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Abstract: This paper presents the application of different inertia weight strategies to Particle swarm optimization (PSO) algorithm for 

a two area power system employing PID controller for automatic generation control. In automatic generation control (AGC) problem 

when we adopt conventional PSO algorithm there is a tradeoff between the global and local search. For different problems there should 

be different balances between the local search ability and global search ability. Considering this, different inertia weight strategies are 

brought in to the PSO algorithm which plays the role of balancing the global search and local search. Constant Inertia Weight, 

Random Inertia Weight and Linear Decreasing Inertia Weight are the different inertia weight strategies adopted and results are 

compared by applying to automatic generation control problem. The entire system is simulated using MATLAB/SIMULINK platform. 
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1. Introduction 
 

Synchronization of all regional grids will help in optimal 

utilization of scarce natural resources by transfer of power 

from resource centric regions to load centric regions. 

Further, this shall pave way for establishment of vibrant 

electricity market facilitating trading of power across 

regions. One nation one grid shall synchronously connect all 

the regions and there will be one national frequency. [1] 

 

In a practically interconnected power system holding the 

frequency to a fixed point is not an easy task due to different 

kinds of uncertainties present due to load variations [2][4]. 

Several control strategies are proposed for AGC of power 

systems in order to maintain the system frequency and tie 

line power flow at their scheduled values during normal 

operation and also during random load perturbations. [3] 

 

Whatever the control strategy adopted the main aim is to 

determine the gains of the PID controller that maintains the 

frequency of each area within limits and to keep the tie-line 

power flows within some pre-specified tolerances, by 

satisfying system constraints and overcoming uncertainties 

[5]. Particle swarm optimization (PSO) is commonly 

employed technique to tune the PID controller gain constants 

to fulfill the system requirements.  

 

In contrast to the evolutionary computation techniques, 

Eberhart and kennedy developed a different algorithm 

through simulating social behavior [11]. This algorithm is 

called Particle swarm optimization (PSO) since it resembles 

a school of flying birds. As in other algorithms, a population 

of individuals exists, known as particles. Each particle 

adjusts its flying according to its own flying experience and 

its companions flying experience. Each particle represents a 

potential solution to a problem. Each particle is treated as a 

point in D-dimensional space. The ith particle is represented 

as  

X1=(xi1,xi2,…..xiD) 

The best previous position (the position given the best fitness 

value) of any particle is recorded and represented as 

P1=(pi1.pi2,…..piD) 

 

The index of the best particle among all the particles in the 

population is represented by the symbol g. The rate of the 

position change (velocity) for particle i is represented as  

V1=(vi1.vi2,…..viD) 

 

The particles are manipulated according to the following 

equation: 

V1=vid+c1*rand()*(pid-xid)+c2*Rand()*(pgd-xid)         (1a) 

Xid= xid+vid           (1b) 

 

Where c1 and c2 are two positive constants, rand() and 

Rand() are two functions in the range[0,1]. The second part 

of equation (1a) is the “cognition” part, which represents the 

private thinking of particle itself. The part is the social part, 

which represents   collaboration among the particles. The 

equation (1a) is used to calculate the particle’s new velocity 

and the distances of its current position from its own best 

experience (position) and the group’s best experience. Then 

the particle flies toward a new position according to (1b). 

The performance of each particle is measured according to a 

pre-defined fitness function, which is related to the problem 

to be solved. 

 

Refer to equation (1a), the right side of which consists of 

three parts: the first part is the previous velocity of the 

particle; the second and third parts are the ones contributing 

to the change of the velocity of a particle. Without these two 

parts, the particles will keep on “flying” at the current speed 

in the same direction until they hit the boundary. PSO will 

not find acceptable solution unless there are acceptable 

solutions on their trajectories. But that is a rare case. On the 

other hand, refer to equation (1a) without the first part. Then 

the “flying” particles velocities are only determined by their 

current positions and their best position in history. The 

velocity itself is memory less. Assume at the beginning, the 

particle I will be “flying” at the velocity 0, that is, it will 

keep still until another particle takes over the global best 

position. At the same time, each other particle will be 

“flying” towards its weighted centroid of its own best 

position and the global best position of the population. As 
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mentioned in [6], a recommended choice for constant c1 and 

c2 is integer 2 since it on average makes the weights for 

“social” and “cognition’’ parts to be 1. Under this condition, 

the particles statistically contract swarm to the current global 

best position until another particle takes over from which 

time all the particles statistically contract to the new global 

best position. Therefore, it can be imagined that the search 

process for PSO without the first part is a process where the 

search space statistically shrinks through the generations. It 

resembles a local search algorithm. This can be illuminated 

more clearly by displaying the “flying” process on a screen. 

From the screen, it can be easily seen that without the first 

part of equation (la), all the particles will tend to move 

toward the same position, that is, the search area is 

contracting through the generations. Only when the global 

optimum is within the initial search space, then there is a 

chance for PSO to find the solution. The final solution is 

heavily dependent on the initial seeds (population). So it is 

more likely to exhibit local search ability without the first 

part. On the other hand, by adding the first part, the particles 

have a tendency to expand the search space, that is, they 

have the ability to explore the new area. So they more likely 

have global search ability by adding the first part. Both the 

local search and global search will benefit solving some 

kinds of problems. There is a tradeoff between the global 

and local search. For different problems, there should be 

different balances between the local search ability and global 

search ability. Considering of this, a inertia weight w is 

brought into the equation (1) as shown in equation (2). This 

w plays the role of balancing the global search and local 

search, first time Shi and Eberhart [12] presented the concept 

of Inertia Weight by introducing Constant Inertia Weight. It 

can be a positive constant or even a positive linear or 

nonlinear function of time. 

 

V1= w*vid+c1*rand()*(pid-xid)+c2*Rand()*(pgd-xid)  (2a)

          Xid= xid+vid         (2b) 

 

As there is a large effect of initial velocity in the balancing 

of exploration and exploitation process of swarm, Inertia 

Weight (w) is used to control the velocity. In this paper, 

Inertia Weight for PSO is reviewed and experiments are 

carried out by applying different inertia weight strategies to 

automatic generation control (AGC) problem to compare 

different strategies of setting Inertia Weight. 

 

2. Inertia Weight Strategies 
 

Inertia Weight plays a major role in the process of providing 

balance between exploration and exploitation process. J.C. 

Bansal,P. K. Singh, Mukesh Saraswat, [9] proposed different 

inertia weight strategies in 2011.The use of inertia weight w, 

which typically decreases linearly from 0.9 to 0.4 during run, 

has improved performance in number of applications. The 

Inertia Weight determines the contribution rate of a 

particle’s previous velocity to its velocity at the current time 

step. The basic PSO, presented by Eberhart and Kennedy in 

1995 [11], has no Inertia Weight. In 1998, first time Shi and 

Eberhart [12] presented the concept of Inertia Weight by 

introducing Constant Inertia Weight (CIW). They stated that 

a large Inertia Weight facilitates a global search while a 

small Inertia Weight facilitates a local search. Further, 

dynamical adjusting of Inertia Weight was introduced by 

many researchers which can increase the capabilities of PSO. 

Constant Inertia Weight w = c 

c=0.7(considered for experiments) 

 

Eberhart and Shi [7] proposed a Random Inertia Weight 

strategy and experimentally found that this strategy increases 

the convergence of PSO in early iterations of the algorithm.  

 

J. Xin, G. Chen, and Y. Hai [13] proposed Linearly 

Decreasing strategy; it enhances the efficiency and 

performance of PSO. It is found experimentally that Inertia 

Weight from 0.9 to 0.4 provides the excellent results. By 

reason of these values, the inertia weight can be interpreted 

as fluidity of the medium in which particles moves, showing 

that setting it to relatively high initial weight (e.g., 0.9) 

makes particles move in low viscosity medium and performs 

extensive exploration. Gradually reducing it to a much lower 

value (e.g., 0.4) makes the particle move in a high viscosity 

medium and performs more exploitation.  In spite of its 

ability to converge optimum, it gets into the local optimum 

solving the question of more apices function. Linear 

decreasing inertia weight PSO (LDIW-PSO) algorithm have 

shortcoming of premature convergence in solving complex 

(multi peak) optimization problems due to lack of enough 

momentum for particles to do exploitation as the researchers 

have tried to address this shortcoming by modifying LDIW-

PSO or proposing new PSO variants. Some of these variants 

have been claimed to outperform LDIW-PSO. The major 

goal of this paper is by simulation experimentally establish 

the fact that LDIW-PSO is very much efficient if its 

parameters, like velocity limits for the particles, are properly 

set. 

Table 1: Different Inertia Weight Strategies 
S.No Inertia Weight Formula 

 

1. 

 

Constant Inertia 

Weight 

 = c 

c=0.7 

( considered for experiments) 

2. Random inertia 

Weight  
 

3. 

Linear 

Decreasing 

Inertia Weight 

  

 

 

3. Implementation of PSO-Based PID Tuning 
 

PID controller consists of three separate parameters: 

proportional, integral and derivative with gains denoted by 

Kp, Ki, Kd. Appropriate setting of these parameters will 

improve dynamic response of a system, reduce over shoot 

eliminate steady state error and increase stability of the 

system. Proportional Integral (PI) controllers are the most 

often type used today in industry [5]. A control without 

derivative (D) mode is used when: fast response of the 

system is not required, large disturbances and noises are 

present during operation of the process and there are large 
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Figure 2: Transfer function model of two-area thermal system 

 

transport delays in the system. Proportional Integral 

Derivative (PID) controllers are used when stability and fast 

response are required. Derivative mode improves stability of 

the system and enables increase in proportional gain and 

decrease in integral gain which in turn increases speed of the 

controller response. 

 

PSO [17] is employed to tune PID gains (Kp, Ki, Kd). PSO 

firstly produces initial swarm of particles in search space 

represented by matrix. Each particle represents a candidate 

solution for PID parameters where their values are set in the 

range of 0 to 100.  

 

4. PSO Algorithm 
 

Step-1: Set up the control parameters of PSO optimization 

process that are population size, acceleration constants 

(C1,C2), convergence criterion, number of problem variables, 

lower and limits of variables and maximum number of 

iterations. Create an initial population of particles with 

random positions and velocities. The positions (Xki) and 

velocity (Vki) of initial swarm of the particle are randomly 

generated using lower and upper bounds of design variables. 

For ith particle position and velocity are generated as follows: 

X0i=Xmin+(Xmax-Xmin)*rand        (7) 

 

V0i=Vmin+(Vmax-Vmin)*rand        (8) 

 

Step-2: For each particle calculate the value of fitness 

function.  

Step-3: Compare the fitness of all particles with global best 

(gbest). If any of the particles is better than gbest, and 

then replace gbest.  

Step-4: Update the velocity and positions of all particles. The 

velocity of ith particle is updated as 

 

Vk+1i=Vki+C1*rand(Pbestki-Xki)+C2*rand(Gbesti-Xki)          (9) 

 

Where Vki is the velocity of ith particle at time k.c1,c2 are 

acceleration constants.r1,r2 are random variables. Pbestki is 

the personal best position of ith particle at time k. Gbesti is 

the global best position of ith particle. Xki is the position of 

ith particle at time k. The position of the particle is updated as 

Xk+1i= Xki+ Vk+1i             (10) 

 

Step-5: Repeat the steps from 2 to 4 until the desired fitness is 

reached. 

 

The fitness function considered here is based on error 

criterion. This work utilizes performance indices as objective 

function. Controller performance is evaluated in terms of 

integral square error (ISE), integral absolute 

error(IAE),integral time multiplied by absolute error(ITAE). 

PID controller is tuned based on the minimum value of 

performance index. Algorithm of PSO is shown in figure 3. 

 

 
Figure 3: Flow chart of PSO 
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6.6 Comparison of three inertia weight strategies 
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Figure 49: Dynamic response for 10% step load increase area-1 (F1) with different inertia weight strategies 
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Figure 50: Dynamic response for 10% step load increase area-2 (F2) with different inertia weight strategies 
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Figure 51: Dynamic response for 25% step load increase area-1 (F1) with different inertia weight strategies 
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Figure 52: Dynamic response for 25% step load increase area-2 (F2) with different inertia weight strategies 
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Figure 53: Dynamic response (F1) for 10% step load increase area-1 & 25% step load increase area-2 with different inertia 

weight strategies 
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Figure 54: Dynamic response (F2) for 10% step load increase area-1 & 25% step load increase area-2 with different inertia 

weight strategies 
 

Table 2: Dynamic Response of PID tuned by PSO algorithm 

with different inertia weight strategies at 10% step 

disturbance of load  
S. 

No 

Dynamic Response Constant 

Inertia 

Weight 

Random 

Inertia 

Weight 

Linear 

Decreasing 

Inertia Weight 

1 First Peak of f1or -0.0855 0.0987 -0.073 

2 First Peak of f2 -0.0363 -0.0256 -0.0115 

3 Min ISE 4.534 x10-4 4.837 x10-4 1.27 x10-4 

4 Steady State error of f1 3.9 x10-4 1.85 x10-4 1.807x10-4 

5 Steady State error of f2 4.21 x10-4 4.22 x10-4 1.650x10-4 

 

Table 3: Dynamic Response of PID tuned by PSO algorithm 

with different inertia weight strategies at 25% step 

disturbance of load 
 

S. 

No 

 

Dynamic Response 

Constant 

Inertia 

Weight 

Random 

Inertia 

Weight 

Linear 

Decreasing 

Inertia Weight 

1 First Peak of f1r  -0.0633 -0.0884 -0.0515 

2 First Peak of f2 -0.084 -0.0907 -0.0486 

3 Min ISE 0.0031 0.0050 0.00110 

4 Steady State error of f1 0.2 x10-4 4.31 x10-4 1.31 x10-4 

5 Steady State error of f2 1.4 x10-4 4.67 x10-4 1.67 x10-4 

 

 

 

Table 4: Dynamic Response of PID tuned by PSO algorithm 

with different inertia weight strategies at area1=10% and 

area2=25% step disturbance of load 

S. 

No 
Dynamic Response 

Constant 

Inertia 

Weight 

Random 

Inertia 

Weight 

Linear 

Decreasing 

Inertia 

Weight 

1 First Peak of f1or -0.077 -0.0584 -0.0471 

2 First Peak of f2 -0.087 -0.0652 -0.01292 

3 Min ISE 0.0104 0.0152 0.0087 

4 Steady State error of f1 -9.2 x10-4 7.652 x10-4 4.808 x10-4 

5 Steady State error of f2 -8.286 x10-4 5.57 x10-4 4.82 x10-3 

 

5. Conclusion 
 

In this paper, an attempt has been made to apply Different 

inertia weight strategies in PSO algorithm for PID controller 

tuning for AGC of an interconnected power system. Firstly, a 

two area thermal system is considered and the superiority of 

the proposed approach is demonstrated by comparing the 

results of three inertia weight strategies such as Constant 

Inertia Weight, Random Inertia Weight and Linear 

Decreasing Inertia Weight in PSO algorithm. Then, analysis is 

carried out that demonstrates the robustness of the optimized 

controller parameters to wide variations in    operating 

loading condition. The results obtained from the simulations 

show that the Linear decreasing inertia weight strategy 
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achieves better dynamic performances compare to other 

inertia weight strategies when applied for the same power 

system. Finally, the dynamic response of the power system 

under random step load changes has been verified with five 

different inertia weight strategies. It is observed that Linear 

decreasing inertia weight strategy and next Global-Local best 

inertia weight strategy gives a better performance compare to 

others. 

 

Appendix A 

Nominal parameters of the system investigated are: 

Two area system [6,16,17]: 

f = 60 Hz, B1 = B2 = 0.425 p.u. MW/Hz; R1 = R2 = 2.4 

Hz/p.u.; TG1 = TG2 = 0.08 s; TT1 = TT2 = 0.3 s; KPS1 = KPS2 = 

120 Hz/p.u.; TPS1 = TPS2 = 20 s; T12 = 0.545 p.u.; a12 = -1. 
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