Investigation on Strength Properties of Concrete by Partial Replacement of Fine Aggregate by Quarry Dust

M. Syam Kumar¹, M. Nageswara Rao²

^{1, 2}Amara Institute of Engineering and Technology, Sathuluru Guntur, India

Abstract: This work presents the variation in the strength properties of concrete when replacing sand by quarry dust 0%, 50%, 75%, 100%. M25 grade of concrete were taken for study slump value is reducing for more % replacing quarry dust. The compressive strength of concrete cubes at the age of 7 and 28 days were obtained at room temperature. From test results it was found that the compressive strength got increased for up to 50% replacement of quarry dust in the place of sand .This result gave a quarry dust can be utilized partially in concrete mixtures as a good substitute for natural river sand giving higher strength. So, from the results which we have obtained, it is clear that quarry dust can be used as a good substitute the partial replacement of sand in the concrete.

Keywords: Quarry Dust, Concrete, Compressive Strength, Tensile Strength

1. Introduction

Cement is a binding substance that sets and hardens and can bind other materials together.

The history of cementing material is as old as the history of engineering construction. Some kind of cementing materials were used by Egyptians, romans and Indians in their ancient construction. It is believed that the early Egyptians mostly used cementing obtained by burning gypsum. The word "cement" can be traced back to the roman term cementicious used to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder

Cements used in construction can be characterized as being either hydraulic or non-hydraulic, depending upon the ability of the cement to set in the presence of water (see hydraulic and non-hydraulic lime paste.

Sand is a natural occurring granular material composed of final divided rock and mineral particles. It is defined by size being finer then gravel and coarser than silt. Sand can also rifer to textural class of soil or soil type; i.e. a soil containing more than 85% sand –sized particles

Figure 1: Sand

the composition of sand varies, depending on the local rock sources and condition but the most common constituent of sand in inland continental setting and non-tropical coastal settings is silica (silicon dioxide, orsio2) usually in the form of quartz. The mostly been created, over the past half billion years by various forms of life, like coral and shellfish. Quarry dust is a by-product of crushing with a typical grain size of 0-3.4 mm or 0-6.8 mm. because stone dust contains very fine aggregates it forms a hard, load bearing surface. Rock dust, also known as rock powders, rock minerals, rock flour, soil demineralization, and mineral fines, consists of finely crushed rock, processed by natural or mechanical means, containing minerals and trace elements widely used in organic farming particle. The igneous rock basalt and granite often contain the highest material content, whereas limestone, considered inferior in this consideration, is often deficient in the majority of essential macro-compounds, trace elements, and micronutrients.

2. Literature Review

Everton (2003) reported that knowledge gained from research should be used by quarry operators to optimize the performance of their equipment and to achieve lower quantities of quarry fines.

Petavratzi (2006) investigated that the large amount of dust fraction below 75m generated from various ores and found that the different types of rock produced different amounts of fines with physical properties

Mitchell (2007) suggested that the quarrying sector would consider using new technologies, which reduce the fines production and that further researches work is required in identifying the capital and operational costs associated with quarry fines.

3. Methodology

Materials used are

- Cement
- Fine aggregates
- Coarse aggregates
- Water

Volume 7 Issue 6, June 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

• Quarry dust is collected from quarry near perecherla

Material testing in laboratory:

Tests are conducted for materials

- Cement
- Fine aggregate
- Coarse aggregate
- Stone dust

Experimental testing for the above materials:

- Fineness of cements
- Standard consistency
- Initial setting time
- Final setting time
- Specific gravity of stone dust
- Compaction factor test
- Fineness modulus of stone dust
- Specific gravity of Coarse Aggregates
- Impact test on Coarse Aggregates
- Fineness modulus of Coarse Aggregate

Table: Properties of Cement

S.no	Properties	Test Results	IS: 12269-1997
1	Normal consistency	32%	31%
2	Initial setting time	130min	Minimum of 30 Min
3	Final setting time	253min	Maximum of 600 Min
4	Specific gravity	3.15	2.85

4. Experimental Programme

4.1 Mix Design

Mix design was carried out as per IS: 10262 - 2009.

4.2 Mix Ratio

We are using the grade of concrete is M25

Table: Mixing proportion				
Grade	Proportion	w/c ratio		
M20	1:1:2	0.5		

4.2 Preparation of Test Specimen

Material calculation

0% fine aggregate replacing Cement = 2.020 kgs Sand = 2.020 kgs Aggregates = 4.040 kgs

50% fine aggregate replacing

Cement = 2.020kgs Fine aggregate = 1.010 kgs Coarse Aggregates = 4.040 kgs Quarry dust =1.010 kgs

75% fine aggregate replacing

Cement = 2.020kgs Fine aggregate = 0.505kgs Coarse Aggregates = 4.040kgs Quarry dust = 1.515kgs

100% fine aggregate replacing

Cement = 2.020kgs Fine aggregates = 0kgs Coarse aggregates = 4.040kgs Quarry dust = 2.020kgs

Total quantities of materials used:

Total cement quantity = 8.080kgs Total fine aggregate quantity = 5.555kgs Total coarse aggregate quantity = 16.160kgs Total quarry dust quantity = 4.545kgs

Slump Test

The result for the slump test of the fresh concrete is shown in Figure 5. The slumps obtained are in the medium range (35–70mm). The highest slump was obtained with concrete made with river gravel. River gravel has a relatively smooth surface and round in shape, being water-worn due to the action of running water and thereby enhanced the workability of fresh concrete.

Table: Slump test results

Test no	% of quarry dust	Slump value (mm)	Type of slump
1	0% quarry dust	70	shear slump
2	50% quarry dust	15	True Slump
3	75% quarry dust	10	True slump
4	100% quarry dust	75	Shear slump

Compacting Factor Test

The compacting factor test is designed primarily for use in the laboratory but it can also be used in the field. It is more precise and sensitive than the slump test and is particularly useful for concrete mixes of very low workability as are normally used when concrete is to be compacted by vibration. Such dry concrete are insensitive to slump test.

Fest No.	Ratio	Compaction
		Value
Test – 1	For 0% quarry dust & 100% aggregate	0.945
Test – 2	For 50% quarry dust & 50% aggregate	0.962
Test – 3	For 75% quarry dust 25% aggregate	0.984
Test – 4	For100%quarry dust&0% aggregate	0.987

Compaction factor results for different ratios Preparation of samples

7 Days

Quarry Dust Replacement	0%	50%	75%	100%
No of cubes	3	3	3	3
No of cylinders	1	1	1	1

28 Days

Quarry Dust Replacement	0%	50%	75%	100%
No of cubes	3	3	3	3
No of cylinders	1	1	1	1

Volume 7 Issue 6, June 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Results and Discussions

5.1 Results of tests done on cement

Type of tests	Results
Fineness	0.9%
Consistency	30.5%
Initial	30 mins
Final	350 mins
Specific Gravity	2.64

5.2 Results of tests done on aggregates

Type of Tests	Coarse	Fine	Quarry
	Aggregates	Aggregates	Dust
Specific Gravity(%)	2.72	2.65	2.56
Water Absorption(%)	0.5	1.0	0.5
Fineness Modulus(%)	4.51	3.54	3.81
Bulk Density	1469.8	1460	1765

5.4 Compression Test Results

0% of Quarry Dust

S.no	Age	Compression Strength			Average
					compression Strength
		Cube 1	Cube 2	Cube 3	
1	7 Days	28.56	28.68	29.57	28.93
2	28 Days	44.94	44.94	44.02	44.63

50% of Quarry Dust

S.	Age	Compression Strength			Average compression
no					Strength (N/mm ²)
		Cube 1	Cube 2	Cube 3	
1	7 Days	31.22	31.68	31.67	31.52
2	28 Days	49.21	49.54	49.24	49.33

75% of Quarry Dust

S.	Age	Compression Strength			Average
no		Cube1	Cube2	Cube3	compression Strength
1	7 Days	30.20	30.30	30.40	30.30
2	28 Days	46.30	47.10	46.70	46.70

100% of Quarry Dust

S.	Age	Compression Strength			Average Compression
no		Cube 1	Cube 2	Cube3	Strength
1	7 Days	28.73	29.12	29.22	29.02
2	28 Days	45.30	45.45	44.71	45.15

AVG Compression Strength Values

S.NO	Percentage	Age	Average Compression
			Strength(N/mm ²)
1	0%	7 Days	28.93
		28 Days	44.63
2	50%	7 Days	31.52
		28 Days	49.33
3	75%	7 Days	30.30
		28 Days	46.70
4	100%	7 Days	29.02
		28 Days	45.15

Compression strength vs. different % with bar chart

Compression Strength vs different % with line Graph 5.5 <u>Tensile Strength Results</u>

0% of Quarry Dust

S.no	Age	Tensile Strength
1	7 Days	19.28
2	28 Days	29.75

50% of Quarry Dust

S. No	Age	Tensile Strength
1	7 Days	21.01
2	28 Days	32.88

75% of Quarry Dust

S. No	Age	Tensile Strength
1	7 Days	20.2
2	28 Days	31.13

100% of Quarry Dust

S. No	Age	Tensile Strength
1	7 Days	19.34
2	28 Days	30.1

Volume 7 Issue 6, June 2018

<u>www.ijsr.net</u> <u>Licensed Under Creative Commons Attribution CC BY</u>

Tensile strength vs different % with bar chart

Tensile Strength vs different % with line Graph

6. Results

Compression Strength Test Results

0% replacement of quarry dust compressive strength @ 7 days 28.9N/mm2

0% replacement of quarry dust compressive strength @ 28days44.63 N/mm2

50% replacement of quarry dust compressive strength @ 7 days 31.52N/mm2

50% replacement of quarry dust compressive strength @ 28days 49.33N/mm2

75% replacement of quarry dust compressive strength @ 7 days 30.30N/mm2

75% replacement of quarry dust compressive strength @ 28days 46.70 $N\!/mm2$

100% replacement of quarry dust compressive strength @ 7 days29.02 N/mm2

100% replacement of quarry dust compressive strength @ 28 days45.15 N/mm2 $\,$

7. Conclusions

Based on above results, following conclusions are drawn;

- A maximum compressive strength of 49.33MPa was obtained with 50% replacement of QD for 28 days.
- It was observed that 50% replacement of QD gave a satisfactory result when compared with conventional concrete for 7 days.

- Partial replacement of FA with QD showed encouraging results in terms of compressive strength.
- Environmental wastes which pose a difficult problem in its disposal can be efficiently addressed through the results of this research.

References

- [1] M.S shetty, concrete technology theory and practice, 5thedition, s.chand and Colt, NEW DELHI.
- [2] 2.I.R.MITHANTHAYA, JAYAPRAKASH NARAYAN, replacement of sand by quarry dust for plastering and in the pavement design, proceedings of national symposium at karnunya institute of technology on 20-21, December 2002, pp. 9-15.
- [3] M.S.Jaafar , W.A.Thanoon, M.R.A.Kadir and D.N.Trikha, strength and durability characteristics of high strength autoclaved stone dust concrete, the Indian concrete journal, December 2002, pp771-774.
- [4] A.K.Sahu, Sunil Kumar and A.K.Sachan, crushed stone waste as fine aggregate for concrete, the Indian concrete journal, January 2003 pp845-847.
- [5] IS 456-2000 Indian standard code of practice for plain and reinforced concrete, bureau of Indian standards, New Delhi?
- [6] 6.Md.Safiuddin, S.N.Ranman and M.F.M. Zane, utilization of quarry waste fine aggregate in concrete mixtures 2007 journal of applied sciences research 3(3):202-208
- [7] 7.Harish chary stone dust using in concrete.The report by brahma chary, Beer USANi.
- [8] Ilangovana. R, Mahendrana.N and nagaamani.K. "Strength and durability properties of concrete containing quarry rock dust as fine aggregate". ARPN Journal of engineering and applied sciences. Vol.3 no.5, October 2008
- [9] Lorain T.K., Pasha M.,DashK.P.,Jenna's "optimum utilization of quarry dust as partial replacement of sand in concrete"Int. Journal of applied sciences and engineering research, vol. 1, no. 2, 2012.
- [10] Mahendra.R.C and prakash.S.P. "Strength Appraisal of Artificial sand as fine aggregate in SFRC" ARPN Journal of engineering and applied sciences vole 5, no.10, October 2010.

Author Profile

Mukiri Syam Kumar completed my B.Tech Underjntuk (Amara Institute of Engineering Technology); currently he is pursuing M.Tech at amara Institute of engineering Technology under JNTU Kakinada.

Makkella Nageswarao is Assistant Professor in Cepartment of Civil Engineering at Amara Institute Engineering of Technology with 6 years of teaching experience in engineering. He published many papers in various journals. His areas of interest are Structural

Analysis, Concrete Technology, Design of Steel Structures & Reinforced Concrete Structures.

Volume 7 Issue 6, June 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY