A Prospective Study on Role of Nutrition in the Rehabilition of Cerebral Palsy Children in Eastern India

Swati Sinha¹, Manoj Kumar², Sakti Prasad Das³

Abstract: Cerebral palsy is a disorder of movement and posture resulting from an insult to the immature brain. Cerebral palsy affects muscle tone, muscle co-ordination, reflex and balance. It can also impact fine motor skills, gross motor skills and oral motor functioning Cerebral palsy children are found to be poorly nourished and also have decreased basal metabolic rate. Energy requirements of children with severe CP who utilize a wheelchair for mobility have been reported to be between 60% to 70% of those of healthy typically developing children. There is currently no commonly accepted method for estimating the energy needs of children and adolescent with CP. Adequate amount of carbohydrates, proteins and fats are needed to meet the energy requirement of the body. Standard recommendations for dietary intake of vitamins, minerals and trace elements should be utilizedParticipation in the rehabilitation program may increase the energy requirements of children with CP and needs to be considered when estimating energy needs.

1. Introduction

Cerebral palsy is a disorder of movement and posture resulting from an insult to the immature brain. Cerebral palsy affects muscle tone, muscle co-ordination, reflex and balance. It can also impact fine motor skills, gross motor skills and oral motor functioning Cerebral palsy children are found to be poorly nourished and also have decreased basal metabolic rate. Energy requirements of children with severe CP who utilize a wheelchair for mobility have been reported to be between 60% to 70% of those of healthy typically developing children.

Objective

To evaluate the effectiveness of nutrional intervention in Cerebral Palsy children

2. Materials

Prospective Hospital Based Interventional Study in IPD and OPD of Svnirtar, Olatpur, Cuttack, Odisha.

50 Cases- 11 girls and 39 boys:

Age (Years)	No.	Girls	Boys
2-4	28	6	22
4-6	14	2	12
6-8	6	2	4
8-10	-	-	-
10-12	2	1	1

According to GMFCS

GMFCS	Boys	Girls
Ι	3	0
II	18	8
III	14	3
IV	2	0
V	2	0

3. Methods

Parents were interviewed about the feeding habits of their children and the feeding difficulties faced by them

questions	Red flags	
How long does it take to feed the child	More than 30 mins, on any regular basis	
Are meal times stressful to child or parent	Yes, if one or other or both	
Is your child gaining	Lack of weight gain over 2-3 months in	
weight adequately	young child, not just weight loss	
Are there signs of	Increased congestion at meal	
respiratory problems	times,'gurgly' voice, respiratory illness	

Assessment of Growth

- · Each cerebral palsy child was assessed by measuring
- Height
- Weight
- Midarm circumference in children below 5 years
- Biochemical values
- Calorie intake
- These parameters were repeated at 3 and 6 months interval
- Evaluated according to BROOKS growth chart for CP children.

Volume 7 Issue 6, June 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Brooks et al Growth Curve

- Weight/age, height/age and BMI was used in the growth curve
- "nutritional deficit" (malnourished)-data below 10th percentile
- Normal weight-data between 10th and 50th percentile
- At risk of overweight-data between 50th and 90th percentile
- Overweight-data above 90th percentile

Nutrition Support

- The nutritional intervention in each CP child depended on their nutritional status and on the feeding difficulties faced by their caretakers
- Tube feeding was not encouraged in view of risk of infection in the low socioeconomic status group

Treatment

- 1ST LINE TREATMENT
 - Correct positioning and adequate physical support during mealtimes
- 2ND LINE TREATMENT The texture of food was modified (To ensure airway safety, maximizing eating efficiency and reducing fatigue during mealtimes)
- Smaller more frequent meals was encouraged
- Fats and oils addition to food was advised
- Iron, minerals and vitamins supplementation was given by prescribing tonics
- Constipation was treated by increasing the dietary intake of fibres and fluids. Medications was prescribed if required
- The children participated in speech therapy and OT program to improve feeding skills

Positioning

Changing Consistency of Food

Supplements

Volume 7 Issue 6, June 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20183339

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Therapy

According to brook's growth chart

	At 0 Month	After 6 Months
Malnourished	28	8
Normal	13	26
At Risk of Overweight	8	14
Overweight	1	2

According to mid arm circumference • 42 Children were under 5 years

•	42 Children were under 5 years				
		At 0 Month	After 6 Months		
	Severe Acute Malnutrition	1	1		
	Moderate Acute Malnutrition	7	2		
	At Risk	12	3		
	Well Nourished	22	36		

Calorie Intake

Age Group	No.	Calorie Requirement	AVG Calculated Value	Deficiency
1-3 YRS	28	1058	900	158
4- 6 YRS	16	1358	992	366
7- 9 YRS	4	1682	1400	282
BOYS				
10-12 YRS	1	2195	1850	345
13-15 YRS	-	2761		
GIRLS				
10-12 YRS	1	1995	1680	315
13-15 YRS	-	2330	-	-

Anaemia

Hb%	At 0 Month	After 6 Months
Normal	19	46
Mild	13	3
Moderate	14	1
Severe	4	0

Volume 7 Issue 6, June 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20183339

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Data

Calcium	At 0 Month	At 6 Months	
Normal (8.8- 10.4 mg/dl)	36	50	
Hypocalcemia (< 8.8mg/dl)	14	0	

Data

Sodium

	At 0 Month	At 6 Months	
Normal	50	50	
Hyponatremia	0	0	

Potassium

	At 0 Month	At 6 Months
Normal	50	50
Hypokalemia	0	0

Data

SR.Protein	At 0 Month	At 6 Months
Normal (6- 8.5 gm./dl)	43	50
Hypoproteinemia (< 6.0 gm./dl)	7	0

Statistics

Descriptive statistics for 50 subjects

Case Summaries					
Ν	Mean	Std. Deviation	Median	Minimum	Maximum
50	9.8400	3.67762	9.5000	5.00	25.00
50	11.5900	3.69320	11.0000	6.00	27.00
50	83.5200	10.59311	81.0000	65.00	112.00
50	84.4600	10.71754	82.0000	66.00	113.00
50	13.9078	4.00758	12.9450	7.81	24.65
50	16.1792	3.87027	15.2150	9.90	25.78
50	10.5948	1.06381	10.8000	8.40	12.60
50	11.5788	.54756	11.6000	10.40	12.80
50	8.9976	.54531	9.0000	8.20	10.00
50	9.6240	.39515	9.6000	9.00	10.40
50	6.4712	.81528	6.8000	4.52	7.50
50	7.4700	.53956	7.6000	6.40	8.20
	N 50 50 50 50 50 50 50 50 50 50 50	N Mean 50 9.8400 50 11.5900 50 83.5200 50 84.4600 50 13.9078 50 16.1792 50 10.5948 50 11.5788 50 9.6240 50 6.4712 50 7.4700	N Mean Std. Deviation 50 9.8400 3.67762 50 11.5900 3.69320 50 83.5200 10.59311 50 83.5200 10.71754 50 13.9078 4.00758 50 16.1792 3.87027 50 10.5948 1.06381 50 11.5788 .54756 50 8.9976 .54531 50 9.6240 .39515 50 6.4712 .81528 50 7.4700 .53956	N Mean Std. Deviation Median 50 9.8400 3.67762 9.5000 50 11.5900 3.69320 11.0000 50 83.5200 10.59311 81.0000 50 83.5200 10.71754 82.0000 50 84.4600 10.71754 82.0000 50 13.9078 4.00758 12.9450 50 16.1792 3.87027 15.2150 50 16.1792 3.87027 15.2150 50 10.5948 1.06381 10.8000 50 11.5788 .54756 11.6000 50 8.9976 .54531 9.0000 50 9.6240 .39515 9.6000 50 6.4712 .81528 6.8000 50 7.4700 .53956 7.6000	N Mean Std. Deviation Median Minimum 50 9.8400 3.67762 9.5000 5.00 50 11.5900 3.69320 11.0000 6.00 50 83.5200 10.59311 81.0000 65.00 50 84.4600 10.71754 82.0000 66.00 50 13.9078 4.00758 12.9450 7.81 50 16.1792 3.87027 15.2150 9.90 50 10.5948 1.06381 10.8000 8.40 50 11.5788 .54756 11.6000 10.40 50 8.9976 .54531 9.0000 8.20 50 9.6240 .39515 9.6000 9.00 50 6.4712 .81528 6.8000 4.52 50 7.4700 .53956 7.6000 6.40

Statistics

- Normality test was done using Shapiro-Wilk's test for normality.
- Coloured ones are significant that is not normally distributed (p<0.05)

Tests of Normality					
	Shapiro-Wilk				
	Statistic	Df	Р		
W1	.876	50	.000		
W2	.884	50	.000		
H1	.958	50	.072		
H2	.963	50	.117		
BMI1	.945	50	.022		
BMI2	.928	50	.005		
Hb1	.972	50	.273		
Hb2	.968	50	.185		
Cal1	.932	50	.007		
Cal2	.937	50	.010		
S prot1	.875	50	.000		
S prot2	.903	50	.001		

Volume 7 Issue 6, June 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Statistics

Since height and HB are normally distributed comparison between first and second conditions are done using parametric test namely paired-samples t-test

Results of Paired-Samples t-Test Results show significant improvement in both height and Hb from first to second condition (p<0.001)

Test Statistic					
	Weight	BMI	Calcium	S protein	
Mod (Z)	6.202	6.155	6.186	6.166	
Р	.000	.000	.000	.000	

4. Result

The overall well- being of cerebral palsy children improved with the nutritional intervention.

Results show significant improvement in both height and HB from

First to second condition (P<0.001)

Results show significant improvement in Weight, Bmi, Calcium Level and S Protein from first to second condition (P < 0.001)

- The mean feeding time of the cerebral palsy children was 20 mins (range 15-90 mins).
- Oral motor dysfunction was found in gmfcs iii v.
- Spastic quadriplegic cerebral palsy patients had significantly poor feeding skill score (p<0.001)

5. Conclusion

Creating parental awareness about correct feeding practices and timely nutritional intervention with an individualized approach. In cerebral palsy children has a definitive role in their rehabilitation.

References

- [1] Stevenson RD, Conaway M, Chumlea WC, Rosenbaum P, Fung EB, Henderson RC et alNorth American Growth in Cerebral Palsy Study. Growth and health in children with moderate-to-severe cerebral palsy.Pediatrics 2006; 118: 1010–1018.
- [2] Brooks J, Day S, Shavelle R, Strauss D. Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics 2011; 128: e299– e307.
- [3] Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol 2004; 46: 475–480.
- [4] Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch PediatrAdolesc Med 1995; 149: 658–662.
- [5] Chumlea WC, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc 1994; 94: 1385– 1388. 91; quiz 9–90.

- [6] Hogan SE. Knee height as a predictor of recumbent length for individuals with mobility-impaired cerebral palsy. J Am CollNutr 1999; 18: 201–205.
- [7] Samson-Fang LJ, Stevenson RD. Identification of malnutrition in children with cerebral palsy: poor performance of weight-for-height centiles. Dev Med Child Neurol 2000; 42: 162–168.
- [8] Spender QW, Cronk CE, Stallings VA, Hediger ML. Fat distribution in children with cerebral palsy. Ann Hum Biol 1988; 15: 191–196.
- [9] Kuperminc MN, Gurka MJ, Bennis JA, Busby MG, Grossberg RI, Henderson RC et al. Anthropometric measures: poor predictors of body fat in children with moderate to severe cerebral palsy. Dev Med Child Neurol 2010; 52: 824–830.
- [10] Gurka MJ, Kuperminc MN, Busby MG, Bennis JA, Grossberg RI, Houlihan CM et al. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy. Dev Med Child Neurol 2010; 52: e35–e41.
- [11] Sullivan PB, Juszczak E, Bachlet AM, Thomas AG, Lambert B, Vernon-Roberts A et al. Impact of gastrostomy tube feeding on the quality of life of carers of children with cerebral palsy. Dev Med Child Neurol 2004; 46: 796–800.
- [12] Walker JL, Bell KL, Boyd RN, Davies PS. Energy requirements in preschool-age children with cerebral palsy. Am JClinNutr 2012; 96: 1309–1315.
- [13] Stallings VA, Zemel BS, Davies JC, Cronk CE, Charney EB. Energy expenditure of children and adolescents with severe disabilities: a cerebral palsy model. Am J ClinNutr 1996; 64: 627–634.
- [14] Vernon-Roberts A, Wells J, Grant H, Alder N, Vadamalayan B, Eltumi M et al. Gastrostomy feeding in cerebral palsy: enough and no more. Dev Med Child Neurol 2010; 52: 1099–1105.
- [15] ASPEN Board of Directors and the Clinical Guidelines Task Force.. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients.J Parenter Enteral Nutr 2002; 26 (1 Suppl), 1SA–138SA. (Erratum in J Parenter Enteral Nutr 2002; 26: 144)
- [16] Sullivan PB, Juszczac E, Bachlet A, Lambert B, Vernon-Roberts A, Grant H et al. Gastrostomy tube feeding in cerebral palsy: a prospective, longitudinal study. Dev Med Child Neurol 2005; 47: 77–85.
- [17] Elia M, Engfer MB, Green CJ. Silk DBA. Systematic review and meta-analysis: the clinical and physiological effects of fibre-containing enteral formulae. Aliment PharmacolTher 2008; 27: 120–145.
- [18] Brun AC, Stordal K, Johannesdottir GB, Bentsen BS, Medhus AW. The effect of protein composition in liquid meals on gastric emptying rate in children with cerebral palsy.ClinNutr 2012; 31: 108–112.

Volume 7 Issue 6, June 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY DOI: 10.21275/ART20183339