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Abstract: Let V denote the classical Volterra operator on L2[0,l] and let Z,,Z, be an arbitrary complex numbers. We investigated

the numerical range and the numerical radius of 21V+22V*. In particular, we determine the numerical range of V without using

the known results.
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1. Introduction
Denote by V the classical Volterra operator
(VF)(x) = jff (t)dt, f e L?[0,1].
The adjoint of the Volterra ope(;ator is
(VF)(X) = j.f (t)dt.
X

The Volterra operator is compact, quasinilpotent and
accretive. In [3] considered the operator norm of operators

2,V +12,V" . For a bounded linear operator A on a complex
Hilbert space H, the numerical range W(A) is the image of
the unit sphere of H under the quadratic form x — (Ax, X)
associated with the operator. More precisely,

W(A) ={(Ax,x):x e H,|| x||F1}.
It is well known that numerical range of an operator is
convex (The Toeplitz-Hausdorf theorem) and spectrum is
contained in the closure of its numerical range. The
numerical radius of an operator A is defined by

o(A) =sup{| L |: L e W(A)}.

(see [2])

We will need the following theorem.

Theorem 1.([1], p.268) If A is a bounded operator on H

and 0 e[-m, 7], put Ao =maxo(By) . where
By = %(e‘i9A+ e®A") = By. Then
W(A)= [ Ho
Oe[-m, 7]
where the half-space H, is defined by
Hy ={zeC:Re(e z) <Ay}

According to Theorem 1, if Age Cl-m,n] then
Xxcos6+ysin6=%, is envelope curves. Because, if

—xcot0. Observe

0<0<m, then sin6>0 and y< *o
sin®

that, if —t<6<0, then sin6<0 and yz?‘—ee—xcote.
sin

By the calculation, implies that
X = Ay COSO—AySind
{y: Lo SiNO+ Xy COSO.
The aim of this paper is to study the numerical range and the

numerical radius of operators z,V +2,V", where z,,z, are

arbitrary complex numbers. In particular, we determine the
numerical range of V without using the known results.

2. The Results

We consider the numerical range and numerical radius of
operators z,V +2,V .

Theorem 2. Let z; and z, be arbitrary complex numbers
and A=z,V+2,V . If 2, 22, (z =16z, =1,e") then
closure of W (A) is the convex hull of the following curves

_nsino—r,sinf
 2Avtrky)
(ry =17 )(r, sin(@—P) —r, sin(0—a))sin 0
2(y +7ko ) (rf +15 +211, c0s(20 — (00 +B)))
_ I, cosp—r, coso
- 2Ay+mky)
(r3 =1 )(r, sin(6—P) —r, sin(6 —a)) cos 6
20y +7ko) (i +17 +21,1, C0S(20— (o + )

(2)

where 0 e[-m, 7], v = arg(e Yz, +€°z,),

Im(e ™ (z, —2,)) _ 1, 5in(0—PB) —1; 5in(6 — 1)
2(y +7k) 2(y +7Kkg)
and k, €{-1,0,1}. The numerical radius of A is

o(A)= sup A3 +1p°.

-n<0<n

g = max
k
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If z, =2, =2, then

- in(0—p)—r,sinO—o) )|
W(A) =[0,z] and o(A) =|z|. (w +7ko) =[arctan( ;2:;:((9_ 5 ;_ESC'SS((O _Oé))j} =

Proof. Let z,,z, be distinct complex numbers. Denote

2 2
. ry —r,
A=zV+z,V in Theorem 1, then spectral problem = 2 _1

NAF = 2412+ 251, c08(20— (oL +B))
sALS It follows from (1), closure of W(A) is convex hull of the
following curves

e 0 (z,V+2,V)f +° (V" +2,V)f = 20f, L eR. 3)

This integral equation to a differential equation by applying fsina—r,sinp
-1 2

the operator D = % Thus, 2(y +1iky)
2 2 - - .
ilm(e‘ie(zl B 22))f(t) _ xf'(t) (r; =) (ry sin(@—P) —r, sin(0 —a))sin©

o 2(y + ko) (1 + 17 + 21,1, c08(20 — (ot +
If z, =z, then general solution is r, co(s\lé—rlc%)sél 3+ 211, C0S(20 (o + )

iIm(e‘ie(zrzz))t 2(y + ko)
f(t)=Ce * (=) (rpsin(0—B) — 1, sin(0 — o)) cos
where, AeR and C -constant. Now, we insert X =0 and 2(y + 1Ky )2 (12 + 17 + 21,1, c0S(20 — (oL + B)))’

X =1 into (3), account that where 0 e[-7, 7].

1
(z,6° + zze‘ie)jf (t)dt = 24f (0) By (1), implies that x? +y? =32 + 442, we get
and ° o(A) = sup 2 +ry%.
—n<O<T
1 .
(287" +Ze“’).[f (t)dt = 20F(1) Let z; =z, =z=re" (-n<a<n).Actually,
_ 0 2o =0 if Re(ee)<0
respectively. If z,e+z,e" =0, then f(0)=F(1)=0, rRe(e™®e ), if Re(ee)>0

implies that f(tf)=0. It is a contradiction. If g

z_leie +zze‘i9 %0, then we get 0 if |0—of> n
e 92, +el%2, ; Ao = 2
f(1 :_1—2f 0)= ZIWf 0 , 0 . T
(1) 92, 17, (0)=e7"1(0) rcos(@—ay), if |6—oc|£5.
where T
W:arg(e—iezlJreieZ)_ If |6—af> > then x=y=0.
. If|10-al<, th
-0, —a|s—, then
WZZW‘FZEK,I(GZ. 2
Therefore, {x =rcos(0— o) cosO+rsin(0—a)sind =rcosa
Im(e(z, -z =rcos(6—a)sinf—rsin(6—a)cosd =rsina.
}“6 = max A’k = max ( ( 1 2)) . y ( ) ( )
k k 2(y + 7k) t—l
Let z; =re™, z, =r,e® . Observe that, We choose fy(t) = % and f(t)=1. Note that,
Im(e™®(z,—2,)) =r,sin(@—P) -1, sin(0—a), It
i o— i(0—c0) ito-p) (Af,,Ty) =0 and (Af,f) =z Therefore,
€ nte =0t +e ' W(A) =[0,z] and ®(A) =|z]|. The completes the proof.
w4k = arctan[ rsin(6—p)—nsin(6—a) j+nk’ Corollary 1. Let |z z,l=r and z,#27,.
r, cos(6 —a) —r, cos(6 — ) (z, = reialzz - reiﬁlaiﬁ) Then
. . . |a—pB| . a-P
r,sin(0—p)—r;sin(6—a) sin—— ;e+B  sin——— ;+f
Ly =2 .(where k, €{-1,0,1}) e 2 T2
0 2(y + k) 0 W(A)=| -1 —oEgme 2 —g—e 2 (4
2 2
and

and
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Proof. Put p =r, =r (a=p) in (1), we get [4]P. R. Halmos, A Hilbert Spavce Problem book,
_a-B___a+P Springer-Verlag New York Inc., 1982.
_ I(sina—sinp) _ r.smTCOST
2(y + k) v+ 7Kg (6) ©)
_r(cosp—cosa) _ .Sina_ﬁsmwrﬁ
2(\|/+T[ko) \|/+Tfk0
and
SinL_B iﬂ
z=X+iy=r-—=—e 2.,
y+7Ky
Observe that,
)
Y= arg[cos[e—o%ﬁjeI 2 J
i.e,
OL__B, if |9_°L_+B e
2 2 2
w:—m+g%E,ifW—g§EPg,a>B @)
n+°°;B, if |9—“T+B|>%, a<p.

and k, =0. Now, we insert (6) and k, =0 into (5), and put
f(0) =@ Pt £,t)=e@PD f,(1) =@ P desired (3)
and (4), respectively.

Corollary 2. The numerical range of the Volterra operator is
the set lying between the curves
1—c<2)s<p i (p—SIn(p.

(PZ

¢el0,2n]—

(Also see [4], p.113)

Corollary 3. For the classical Volterra operator V , it holds:
. 1
No(V)=—.
) o(V) >

i) W(ReV) = [o,%].

iii) W(ImV) = [—%,%].
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