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Abstract: In this work, the Rescaled Range Statistics R/S was used to analyze the Nigerian All-Share Index (NASI) of the Nigerian 
Stock Market from 1990 to 2007. The times series of NASI driven by a four-quarter moving average over 72 observations was classified. 
The Hurst parameter 𝑯 ∈ (0,1)as a dimensionless estimator, was obtained, in order to characterize the historical market’s trend. The

value of H obtained showed the long-range dependence (LRD) of the NASI.
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1. Introduction 
 
Hurst (1951) gave a long term storage capacity of water 
reservoirs. The Hurst parameter, H, is an estimator (without 
dimension) for the self-similarity of a times series initially 

defined by Harold Edwin Hurst to develop a law for 
regularities of the Nile’s river water level, which had useful 
application in medicine and finance. 
 
The R/S statistic has the ability to detect long range 
dependence (LRD). Its sensitivity to short range was 

discussed by Mandelbrot and Wallis (1968), while 
Mandelbrot (1975) highlighted on fractional Gaussian noise. 
Anis and Lloyd (1976) discussed rescaled Hurst range of 
independent normal summands, whereas Davies and Harte 
(1987) gave some tests for Hurst effects.  
 

Aydogan and Booth (1988)examined long circles in 
common stock returns. Lo (1991) analysed long term 
memory in stock market prices by proposing a modified R/S 
to overcome any shortcoming. Also, in Peters(1991), the 
S&P 500 index was analysed using R/S but afterwards 
revealed some characteristic LRD of return series. In 

Bayraktar et al. (2003), S&P 500 index data were sampled 
and analysed at every minute intervals for 11.5 years 
(January 1989-May 2000). 𝐻 ∈(0,1) was estimated by 
employing an asymptotically Gaussian estimator through 

the log-scale spectrum. Also, the estimated variance of the 

N points data segments had order
1

𝑁
 . 

 
Matos et al. (2008), used a notable approach of 
understanding time and scale-dependent H, while emphasis 
on H estimation having long memory effect was given by 
Chronopoulou and Viens (2009). Pfaff(2006) highlighted on 

times series. Gloter and Hoffman (2007) estimated H for 
discrete data with noise. A new insight into financial market 
dynamics was presented by Annorzie(2015).  
 

2. Self-Similar Processes 
 
Self-similarity of a process 𝑋 = (𝑋𝑡 , −∞ < 𝑡 < ∞) can be 

defined through its distribution. Assume that (𝑋𝑎𝑡 )and 

𝑎𝑘(𝑋𝑡)are identically finite-dimensional distributions for all 
𝑎 > 0, then X is self-similar with H (Taqqu,1988).  

 

Let 𝑋 = (𝑋𝑡 , 𝑡 =  0,1,2, . . . ) be a covariance stationary 

stochastic process with 𝜇, 𝜎2 , 𝑎𝑛𝑑𝑟(𝑘), 𝑘 ≥ 0 as mean, 
variance and autocorrelation function respectively. Suppose 
X has an autocorrelation function of the form 

𝑟 𝑘 ~ 𝑘−𝛽𝐿 𝑘 , 𝑎𝑠𝑘 → ∞ such that 0 < 𝛽 < 1 and 𝐿is 

slowly varying at infinity. Also, let L be asymptotically 

constant. For each 𝑢 =  1,2, . . ., let 𝑋(𝑢) =  (𝑋
𝑘

(𝑢)
,𝑘 =

 1,2,3, . . . ) denote the time series obtained by averaging the 
original series 𝑋over non-overlapping blocks of size u, i.e. 

𝑋(𝑢)is given by  

 𝑋𝑘
(𝑢)

 =
1

𝑢
 𝑋 𝑘−1 𝑢 + ⋯+ 𝑋𝑘𝑢−1 , 𝑘 ≥ 1 (2.1)  

 

Definition 2.1: A process X is called (exactly) second-order 
self-similar with self-similarity parameter 𝐻 =  1−
𝛽

2
 𝑖𝑓, 𝑓𝑜𝑟𝑎𝑙𝑙𝑢 =  1,2, . . . , VAR 𝑋 𝑢  = 𝑎2𝑢−𝛽𝑎𝑛𝑑 

𝑟
 𝑢 

(𝑘) =  𝑟(𝑘) =
1

2
((𝑘 +  1)2𝐻 −  2𝑘2𝐻 + |𝑘 − 1|2𝐻),   𝑘 ≥ 0 (2.2)  

Where r(u) denotes the autocorrelation function of  𝑋(𝑢) 
 

Definition 2.2: A process X is called (asymptotically) 
second-order self-similar with self-similarity parameter 
𝐻 = 1 −𝛽/2  if, for all k large enough,  

𝑟 𝑢  𝑘 → 𝑟 𝑘 ,   𝑎𝑠𝑢 → ∞        (2.3)  

 

2.1   Properties of Self-similar processes 

 

𝐻is a self-similar process whose properties are equivalent to 
the following:  
(a) Hurst effect: The R/S is characterized by a power law  

𝐸 𝑅 𝑢 /𝑆 𝑢  ~ 𝑎1𝑢
𝐻   𝑎𝑠  𝑢 → ∞  𝑤𝑖𝑡𝑕  

1

2
< 𝐻 < 1 

(b) Slowly decaying variances: The variances of the sample 
mean are decaying more slowly than the reciprocal of the 
sample size, i.e.  

𝑉𝐴𝑅 𝑋 𝑢  ~𝑎2𝑢
2𝐻−2 𝑎𝑠  𝑢 → ∞ 𝑤𝑖𝑡𝑕 

1

2
< 𝐻 < 1. 

 
(c) Long-range dependence (LRD): The autocorrelations 
decay hyperbolically rather than exponentially in order to 
show a non-summable autocorrelation function Σ𝑟(𝑘)  =
 ∞.This implies that though the 𝑟 𝑘 ′𝑠are individually small 
for large lag, their cumulative effect is important.  
 

(d) L/f-noise. The spectral density f(·) obeys a power law 
near the origin, i.e.,  
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𝑓 ⋋ ∽ 𝛼3 ⋋1−2𝐻, 𝑎𝑠 ⋋→ 0, 𝑤𝑖𝑡𝑕  
1

2
<  𝐻 <  1,

𝑤𝑕𝑒𝑟𝑒 𝑓 ⋋ =   r  k eik⋋

K

. 

 

2.2 Estimation Methods 

 
We present an overview of some estimation methods for a 
long-range dependence parameter, H. Most of the methods 

below are also described by Taqquet al. (1995).  
 

2.2.1 Aggregated Variance Method 

The aggregated variance method is based on the self-
similarity of the sample as shown in Definition (2.1). 
Similarly, due to the asymptotically self-similarity of the 

aggregated processes 𝑋(𝑚)given by  

𝑋
𝑘
(𝑚)

=
1

𝑚
 𝑋𝑘𝑚 + …+ 𝑋 𝑘+1 𝑚−1 ,   for  𝑘 =

 0,1, . . .,      (2.4)  

𝑋(𝑚)has the same finite dimensional distribution as 𝑚𝐻−1for 

large m. Inparticular, 𝑉𝑎𝑟(𝑋𝑘
(𝑚)

) =  𝑚2𝐻−2𝑕−2𝑉𝑎𝑟(𝑋𝑘).The 

variance of 𝑋
𝑘
(𝑚)

)is equal for every k and a plausible 

estimator is  

 𝑉𝑎𝑟(𝑋𝑘
(𝑚) 

) =
1

( ) ( ) 2

0

1
( )

M
m m

i

i

X X
M






              

(2.5)  

where
( )mX denotes the sample average of 𝑋(𝑚) ∶

1
( ) ( )

0

1 M
m m

i

i

X X
M





 
 

 

3. R/S Analysis: A Simulation Experiment 
 
In 1908, the Einstein's Tto the one-half rule is given by  

𝑅 = 𝑇
1

2                         (3.1) 

whereR represents the displacement in time T. It has been 
useful both in Statistics and Financial economics to 
annualize volatility or standard deviations, Edgar 
(1994:p.55).  
 
From Table 1, we present the analysis of the NASI data as 

follows (Annorzie, 2015). Let 𝑦𝑟 = (𝑁𝐴𝑆𝐼)𝑟   𝑎𝑛𝑑  𝑥𝑟 =
𝑙𝑜𝑔(𝑦𝑟)  𝑤𝑕𝑒𝑟𝑒  𝑥𝑟 = (𝑥1 , . . . , 𝑥𝑛 ) represent n consecutive 

terms of a time series with mean, x , defined as  

           (3.2) 

 
The standard deviation, 𝑆𝑑 , is estimated as  

2

1

( )
n

r

r
d

x x

S
n








                    

(3.3)  

which is merely the standard normal formula for standard 

deviation. If ( ), 1,2,..., ,r rw x x r n   then the data 

can be normalized as:  

1 1

( )

0

n n

r r

r r

w x x
nx

w x
n n n

 



    
 

      

 (3.4) 

The cumulative time series 𝑌𝑛can be written as: 

 

𝑌𝑛 =  𝑧𝑟

𝑛

𝑟=1

⟹ 𝑌𝑛 =  (𝑥𝑟 − 𝑥 ) =  𝑥𝑟 −𝑛𝑥 

𝑛

𝑟=1

= 0

𝑛

𝑟=1  
 
 

 
 

    (3.5) 

where
1 1 , 2,..., ,rY w w r n    that is, 𝑌𝑛will always 

be zero because has a mean of zero. The adjusted range, 

𝑅𝑛, is:  

𝑅𝑛 = max 𝑌1, …, 𝑌𝑛 −𝑚𝑖𝑛 𝑌1 ,… , 𝑌𝑛      (3.6) 

which is the (non-negative) distance travelled by the system.  
 

Deviation from the mean is given by ,r rw x x  as shown 

in Equation (3.4) and Table 1. The first value of the 
cumulative sum is the same as that of deviation (from the 
mean) while the next value of cumulative sum is the sum of 

its first and second values of the deviation. Thus, current 
value of the cumulative sum is the sum of its previous value 
and the current value of the deviation, see Table 1,and 
Equations (3.4) and (3.5).  
 
The supremum (sup) of the cumulative sum occurs at the 

fourth quarter of 2007 while the infimum (inf) of the 
cumulative sum occurs at the first quarter of 1996, see Table 
1. Hurst found a more general form of Equation (3.1) to be:  

   (𝑅/𝑆)𝑁 = 𝐶𝑛
𝐻                                 (3.7)  

where the subscript, n, for (𝑅/𝑆)𝑛refers to the R/S value for 

𝑥1 ,… , 𝑥𝑛and C is a constant. Equation (3.7) becomes  
𝑙𝑜𝑔(𝑅/𝑆)𝑛  =  𝑙𝑜𝑔(𝐶) +  𝐻𝑙𝑜𝑔(𝑛)          (3.8)  

 
The Hurst parameter can be approximated by plotting the 
log(𝑅/𝑆)𝑛versus the log(n) and using an ordinary least 

squares regression to solve for the slope through.  
 
3.1 Systematic Guide to R/S Analysis 

 
R/S method is one of the processes that is highly data-
intensive. This section breaks Equations (3.2)-(3.8) into a 

series of executable steps. These include the following:  
 

1) Begin with a time series of length M. Convert this into a 

time series of length 𝑁 = 𝑀 − 1 of  
logarithmic ratios:  

𝑁𝑖 = 𝑙𝑜𝑔(𝑀𝑖+1/𝑀𝑖), 𝑖 = 1,2,3, . . . ,𝑀 − 1       (3.9) 

 
2) Divide this time period into Acontiguous sub-periods of 

length n, such that 𝑛𝐴 = 𝑁. Label each  

sub-period 𝐼𝑎 , with 𝑎 =  1,2,3, . . ., A. Each element in 
𝐼𝑎is labeled 𝑁𝑘,𝑎 such that k = 1,2,3, ... ,n. For  

each  𝐼𝑎; of length n, the average value is defined as:  

,

1

1 n

a k a

k

e N
n 

 
                           

(3.10) 

where𝑒𝑎= average value of the 𝑁𝑖, contained in sub-period 

𝐼𝑎of length n.  
 
3) For each sub-period 𝐼𝑎 , the accumulated departures 

(𝑋𝑘,𝑎 )from the mean value have their time series defined 

as:  
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, ,

1

1
( ), 1,2,3,...,

n

k a i a a

k

X N e k n
n 

   (3.11) 

4) The range within each sub-period 𝐼𝑎is defined as:  

, ,max( ) min( ), [1, ]
aI k a k aR X X k n    (3.12) 

5) For each sub-period 𝐼𝑎 , the definition of the calculation 

of sample standard deviation is given by:  

 

1
2

1 2

,

1

( )
a

n

I k a a

k

S n N e



 
  
 


               

(3.13) 

6) Each range, 𝑅𝐼𝑎
,is now normalized by dividing by the 

𝑆𝐼𝑎
,corresponding to it. The rescaled range for each 

𝐼𝑎sub-period is equal to 𝑅𝐼𝑎
/𝑆𝐼𝑎

· Observe in Equation 

(3.10), we had Acontiguous sub-periods of length n, so 
that the average R/S for length n becomes:  

                                                                (3.14) 
7) The length n is increased to the next higher value while 

( 1) /M n is an integer value. We use values of nthat 

includes the beginning and ending points of the time 
series such that steps 1 through 6 are repeated until 

( 1) / 2n M  .    We can now apply Equations (3.7) 

and (3.8) by performing an ordinary least squares 

regression on log n as the independent variable and 

log( / )nR S as the dependent variable. The intercept is 

the estimate for logC , the constant. The slope of the 

equation is the estimate of the Hurst parameter, H, 
Edgar(1994).  

 

The descriptive R/S statistic measure is given by:  

𝑅/𝑆 =
1

𝑆𝑇
 max

1≤𝑘≤𝑇
 (𝑦𝑗 − 𝑦 )

𝑘

𝑗=1

− min
1≤𝑘≤𝑇

 (𝑦𝑗 − 𝑦 )

𝑘

𝑗=1

 (3.15) 

where𝑆𝑇is the usual maximum likelihood standard deviation 

estimator given by:  

   𝑆𝑇 =  
1

T
 (𝑦𝑗 − 𝑦 )2

𝑇

𝑗=1

 

1

2

               (3.16) 

This measure is always non-negative because the deviations 
from the sample mean𝑦 sum up to zero. The Hurst 
coefficient is then estimated as:  

log( / )

log( )

R S
H

T
                              (3.17) 

𝐻 =
1

2
represents a short memory process while 𝐻 >

1

2
 shows 

a long memory behaviour, Pfaff(2006: p.35).  
 

4. Results 
 

The mean of y is given by 𝑥 =  4.21874 .  The supremum 

(Sup) of the cumulative sum is its maximum (or greatest) 

value, 𝑠𝑢𝑝 =  −4.1𝐸 − 06 which occurs at the fourth 
quarter of 2007. The infimum (Inf)of the cumulative sum is 
its minimum (or least) value,i.e. 𝐼𝑛𝑓 = −16.6344 which 

occurs at the first quarter of 1996. The adjusted range 𝑅𝑛 ,is 
given by Equation (3.6) while the standard deviation is 

given by Equation (3.3) as 𝑆𝑑  =  0.58023. Equation (3.15) 
gives R/S value while the Hurst parameter of NASI (1990-
2007) is given by 𝐻 =  0.78468 ~ 0.78. 
 

5. Conclusion 
 
The above procedures show that a given stock market can be 

characterized to know the nature (behaviour) of its trading 
activities by obtaining its Hurst parameter, 𝐻,which could be 
useful in interpreting the market as being anti-persistent if 
𝐻 = 0.5, a Brownian motion, if 𝐻 = 0.5 and persistent or 

stable if 𝐻 >  0.5.   𝐻 is self-similar with LRD 
phenomenon. Also, the effect of fractional noises could be 

determined.  
 
The market was stable. Figure 1 showed the nature of the 
Nigerian stock market (1990-2007) as an emerging, stable 
and persistent market, which also agrees with the value of 
𝐻obtained.  

 
This result of obtaining 𝐻can be applied to certain real life's 

problems involving certain sectors of a given economy with 
enough accurate information of usually regular or seasonal 
activities such as financial institutions; electricity network, 
distribution and consumption; transport systems; health; 
population studies; disease epidemics, governance; geometry 

of nature, self- similar processes, chaos and dynamical 
systems; and stochastic processes with corresponding 
model(s) where applicable. 
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Table 1:  R/S Estimates of H 
Year-t 𝑦𝑟  𝑥𝑟 𝑤𝑟  𝑐𝑟  Year-t    𝑦𝑟  𝑥𝑟 𝑤𝑟  𝑐𝑟 

1990-1 1036.5 3.015569 -1.20317 -1.20317  1999-1 16404.8 4.214971 -0.00377 -15.80205 

1990-2 1129 3.052G94 -1. 16G04 -2.3G921  1999-2 15959.4 4.203017 -0.01572 -15.81777 

1990-3 1351. 7 3.13088 -1.08786 -3.45707  1999-3 15290.9 4.184434 -0.0343 -15.85208 

1990-4 1476 3.169086 -1.04965 -4.50672  1999-4 15233 4.182784 -0.03595 -15.88803 

1991-1 1647.2 3.216746 -1.00199 -5.50871  2000-1 17481.3 4.242574 0.02384 -15.86419 

1991-2 1897.3 3.27813G -0.940G -6.44931  2000-2 18210.1 4.260312 0.04158 -15.82261 

1991-3 2098.1 3.321826 -0.89691 -7.34622  2000-3 21366.1 4.329725 0.11099 -15.71163 

1991-4 2288.8 3.359608 -0.85913 -8.20535  2000-4 22179.4 4.34595 0.12721 -15.58441 

1992-1 2433.1 3.38616 -0.83258 -9.03793  2001-1 27067.9 4.432454 0.21372 -15.37070 

1992-2 2575.4 3.410845 -0.80789 -9.84582  2001-2 29884.9 4.475452 0.25671 -15.11398 

1992-3 2869.06 3.457738 -0.761 -10.60681  2001-3 31363.3 4.496422 0.27768 -14.83630 

1992-4 3270.9 3.514GG7 -0.70407 -11.31088  2001-4 32877.4 4.516898 0.29816 -14.53814 

1993-1 3352.5 3.525369 -0.69337 -12.00425  2002-1 32427 4.510907 0.29217 -14.24597 

1993-2 3497 3.543696 -0.67504 -12.67929  2002-2 34939.9 4.543322 0.32459 -13.92138 

1993-3 3579.4 3.55381 -0.66493 -13.34422  2002-3 37307.1 4.571791 0.35305 -13.56833 

1993-4 4113.G 3.614222 -0.00451 -13.94873  2002-4 35025.1 4.54438 0.32564 -13.24269 

1994-1 5053.4 3.703584 -0.51515 -14.46389  2003-1 40596 4.608483 0.38975 -12.85294 

1994-2 5580.1 3.746642 -0.4721 -14.93598  2003-2 41930.1 4.622526 0.40379 -12.44915 

1994-3 5781.4 3.762033 -0.4567 -15.39269  2003-3 46058.6 4.663311 0.44457 -12.00458 

1994-4 6227.2 3.794293 -0.42444 -15.81713  2003-4 59085.2 4.771479 0.55274 -11.45183 

1995-1 7055.4 3.848522 -0.37022 -16.18735  2004-1 70431.3 4.847766 0.62903 -10.82281 

1995-2 8970.6 3.952821 -0.26592 -16.45326  2004-2 82166.5 4.914695 0.69596 -10.12685 

1995-3 12712.6 4.104234 -0.1145 -16.56776  2004-3 74044.3 4.869491 0.G5075 -9.47609 

1995-4 15156.5 4.180599 -0.03814 -16.60590  2004-4 70391.5 4.84752 0.62878 -8.84731 

1996-1 15495.7 4.190211 -0.02853 -16.63443  2005-1 67334.4 4.828237 0.6095 -8.23781 

1996-2 16656.5 4.221584 -0.00285 -16.63158  2005-2 64832.2 4.811791 0.59305 -7.64476 

1996-3 18216.3 4.26046 -0.04172 -16.58986  2005-3 67748.4 4.830899 0.61216 -7.0 

1996-4 20166.4 4.304628 -0.08589 -16.50397  2005-4 74694.7 4.87329 0.65455 -6.37804 

1997-1 22768.5 4.357334 -0.1386 -16.36537  2006-1 71350.8 4.853399 0.63466 -5.74338 

1997-2 25876.3 4.412902 -0.19416 -16.17120  2006-2 72722.6 4.861676 0.64294 -5.10045 

1997-3 23610.9 4.373112 -0.15438 -16.01683  2006-3 916837 4.962292 0.74356 -4.35689 

1997-4 19666.3 4.293722 -0.07498 -15.94184  2006-4 98254.7 4.992353 0.77362 -3.58328 

1998-1 19250.4 4.28444 0.0657 -15.87614  2007-1 80458.6 4.905573 0.68684 -2.89644 

1998-2 18249.9 4.261261 0.04252 -15.83362  2007-2 144952 5.161223 0.94249 -1.95395 

1998-3 17411.1 4.249827 0.02209 -15.81153  2007-3 155127 5.190687 0.97195 -1.0 

1998-4 17060 4.231979 0.01324 -15.79829  2007-4 158758 5.200734 0.982 -4.1E-06 
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