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Abstract: The sideband suppression ratio of RC polyphase filters is independent of source and load impedances. This property is valid 

for any number of stages and for any detuning between the stages. Due to this property, noise figure minimization can be done 

independently. Two formulas for noise figure of passive two-ports are obtained, and noise figure of polyphase filters are minimized. The 

noise figure of an RC polyphase filter is strongly dependent on the source resistance and capacitance. For a two-stage filter providing 

better than -25 dB sideband suppression over two octaves, a minimum noise figure of 10.18 dB was found. 

 

1. Introduction 
 

RC polyphase filters are widely used in communication 

systems [1]. Their typical applications are modulation and 

demodulation of single sideband signals. Due to their 

simplicity, they are popular in IF stages of application-

specific integrated circuits (ASICs). Noise in polyphase 

filters is qualitatively analyzed in [2], where the relation 

between resistor values in different stages is discussed for 

reducing noise. A pioneering paper on polyphase filters is 

[3]. Derivation of the structure and its sideband cancellation 

property are explained there in detail. 

 

In a receiver system, polyphase filter usually follows the 

mixer stages. Therefore noise contribution of the polyphase 

filter to the system noise may be significant. For this reason, 

noise minimization of the polyphase filter is important. 

However, none of the mentioned publications consider 

terminations of polyphase filters for minimum noise figure. 

 

In this paper we show that the sideband suppression ratio of 

an RC polyphase filter is independent of the impedance of 

the source and the load under very general conditions. As an 

application of this property, we show that noise figure 

optimization can be done independently, without 

degradation of the sideband suppression ratio. Two new 

formulas for noise figure of passive two-ports are obtained 

and applied for our case. It is shown that noise figure of an 

RC polyphase filter is strongly dependent on the source 

resistance and capacitance, and independent of the load 

impedance. As an example, noise figure of a two-stage RC 

polyphase filter, designed for sideband suppression lower 

than -25 dB over two octaves, is minimized to 10.18 dB. 

 

2. Transfer functions of an RC polyphase 

filter 
 

The one-stage RC polyphase filter is an 8-node structure 

shown in Fig. 2.1 [3]. 

 

 
Figure 2.1: A one-stage RC polyphase filter 

 

In Fig. 2.1, all resistors and capacitors are identical. In a 

multistage filter, nodes 5-6-7-8 are connected to nodes 1-2-

3-4 of the next stage, respectively. Resistor and capacitor 

values of different stages are not necessarily identical. In this 

report, we consider the case when all capacitors are identical 

and only resistors of different stages may differ from each 

other. 

 

From the many possibilities, input and output ports can be 

configured from the nodes in two meaningful ways (see 

please Fig. 2.2ab). 
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In the arrangements of Fig. 2.2, four ports are defined 

(between nodes in parentheses): 1 (1-2), 2 (3-4), 3 (5-7), 4 

(6-8) for Fig. 2.2a and 1 (1-3), 2 (2-4), 3 (5-7), 4 (6-8) for 

Fig. 2.2b. Because the arrangements are symmetrical, only 

two voltage gains are considered, Vu31 and Vu41, that is, 

forward voltage gains between ports 3-1 and 4-1, 

respectively. 

 

In both cases, output ports are between nodes 5-7 and 6-8. In 

Fig. 2.2a voltage gains Vu31 and Vu41 are of identical 

amplitude for all frequencies (amplitude match), and of 90° 

phase difference at one frequency value only. While in Fig. 

2.2b, phase difference of Vu31 and Vu41 is 90° for all 

frequencies (phase match), and amplitudes are identical at 

one frequency value only (as we show in the following). 

Because noise figure of the configuration in Fig. 2.2b can be 

better than that of the other, we restrict our investigation to 

that case. Thus our first goal is to obtain voltage gains in 

Fig. 2.2b. 

 

There is no general formula for voltage gains of arbitrary 

number of stages. For less than 30 dB sideband suppression, 

one or two stages are sufficient, thus we obtain voltage gains 

for one and two stage filters. 

 

Symbolic analysis [5,6] yields the following formulas for 

voltage gains: 
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L
1,31U

ZR2ZCRj

Z
V
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where Eqs. (2.1)-(2.2) show voltage gains for one stage, the 

other two equations for two stages, j is the imaginary unit,  

is the angular frequency and ZL is the load impedance. 

Resistor values in the first and second stages are denoted by 

R1 and R2, respectively. 

 

Eqs. (2.1)-(2.4) are obtained by symbolic analysis because 

otherwise they needed a lengthy calculation. Probably the 

considerable amount of necessary calculations is the reason 

why the following result has not been found up to this time. 

 

The ratio of the voltage gains is 

1

1,31U

1,41U
CRj

V

V
    (2.5) 
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    (2.6) 

 

where Eq. (2.5) is the ratio for one stage and Eq. (2.6) for 

two stages. We can see that the phase match is perfect for all 

frequencies while the amplitude match is perfect only for 

1

1
CR

1
  and 1

RRC1

)RR(C

21

22

21 



 (that is, 

1

1
CR

1
  and 

2

2
CR

1
 ), respectively. As we can 

also see from Eqs. (2.5)-(2.6), amplitude and phase match 

factors (defined in the Appendix) are totally independent of 

the source and the load impedances. 

 

Main characteristic of a single sideband modulator and 

demodulator is the sideband suppression ratio, that is for 

sinusoidal modulation, the ratio of the amplitudes of 

sideband voltages at the output. Assuming ideal mixers and 

adder in the system, we consider sideband suppression ratio 

as the characteristic of the filter applied. 

 

In the Appendix we show that the sideband suppression ratio 

is expressed by the amplitude and phase match factors. As a 

consequence, the sideband suppression ratio is also 

independent of the source and load impedances. This 

property will appear important in noise minimization. 

 

We state without proof, that the sideband suppression is 

usually dependent on asymmetry of source and load 

Paper ID: ART201922 DOI: 10.21275/ART201922 1441 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 

Volume 7 Issue 7, July 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

impedances, thus we have to take care for the symmetry of 

terminations in realization 

 

3. Noise figure of Passive Circuits 
 

Our goal is to minimize the noise figure of a polyphase 

filter. In this section we derive two formulas for noise figure 

of passive two-ports, and one of them is applied in the next 

section for noise minimization. 

 

Due to the required symmetry for terminating impedances, it 

is sufficient to consider noise figure for one input and one 

output, the others being properly terminated (Fig. 3.1). 

Consequently, noise figure of passive two-ports is discussed. 

 

 
Figure 3.1: The two-port whose noise is investigated. ZS 

and ZL are adjusted synchronously to the outer terminations 

 

We assume that impedance matrix of the investigated two-

port exists. Due to reciprocity, this model consists of three 

complex numbers per frequency. For noise modelling, it 

seems more convenient using three other complex model 

parameters, provided that the former and the latter three are 

uniquely convertible to each other. Without proof we state 

that our model in Fig. 3.2 satisfies the mentioned 

requirement, that is, under the same terminations, our model 

is equivalent to the impedance matrix model. 

 
Figure 3.2: Notations for noise figure calculation. ZS and Zout are assumed to produce thermal noise. The two-port is modelled 

by Zin, Zout and the relation between V2 and V1 

 

The circuit in Fig. 3.2 is considered to be in thermal 

equilibrium, having common noise temperature T for all 

noise sources. 

 

The two-port is characterized by the input and output 

impedances under actual terminations and the loaded 

forward voltage gain. Thermal noise in the two-port is 

modelled by the noise of Zout. The two-port is excited by a 

source with noisy source impedance and loaded by a 

noiseless load impedance. 

 

The noise figure is defined as  

out

in

SNR

SNR
F       (3.1) 

where 
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  (3.2ab) 

 

and we denoted the signal and the noise with subscripts s 

and n, respectively. 

 

The signal power at the input is, assuming sinusoidal signal 

with amplitude V1: 
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2
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The noise power at the input is the noise power coming from 

the impedance ZS : 
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  (3.4) 

In Eq. (3.4), k is the Boltzmann constant ( 1.3807*10
-23

 

Joule/°K), T is the noise temperature and B is the noise 

bandwidth. 

 

The signal power at the output is 
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and the noise power is 
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    (3.6) 

By combining the equations above, the noise figure is 

obtained: 

2

Lout

2

Lout

2

ins

2

ins

2

u ZZ

ZR

ZR

ZZ

V

1
F




   (3.7) 

 

In Eq. (3.7), 12u V/VV   is the loaded voltage gain. We 

can see from Eq. (3.7) that if inS ZZ   and 

outL ZZ   then the formula can be simplified as 

 

s

out

2

u
R

R

V

1
F     (3.8) 

 

as it was obtained by [4]. Eq. (3.8) is useful for quick 

approximations in system design. 

 

In Fig. 3.3 we compare the noise figure values obtained by 

the circuit analysis program APLAC [7], to those of Eq. 

(3.8). Also, In Fig. 3.4 we compare analyzed noise figure to 

that of Eq. (3.7) when the above conditions are not fulfilled. 

Agreement is good in both cases. 

 

 
Figure 3.3: Comparison of Eq. (3.8) to an analysis result. RS 

is adjusted to meet conditions for Eq. (3.8) 

 

 
Figure 3.4: Comparison of Eq. (3.7) to an analysis result 

when the conditions of Eq. (3.8) are not met (noise 

matching) 

 

4. Noise Figure Minimization of the polyphase 

Filter 
 

In this Section, we use Eq. (3.7) in minimization of the noise 

figure of a polyphase filter. The noise minimum is found 

with respect to ZS. Following this step, noise figure for the 

next stage (summing buffer) can be minimized with varying 

ZL. In the last two steps, the invariance of the sideband 

suppression ratio with respect to ZS and ZL is exploited. 

 

Let us consider first the one-stage filter. Analytic 

expressions for Vu, Zin and Zout are 
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With these expressions substituted into Eq. (3.7), the noise 

figure is at resonance 
11 CR/1 : 

S1

2

11S

2

S1S

2

S
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RR

R2RX2XRR2R
F


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where SSS jXRZ  . Noise figure at resonance is 

independent of ZL as expected. The noise figure has a 

minimum at 

11S jRRZ     (4.5) 

However, in IC realization, inductive termination is not 

allowed. With 0XS  , the noise figure has a minimum at 

1S R2R     (4.6) 

Its value is 

  222Fmin 1    (4.7) 

that is, 6.838 dB. 

 

We can observe at this point that noise match is different 

from power match. From Eq. (4.2) it follows that power 

match at the input is dependent on ZL. However, noise match 

is independent of ZL as we have seen. 
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Now let us continue with a two-stage filter. Expressions for Vu, Zin and Zout are 
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Substituting Eq. (4.8)-(4.10) into Eq. (3.7), the noise figure 

at center frequency 

21

C
RRC

1
  (this frequency 

corresponds to the local maximum of the sideband 

suppression) is obtained as follows: 

21s
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where both terminations are considered as resistive. The 

noise figure is independent of the load as before. The noise 

figure has a minimum at 

21

2121
S

R3R

)RR3(RR2
R




    (4.12) 

 

The value of the minimum noise figure is a complicated 

function of R1 and R2, we suggest using Eq. (4.11) instead. 

 

We note that in case of R1=R2, Eq. (4.12) reduces to Eq. 

(4.6), and 

 

  244Fmin 2     (4.13) 

 

that is, 9.85dB. This is the lower limit for noise figure of 

two-stage RC polyphase filters. 

 

Comparing Eq. (4.7) to Eq. (4.13), it is easy to find the 

general formula for lower limit noise figure of n stages: 

 

  )21(2Fmin n

n     (4.14) 

 

We have not proved this formula in general but checked its 

validity by computer simulation for n=1,2…5. 

 

5. Example: Optimum noise figure of a 

detuned two-stage polyphase filter 
 

As an example, we minimize the noise figure of a two-stage 

detuned polyphase filter. Input data for the design is the 

capacitance value C=8pF (due to estimated silicon area), the 

center frequency fc=10MHz and the sideband suppression at 

center frequency Smax=-25dB. The following equations are 

solved for R1 and R2: 

21

C
RRC2
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2121
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RR2RR

RR2RR
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The result is R1=1.227k, R2=3.226k. Applying Eq. (4.12) 

and (4.11) for noise matching, the source resistance for 

minimum noise figure is RS=2.239k, and the minimum 

noise figure is Fmin=10.18dB. Sideband suppression of this 

filter as a function of frequency is shown in Fig. 5.1. Noise 

figure at the center frequency as a function of the source 

resistance and capacitance are given in Fig. 5.2 and 5.3, 

respectively. 

 

It can be shown that filter bandwidth is not independent of fc 

and Smax. Therefore the capacitance value as an input 

variable cannot be replaced by an equation for bandwidth. 

 

 
Figure 5.1: Sideband suppression of the noise matched filter 

 

 
Figure 5.2: Noise figure as a function of the source 

resistance 
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Figure 5.3: Noise figure as a function of source capacitance 

 

6. Conclusions 
 

Some results on noise figure minimization of one- and two-

stage polyphase filters have been obtained. In Section 2 

voltage transfer functions have been given. In Section 3 two 

formulas for noise figure of passive two-ports are shown. In 

Section 4 noise figure of one- and two-stage polyphase 

filters are minimized. It was shown that the sideband 

suppression ratio is independent of the source and load 

terminations, thus noise figure can be minimized without 

degradation of the sideband suppression. In Section 5 we 

applied our results in designing and noise matching of a two-

stage detuned polyphase filter. 

 

Our results have been achieved through an extensive usage 

of symbolic analysis programs. Large amount of the 

necessary computation effort, especially in noise figure 

minimization of two-stage filters, is a reason why these 

results have not been revealed before. 

 

The independence of the sideband suppression from source 

and load are proved here for one- and two stages. This 

property was observed as generally valid for arbitrary 

number of stages by computer simulation, however. 
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8. Appendix: The Sideband Suppression Ratio 
 

The analyzed polyphase filter is applied in single sideband 

modulators and demodulators. The amplitude and phase 

mismatches result in finite sideband suppression. In the 

following, this relation is shown in the example of a single 

sideband modulator (Fig. 8.1). 

 

 
Figure 8.1: Single sideband modulator 

 

We assume the in-phase and quadrature RF voltages in 

perfect amplitude and phase match: 

 tcosVv RFRFRFi                             (8.1) 






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 


2
tcosVv RFRFRFq                     (8.2) 

We take into account errors in LO signals only: 

 tcosVv LOLOiLOi                           (8.3) 


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




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2
tcosVv LOLOqLOq

            

 (8.4) 

 

where VLOi may differ from VLOq causing amplitude 

mismatch, and   may differ from zero causing phase 

mismatch. In the following, we derive relation between 

sideband suppression, amplitude match and phase match. 

With no loss of generality, VRF=1 Volt is chosen. 

 

The output voltage of the modulator can be written as 

     LLORFLULORFUOUT tcosVtcosVv 

  

(8.5) 

 

where U and L denote the upper and lower sidebands, 

respectively. If the mixers, the adder, and both the amplitude 

and phase matches are perfect (VLOi=VLOq and  =0), then 

VU=0 and VL=VLOi. Therefore we define (upper) sideband 

suppression in dB as follows: 











L

U

V

V
log20S   (8.6) 

Using trigonometric identities in Eqs. (8.1)-(8.5), sideband 

suppression can be expressed as 

     
     22

22

sinmcosm1
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where 

LOi

LOq

V

V
m    (8.8) 

 

is the amplitude match and   is the phase match. For 

perfect match, m=1 and  =0, resulting infinitely large 

negative S. 
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Contour plot of the negative of sideband suppression as a 

function of amplitude match m and phase match   is 

shown in Fig. 8.2. 

 
Figure 8.2: Contour plot of negative of sideband suppression in dB. Horizonztal axis: amplitude match in dB, vertical axis: 

phase match in degrees 
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