages. The first 

stage is the identification of the surface structure, which 

includes the following tasks: 
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1) Select relevant input and output variables 

2) Choose a specific type of fuzzy inference system 

3) Determine the number of linguistic terms associated with 

each input and output 

4) Design a collection of fuzzy if-then rules 

 

After the first stage, is obtained a rule base that can more or 

less describe the behavior of the target system by means of 

linguistic terms. The meaning of these linguistic terms is 

determined in the second stage, the identification of the deep 

structure, which determines the membership functions (MFs) 

of each linguistic terms. This stages includes the following 

tasks: 

1) Choose an appropriate family of parametrized MFs 

2) Interview human experts familiar with the target system  

3) Refine the parameter of the MFs using optimization 

techniques 

 

4.2 Historical database of the SCADA system 

 

The database consists of 35 SCADA signals. With records 

dating from March 19, 2013 to December 8, 2015. Which 

were taken from the turbine Komai. Consists of 61290 

records. Table 4 shows the relevant SCADA system data 

signals. 

Table 4: Relevant SCADA data signals 
Name of variable Unit Short description 

PitchAngle ° Inclination angle 

GearOilTemperature °C Gear oil temperature 

GeneratorSpeed Rpm Generator speed 

ActivePower Kw Output power 

WindSpeed m/s Wind speed 

NacelleTemperature °C Temperature inside the nacelle 

 

4.3 Structure of the fuzzy inference system 

 

The structure of the proposed fuzzy inference system Sugeno 

type is illustrated in Figure 4, it has three input signals (oil 

temperature, gondola temperature and output power) and an 

output variable which in this case is the condition. The 

membership functions used are triangular and illustrate a 

fuzzy rule of type If-Then. 

 

 
Figure 4: FIS with three inputs and one output 

 

Linguistic terms. In this step, the linguistic terms for the 

input/ output variables of the fuzzy inference system are 

defined. For the development of the fuzzy inference system, 

three linguistic variables were used in the antecedent part, 

which are described in the Table 5, the linguistic variables 

'OilTemp', 'NacelleTemp' and 'Power' are defined by the 

fuzzy sets „Very Low‟ (VL) 'Low' (L), 'Nominal' (N), 'High' 

(H) and „Very High‟ (VH). For the consequent part, the 

parameters are described in Table 6, the linguistic variable 

„Condition‟ are defined by the fuzzy sets. 

Table 5: Definition of linguistic terms of the input variables 
Input variables 

 (SCADA Signals) 

Linguistic  

Terms 

Oil temperature of gearbox (GearOilTemp) VL: Very low 

L: Low 

N: Nominal 

H: High 

VH: Very High 

Nacelle temperature (NacelleTemp) 

Output power (ActivePower) 

Table 6: Definition of linguistic terms of the output variable 
Output variable Linguistic Terms 

Condition 

N: Nominal 

W: Warning 

AL: Alert 

 

Once the linguistic terms have been defined, the membership 

functions with their respective parameters are defined. For 

this case, triangular functions are used. Table 7 shows the 

membership functions for the input variables with their 

respective parameters which were obtained from the 

specifications of the Komai turbine. 

Table 7: Parameterization of the triangular MFs (inputs) 
Oil temperature Nacelle temperature Output power 

VL: [0, 0, 0.2] 

L: [0, 0.25, 0.5] 

N: [0.35, 0.5, 0.65] 

H: [0.6, 0.8, 1] 

VH: [0.75, 1, 1] 

VL: [0, 0, 0.05] 

L: [0, 0.5, 0.1] 

N: [0, 0.1, 0.3] 

H: [0.25, .065, 1] 

VH: [0.3, 1, 1] 

MB: [0, 0, 0.25,] 

B: [0, 025, 0.5] 

N: [0.25, 0.6, 0.7] 

A: [05, 0.75, 1] 

MA: [0.75, 1, 1] 

 

In the consequent part of the fuzzy system, the linguistic 

variable corresponds to the 'Condition', which is defined by 

the fuzzy sets 'Normal Condition' (N), 'Warning Condition' 

(W), 'Condition Alert' (A) and are shown in the Table 8. The 

definition of the parameters is based on the level of impact 

according to the behavior of the input variables, with a rating 

from 0 to 1, where 0 is a normal condition coefficient and 1 

is a bad condition. 

Table 8: Parameterization of the triangular MFs (output) 

Triangular 

N: [0, 0, 0.4] 

W: [0.1, 0.5, 0.9] 

A: [0.6, 1, 1] 

 

The Figure 5 shows the triangular type membership functions 

used for a fuzzy inference system with 3 input variables 

(gearbox oil temperature, nacelle temperature and output 

power) and one output (condition). 
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Figure 5: MFs of linguistic variables 

 

Fuzzy rules. In this step, the linguistic terms for the input/ 

output variables of the fuzzy inference system are defined. 

For the development of this system some of the fuzzy 

inference rules that were considered are shown in Table 9, 

these rules are of the Yes-Then form and they have the 3 

input linguistic variables mentioned above (oil temperature, 

temperature of the gondola and power output). In the part of 

consequent, the condition of the wind turbine. 

Table 9: Parameterization of the triangular MFs (inputs) 
Rule Antecedent (If) Consequent (Then) 

# OilTemp NacelleTemp Power Condition 

1 High & Low & Low Warning 

2 High & Low & Nominal Warning 

3 High & Low & High Warning 

4 High & Nominal & Low Alert 

5 High & Nominal & Nominal Alert 

6 High & Nominal & High Alert 

7 High & High & Low Alert 

8 High & High & Nominal Alert 

9 High & High & High Alert 

10 Nominal & Nominal & Nominal Normal 

11 Low & Low & Low Normal 

12 Low & Low & Nominal Normal 

13 Low & Low & High Warning 

14 Nominal & Nominal & Low Alert 

15 Low & Nominal & Nominal Normal 

16 Low & Nominal & High Normal 

17 Low & Nominal & Low Alert 

18 Nominal & High & Nominal Alert 

19 Nominal & Low & High Alert 

20 Nominal & Nominal & Low Normal 

 

5. Experimental work 
 

To observe the behavior of the model made in this section, it 

was implemented using 20 data in the fuzzy logic toolbox to 

perform a comparison of results between the fuzzy inference 

system Mamdani and Sugeno. 

 

In order to verify the performance of the fuzzy system, the 

Mamdani model of the min-max form was performed, in the 

same way the Sugeno type model was implemented, both in 

the Matlab Fuzzy Logic ToolBox, 10 of the results obtained 

are shown in the Table 10 using triangular functions. 

 

Table 10: Parameterization of the triangular MFs (output) 

OilTemp 

 (◦C) 

NacelleTemp 

 (◦C) 

Potencia 

 (kW) 
Mamdani Sugeno 

55.85 38.90 29.66 0.44 0.59 

40.18 33.90 99.80 0.18 0.00 

65.50 49.00 186.91 0.82 1.00 

62.90 44.27 134.26 0.55 0.94 

62.90 45.46 234.31 0.55 0.92 

43.91 26.95 122.66 0.18 0.00 

44.28 31.90 193.69 0.18 0.00 

32.06 27.90 30.602 0.19 0.00 

64.90 47.90 199.79 0.80 0.99 

50.00 30.00 1000.00 0.13 0.00 

 

The experiments throw a difference between the fuzzy system 

type Sugeno and Mamdani, however; both correctly indicate 

the condition in which the wind turbine is located according 

to the data. 

 

6. Conclusion 
 

In this research, with the aim of improving the wind turbine 

condition monitoring activities and due to the good 

performance of the fuzzy systems in the maintenance area, a 

fuzzy Mamdani system is proposed for the diagnosis of wind 

turbine conditions considering factors impact (temperatures, 

power, speeds), which in undesirable conditions, have a 

negative impact on the life of the turbine as it is the case of 

an increase in temperature caused by insufficient cooling that 

can be a consequence of a contaminated filter, this 

temperature increase generates more heat than the turbine is 

able to support under optimal conditions, which critically 

affects its useful life and therefore affects the wind turbine 

cycle.  

 

To achieve this objective, a knowledge base was acquired 

through the SCADA system of the wind turbine, in addition 

to the available documentation, the standards of the 

international electrotechnical committee (IEC), and the 

knowledge of experts in the area. From this knowledge the 

fuzzy rules were extracted and a fuzzy system was developed 

with which the diagnosis of wind turbine condition is 

proposed.  

 

The proposed system was implemented contemplating 20 

data sets and using the Fuzzy Logic Toolbox of Matlab, 

obtaining similar results with two models of fuzzy inference 

system (Mamdani and Sugeno) and according to the experts 

consulted, both expected performance was obtained. 

 

The application of the proposed fuzzy inference system has 

as a benefit the reduction of time in diagnoses made by 

human operators, reduction of the human error factor, 

improvement in the maintenance schedule of the turbines if 

necessary, which results in the reduction of maintenance 

costs and the increase in the reliability of operation of the 

wind turbine, which are a fundamental part in any industrial 

process. 
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As future research work, it is contemplated that the system of 

inference not only of the condition of the turbines to alert 

operators, but also be able to detect failures incipiently and 

also indicate the possible cause. 
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