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Abstract: Protein S-farnesyl cysteine prenylation (SFCP) is a specific kind of prenylation involved in the transfer of a farnesyl moiety 

to a cytoplasmic cysteine at or near the C-terminus of the target protein. It has been exhibited to play very important roles in promoting 

membrane interactions and biological activities of variety of cellular proteins. With the advancements in proteomic technology recently, 

the number of experimentally verified SFCP sites is increasing and becomes available. Due to the very important roles caused by S-

farnesyl cysteine prenylation, the knowledge insight SFCP is one of the most hot issue nowaday. Howver, the number of proposed 

models for the identification of SFCP sites has still not met our current demands. Therefore, in this study we are motivated to propose a 

novel schema for the identification of S-farnesyl cysteine prenylation sites based on substrate specificities. 
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1. Introduction 
 

Protein prenylation (also known as isoprenylation or 

lipidation), which is first discovered in fungi in 1978 [1], is 

the addition of hydrophobic molecules to a protein or 

chemical compound. Protein prenylation assumes that prenyl 

groups (3-methyl-but-2-en-1-yl) facilitate attachment to cell 

membranes, similar to lipid anchors like GPI anchor, though 

direct evidence is missing. In eukaryote, protein prenylation 

is a PTM (Post-Translational modification) critical for 

promoting membrane interactions and biological activities of 

variety of cellular proteins. It is mediated by protein 

farnesyltransferase (PFT) by recognizing „CAAX‟ motif on 

protein substrate [4]. The process of protein prenylation is 

facilitated by three eukaryotic enzymes with partially 

overlapping substrate specificities: farnesyl transferase, Caax 

protease and geranylgeranyl transferase [5]. Protein S-

farnesyl cysteine prenylation involves the transfer of a 

farnesyl moiety to a cytoplasmic cysteine at or near the C-

terminus of the target protein. Farnesyltransferase (FT) 

recognizes the so-called C-terminal CaaX box of substrate 

proteins to attach a farnesyl (15 carbons) anchor to the 

conserved cysteine via a thioether linkage [6]. 

 

Due to the very important role caused by protein S-farnesyl 

cysteine prenylation (SFCP), the amount of interests in the 

characterization of S-farnesyl cysteine prenylation has been 

increasing rapidly recently [5, 7-12]. Specifically, several 

predictors have been designed for the identification of S-

farnesyl cysteine prenylation sites in recent years [6, 13, 14]. 

Also, these  predictors have demonstrated their ability in the 

characterization of SFCP sites, however, at the moment, 

there is a lack of computation models or tools for 

identification of protein S-farnesyl cysteine prenylation sites. 

Furthermore, as more and more experimentally verified S-

farnesyl cysteine prenylation sites become available, the lack 

of model for identification of S-farnesyl cysteine is serious. 

 

Continuing with previous works [16-19], we are motivated to 

propose a novel  scheme for the identification of protein S-

farnesyl cysteine prenylation sites based on substrate 

specificities. Various featureas, that are extracted and 

encoded based on the substrate specificities, have been 

investigated in the work. The SVM-based model, that is 

constructed based on hybrid feature “AAC+AAPC+PSSM”, 

appears to be the best with an accuracy of 94.14% and MCC 

of 0.850 when evaluated by five-fold cross-validation.  

 

2. Materials and Methods 
 

Figure 1 displays the system flow of this work, including of 

four main parts: data collection and pre-processing, feature 

extraction and encoding, model learning and Independent 

testing. 

 

 
Figure 1: The system flowchart of the work 

 

2.1. Data collection and pre-processing  

 

Experimentally verified S-farnesyl cysteine prenylation 

(SFCP) sites are collected from open resources and 

published literatures, including 711 proteins from 

UniProt/Swiss-Prot [20] (date: May, 2016), 117 proteins 

from dbPTM3.0 [21], 113 proteins from PRENbase [6], 97 

proteins from GPS-Lipid [13], and 27 proteins from 

HPRD9.0 [22]. Details of these datasets are displayed in  

Table 1. After some technical steps to remove duplicate or 

redundant proteins, we obtained the final non-redundant 

dataset containing 670 unique proteins with 718 SFCP sites 

(positive data). To prepare for independence testing, we 
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randomly select 70 proteins from the non-redundant dataset 

to serve as independent testing dataset. The remaining data is 

considered as training dataset. As a result, in this work, our 

final training dataset contains 600 unique proteins, and the 

final independent testing dataset contains 70 unique proteins.  

 

Table 1: Data statistics of experimentally verified SFCP 

sites collected for the work 

Resources 

No. of  

S-Farnesylated 

proteins 

No. of  

SFCP 

sites 

No. of  

non-SFCP 

sites 

UniProt_5.2016 711 735 - 

dbPTM 117 169 - 

PRENbase 113 113 - 

GPS-Lipid 97 106 - 

HPRD 9.0 27 39 - 

Total 1065 1162 - 

Combined non-redundant 

dataset 
670 718 - 

Training dataset 600 634 5808 

Independent testing dataset 70 84 954 

 

In this work, we focus on the sequence-based 

characterization of SFCP sites with substrate motifs. 

Therefore, window length of 2n + 1 is adopted to extract 

sequence fragments centering at the experimentally verified 

S-farnesyl cysteine (C) residue as well as containing n 

upstream and n downstream flanking amino acids. The 

obtained data is served as postitive data. To extract negative 

data, the sequence fragments containing window length of 2n 

+ 1 amino acids and centering at lysine residue without the 

annotation of S-farnesyl cysteine prenylation residue were 

regarded as the negative training data (non-SFCP sites). 

According to a previous work [16, 17] and our preliminary 

evaluation by using various window lengths, the window size 

of 13 (n=6) has been shown to provide the optimal accuracy 

in the identification of SFCP sites. As a result, the training 

dataset contains 634 positive and 5808 negative data; the 

testing dataset consists of 84 positive and 954 negative data. 

Due to the fact that some data in the training dataset and 

testing dataset could be overlapped, so, the performance of 

the predictive model may be overestimated. Therefore, in 

order to avoid the overestimation of the model, the CD-HIT 

program [23] is applied to remove homologous data between 

datasets. As displays in  

Table 2, in this work, with the use of 40% sequence identity, 

the final training dataset containing of 296 positive and 1051 

negative data; the final independent testing dataset consisting 

of 28 positive and 332 negative data. 

 

Table 2: Data statistics of removing homologous fragmets 

using CD-HIT with various values of sequence identity 

Sequence 

 identity 

Training set  

(600 proteins) 

Independent testing set (70 

proteins) 

Positive 

data 

Negative 

data 

Positive 

data 

Negative 

data 

100% (original) 634 5808 84 954 

90% 500 4005 75 607 

80% 450 3252 68 544 

70% 421 2815 40 450 

60% 380 2090 35 402 

50% 341 1680 30 361 

40% 296 1051 28 332 

2.2. Features extraction ad encoding 

 

In order to construct the predictive models for the 

identification of SFCP sites, support vector machine was 

adopted to distinguish SFCP sites from non-SFCP sites based 

on sequence-based features of substrate specificities, 

including: Amino Acid Composition (AAC), Amino Acid 

Pairwise Composition (AAPC), and Evolutionary 

information (PSSM, Position-Specific Scoring Matrix). 

These features are extracted and encoded for the final 

training and testing datasets that are achieved previously. 

The detail information of encoding for these features is as 

follows: 

 

AAC feature: To encode for this feature, a 20-dimensional 

vector (xi , i = 1,2, … ,20) is utilized. This vector consisted 

of twenty elements, which represent the twenty types of 

amino acids, specifying the number of its occurrences 

normalized with the total number of residues in the fragment.  

 

AAPC feature: A 20x20-dimensional matrix  is used to 

encode feature, that has been extracted from a fragment. The 

20x20-dimensional element (xij , i, j = 1,2, … ,20) present 

the number of occurrences of amino acid pairwise 

normalized with the total number of amino acid pairs in the 

fragment.  

 

PSSM feature: The PSSM (Position-Specific Scoring 

Matrix) is a type of evolutionary information that is 

commonly used for reprentation of motifs (patterns) in 

biological sequence. It is a matrix based on the amino acid 

frequencies (or nucleic acid frequencies) at every position of 

a multiple alignment.  

 

Hybrid features: In addition to single features, the four 

hybrid features, that are formed by combining the single 

features, have been assessed, including: AAC+AAPC, 

AAC+PSSM, AAPC+PSSM, and AAC+AAPC+PSSM. 

 

2.3. Model construction, learning and evaluation 

 

Support vector machine (SVM) is adopted to construct the 

predictive models, and then learn the SVM classifiers based 

on extracted features. According to binary classification, the 

SVM using a kernel function maps the input samples into a 

higher dimensional space, and then finds out a a hyper-plane 

to discriminate between the two classes with maximal margin 

and minimal error. In this work, a public SVM library, 

LibSVM [25], is utilized to implement the predictive models 

for discriminating the SFCP sites from non-SFCP sites. 

Similar to previous works, the radial basis fuction (RBF) is 

selected as the kernel function for learning in the SVM 

classifiers, defined follows the formula: 

 

 K Si , Sj = exp⁡(−γ||Si − Sj||
2) .  

 

In the SVM learning, two supporting factors to enhance the 

performance of the models are cost and gamma. The RBF 

kernel function is determined by the gamma value, whereas 

the hyper-plane softness is controlled by cost value. To find 

the best final model, the predictive performance of models 
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using different parameters is evaluated by performing five-

fold cross-validation. The training dataset is divided into five 

approximately equal sized subgroups. The five-fold cross-

validation process is run five times with each subgroup is 

selected as testing dataset and the remaining subgroups are 

selected as training dataset. The five results are then 

combined to produce a single estimation for the five-fold 

cross-validation evaluation. The five-fold cross-validation 

has advantages in improving the reliability of evaluation 

because it considers all original data are regarded as both 

training and testing dataset, with each data is used for 

validation exactly once [16-19, 26]. In order to assess the 

predictive performance of trained models, the followings 

measures are often used: Sensitivity (SEN), Specificity 

(SPE), Accuracy (ACC), and Matthews Correlation 

Coefficient (MCC):  

SEN =
TP

TP + FN
 
 ; 

SPE =
TN

TN + FP
 
 ; 

ACC =
TP + TN

TP + FP + TN + FN
 
  

MCC =
 TP × TN − (FN × FP)

  TP + FN ×  TN + FP  TP + FP  TN + FN 
 
 

Where: TP, TN, FP and FN represent the numbers of true 

positives, true negatives, false positives and false negatives, 

respectively.  

 

2.4. Substrate motif discovery for the identification of S-

farnesyl cysteine sites 

 

Recent advancements of bio-technology and informatics on 

high-throughput of mass strometry-based proteomics, make a 

rapid increasing number of experimentally verified SFCP 

sites being available for researchers. However, the there still 

a lack of clues to help identify the SFCP sites. Therefore, we 

are motivated to discover the potential substrate motif of 

SFCP sites. In this work, Maximal Dependence 

Decomposition (MDD) [18, 28] is adopted to explore 

subtrate motif for the identification of SFCP sites. MDD has 

been shown to be effective in clustering splice sites for the 

purpose of splice site prediction, as well as identifying useful 

substrate motifs [16-18, 28].  

MDD adopts the chi-square 
)A ,(A ji

2
test to assess the 

dependence of amino acid occurrence between two positions 

Ai and Aj that surround the S-farnesyl cysteine prenylation 

(Figure 2). To cluster SFC-data using MDD, the 20 different 

amino acids are first categorized into five subgroups. 

Subsequently, a contingency table representing the amino 

acid occurrences between two positions is constructed. The 

chi-square test is defined as: 
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When a strong dependence (defined as 3.342  , 

corresponding to a cut-off level of =0.005 with 16 degrees 

of freedom) is detected, the decomposition will be preceeded 

[28]. 

 

Figure 2: The analytical flowchart of motif discovery by 

using MDDLogo: (a). Detecting the maximal dependence of 

positions by using chi-square test; (b). The Tree-like 

visualization of MDDLogo-clustering result in this work. 

 

3. Results and Discussion 
 

3.1. Effection amino acid composition and single 

features in the identification of SFCP sites 

 

To examine the position-specific amino acid compostion for 

S-farnesyl cysteine prenylation sites, WebLogo [29] is 

applied to generate the graphical sequence logo for the 

relative frequency of the corresponding amino acid at 

postions surrounding S-farnesyl cysteine sites. 

 

The flanking sequences of substrate sites (at position 0) 

could be graphically visualized in the entropy plots of the 

sequence logo generated by WebLogo [29], such that the 

conservation of the amino acids around the SFCP sites could 

be easily observed. The identified motifs are subsequently 

evaluated on their ability to distinguish SFCP sites from non-

SFCP sites by five-fold cross-validation. The AAC presents 

the fraction of each amino acid in a protein sequence, 

whereas the AAPC is used to encapsulate the global 

information about each protein sequence. Therefore, the 

investigation of the composition of flanking amino acids 

(AAC, AAPC) surrounding the SFCP could contribute to the 

identification of the potential SFCP sites. 

 

Investigation of the differences between the AAC 

surrounding SFCP sites and those of non-SFCP sites shows 

that the overall trends are similar with slight variations. As 

shown in Figure 3 (c), prominent amino acid residues 

including Ala (A), Ser (S), Gly (G), and Lys (K), and Met 

(M); while Trp (W), Try (Y), and Phe (F), are three of the 

least significant amino acid residues. Sequence logo displays 

the most enriched residues surrounding the SFCP sites 

(Cysteine C). Also, as shown in Figure 3 (a), it shows that 

the most conserved amino acid residues including of Phe (F), 

Lys (K), Ser (S), Met (M), and Val (V). In addition, the 

difference between SFC-sites and non-SFC sites is visualized 

using TwoSampleLogo [30]. The enriched residues appear to 

be Phe (F), Pro (P), Ser (S), Gly (G) and Met (M); whereas 

the depleted amino acid residues include Val (V), Leu (L), 

Glu (E), Lys (K), and Gly (D) (Figure 3 (b)). An SVM model 

is trained to examine the effectiveness of AAC in SFCP sites. 
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This SVM model used a 20-dimensional vector comprising 

of the composition scores for twenty types of amino acids. In 

order to evaluate the AAC-based model, the five-fold cross-

validation is applied. As shown in  

Table 3, the model yields 91.91% accuracy, and an MCC 

value of 0.7998. Also, the AAPC-based model is trained to 

investigate the ability of AAPC and PSSM in identifying 

SFCP sites. The accuracy and MCC of the AAPC-based 

model reaches 88.27% and 73.78, respectively. 

  

 

Figure 3: The graphical sequence logo showing the relative 

frequency of the corresponding amino acid at positions 

surrounding S-farnesyl cysteine sites 

 

In addition to the composition of flanking amino acids, the 

evolutionary information (PSSM) is also investigated. 

Several amino acid residues of a protein can go through 

mutation without changing its structure, and two proteins 

may share similar structures with different amino acid 

composition. Evolutionary conservation usually reflects 

important biological function, and posttranslational 

modifications are prone to occur in conserved protein 

segments. The PSSM profiles are generated using the 

BLAST program through three iterations and default values 

of parameters. As presented in  

Table 3, the five-fold cross-validation shows that the PSSM-

based models yielded 92.68% accuracy, and the MCC value 

of 0.807. 

 

Table 3: Performance evaluation by Five-fold cross-

validation 
Feature SEN SPE ACC MCC 

AAC 96.95% 90.49% 91.91% 0.800 

AAPC 98.31% 85.44% 88.27% 0.738 

PSSM 96.28% 91.76% 92.68% 0.807 

AAC+AAPC 96.66% 92.96% 93.78% 0.839 

AAC+PSSM 95.33% 93.62% 94.00% 0.842 

AAPC+PSSM 95.33% 93.52% 93.93% 0.840 

AAC+AAPC+PSSM 98.31% 92.96% 94.14% 0.850 
 

3.2. Effection of hybrid features in identifying SFCP sites 

 

It is straightforward and very beneficial to combine two or 

more different approaches in machine learning to exploit 

advantages from them. Various methods have been applied to 

predict protein sites [16-18, 31]. In our approach, hybrid 

features are built from the incorporation of two or more 

single features in order to form new features for the 

investigation. As a consequence, the hybrid features are 

found to be the most effective in predicting protein S-

farnesyl cysteine prenylation sites. 

 

The performance of the model when tested with the hybrid 

features using the training data and independent testing data 

is shown in  

Table 3 and Table 4, respectively. The hybrid feature 

“AAC+AAPC+PSSM” has been demonstrated to generate 

the best model which achieves the highest performance, with 

94.14% accuracy, and an MCC value of 0.8503. This 

indicates that the hybrid feature “AAC+AAPC+PSSM” 

would generate the most promising prediction results. 

 

Table 4: Performance evaluation by Independent testing 

Feature SEN SPE ACC MCC 

AAC 85.71% 92.47% 91.94% 0.611 

AAPC 89.29% 93.98% 93.61% 0.674 

PSSM 89.29% 94.28% 93.89% 0.683 

AAC+AAPC 92.86% 94.58% 94.44% 0.715 

AAC+PSSM 89.29% 94.28% 93.89% 0.683 

AAPC+PSSM 85.71% 94.28% 93.61% 0.661 

AAC+AAPC+PSSM 96.43% 94.88% 95.00% 0.747 

 

3.3. Independent testing performance 

 

As mentioned previously, to assess the practicability of the 

trained models, an independent testing data set is constructed 

by randomly selected 70 uniqes proteins from the final-non-

redudant data. After several technical steps and pre-

processing, the independent testing data set comprises 28 

positive and 332 negative data. The performance of the 

model when tested on the independent testing data set is 

shown in Table 4. The model constructed with the hybrid 

feature “AAC+AAPC+PSSM” delivers the best 

performance, with 95.00% accuracy, and an MCC value of 

0.747. This evidences for the strength of our proposed 

method. Furthermore, this suggests that the hybrid approach 

of combining single features could be an effective and 

promissing approach. 

 

In addition, our proposed method is also compared with a 

recent prediction tool on SFCP site, GPS-Lipid [13]. As 

shown in  

Table 5, our proposed method achievied higher performance. 

This demonstrated the ability of our model in the prediction 

of SFCP sites. 

 

Table 5: Performance compared with other prediction tools 

using Independent testing 

Tool SEN SPE ACC MCC 

GPS-Lipid 9.06% 100.00% 21.94% 0.118 

Our method 96.43% 94.88% 95.00% 0.747 
 

 

3.4. Substrate motif discovery for the identification of S-

farnesyl cysteine sites 

 

MDD adopts a recursive chi-square test to evaluate the 

dependence of amio acid occurrence between two position 

surround the SFCP-sites. In this work, MDD is applied to 

sub-divide the positive training data (296 SFC-site 

fragments) to eight subgroups containing significant 

substrate motifs. The negative data for each MDD-clustered 
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subgroups are randomly selected from the negative training 

(1051 non-SFC-site fragments) with a ratio approximately 

equal to 1:3.551 (same as the ratio of positive training to 

negative training–296:1051). As a result, the eight useful 

substrate motifs are displayed in Table 6. 

 

Table 6: Substrate motif detected by MDD 

Sub-

group 

No. of 

positive  

data 

No. of 

negative  

data 

Substrate site motif 

1 62 220 

 

2 53 188 

 

3 19 67 

 

4 65 231 

 

5 7 25 

 

6 7 25 

 

7 8 28 

 

8 75 267 

  

In addition, as shown in Table 6 and Table 7, MDD-clusters 

containing Lysine (K), Proline (P) and Glutamine (Q) 

residues in conserved motifs appear to generate better 

performances. For example, the evaluation by independent 

testing shows that the MDD cluster 2, consisting of Proline 

(P) and Lysine (K) residues at position -6 of conserved 

motifs, yields an accuracy of 98.61%. Similarly, MDD 

cluster 3, which is comprised of Lysine (K) residues at 

position -4 in conserved motifs, obtains 98.19% accuracy. In 

general, almost all clusters containing conserved Lysine (K), 

Proline (P) and Glutamine (Q) at specific positions, could 

yield good performance. In contrast, other clusters without 

clearly conserved motifs containing Lysine (K), Proline (P) 

and Glutamine (Q) residues generally show lower sensitivity. 

This suggests that, for the identification of SFCP sites, the 

substrate site specificities may depend on the conserved 

position of Lysine (K), Proline (P) and Glutamine (Q) 

residues. 

 

 

 

 

 

Table 7: Independent testing performance for MDDLogo-

clustered models. 

Models SEN SPE ACC MCC 

Single Model (all data)  

(Without MDD) 
96.43% 94.88% 95.00% 0.747 

MDD-Model 1 96.43% 98.49% 98.33% 0.893 

MDD-Model 2 100.00% 98.49% 98.61% 0.914 

MDD-Model 3 100.00% 98.19% 98.33% 0.899 

MDD-Model 4 75.00% 93.07% 91.67% 0.557 

MDD-Model 5 78.57% 93.07% 91.94% 0.580 

MDD-Model 6 92.86% 96.08% 95.83% 0.766 

MDD-Model 7 96.43% 96.08% 96.11% 0.788 

MDD-Model 8 100.00% 97.89% 98.06% 0.885 

Combined-MDD  

Models 
92.41% 96.42% 96.11% 0.785 

 

4. Conclusions 
 

Protein S-farnesyl cysteine prenylation was a kind of post-

translational modification that plays critical roles for many 

cellular processes such as DNA replication, signaling and 

trafficking, found in all eukaryotic cells. It comprises an 

attachment of S-farnesyl isoprenoid, which are typically 

involved in mediating not only protein-membrane but also 

protein-protein interactions. Inhibition of S-farnesyl cysteine 

prenylation has been extensively investigated to suppress the 

activity of oncogenic Ras protein to achieve antitumor 

activity. The current status of prenyltransferase inhibitors 

have been accounted to be as potentially therapeutics against 

several diseases, including: cancers, progeria, aging, 

parasitic diseases, bacterial and viral infections. In this study, 

we present a new schema for the identification of S-farnesyl 

cysteine prenylation sites based on substrate specificities. 

The SVM models based on various features are constructed 

and investigated. The hybrid feature “AAC+AAPC+PSSM” 

has been found to generate the best model that yields the 

highest performance. Evaluation of the proposed model 

using an independent testing reveals the strength of our 

proposed method in comparison with existing prediction 

tools. In addition, the eight useful substrate motifs, which are 

discovered by MDD, provide promissing clues for biologist 

to recognize and identify the protein SFCP sites. 
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