
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Automated Technique to Support Software

Validation

Abdelrasoul Y. Ibrahim
1
, Nahid A. Ali

2
, Amal A. Mirghani

3

1, 2, 3Sudan University for Science and Technology, Faculty of Computer Science and Information Technology, Khartoum, Sudan

Abstract: Validation of software specification is a fundamental issue to make sure that the specification is demonstrates all software

requirements. As the specification is the starting phase of software development lifecycle processes; a validation consist essentially of

stated attributes about the specification, the validation then provides that the specification satisfies the all those attributes. Such

attributes are completeness, minimality, and simplest. Abstract data types are software which has functional attributes can be specified

uses a behavioral specification. This specification is represented by axioms and rules. Alneelain specification language which is uses

behavioral based specification is used to specify abstract data types in form of axiomatic specification. Alneelain validation tool is

created to use to validate the specification of abstract data types.

Keywords: Validation of Specification; Software Requirement Specification; Abstract Data Types; Behavioral Specification model;

axiomatic representation; Alneelain Specification Language; Alneelain Validation Tool.

1. Introduction

A validation of a software specification is a fundamental

issue which by means of ensuring that requirements

specification in a scale specify what are supposed to be

specified. A specification is the starting point of the

development process. It has the same status as axioms of a

mathematical theory. Even the simplest of validation

activities can improve the quality of a draft standard but a

well-planned [1]and systematic validation process will

identify many technical inaccuracies and completeness that

might otherwise have been remained in the specified

document. There are many specification languagesare

proposed VDM [2],Z [3] [4], Alloy [5],OCL [6], and B

which is a model state-based specification language [7] as

well as many their validation techniques. A behavioral based

specification languagecalled Alneelain [8]Specification

languagealso proposed which based on behavioral model

[9]for specify abstract data types.

The aim of this paper is to introduce a new automated

technique to help in software specification and validation of

the specification itself prior to move to next phase in

software engineering process. The study adopted Alneelain

specification language that we presented in previous work

[8], which was based on axiomatic specification. Abstract

data types is a type of software were specified by Alneelain

specification language and checked by both of its two

components’ lexical analyser and syntax checker. A

validation tool has been designed to use to validate

independent validation data of abstract data types.

The rest of this paper organized as follows: The proposed

behavioral specification model that Alneelain language based

is mentioned in section 2. An axiomatic representation that

the behavioral model is depended on is explained in section

3, in addition to a sample of queue specification using

Alneelain specification language is presented. Section 4 the

interface of Alneelain specification language and is described

and how to use it to specify a queue and its output that

resulted after execution of the language. A proposed method

for validation is illustrated in Section 5. Section 6 explained

how to validate the specification of a queue manually.

Section 7 explained the automated validation prove

supported by the validation tool interface that does the

validation. An example of a queue that has a series of

operations is illustrated. And at last, conclusion will be

included in section 8.

2. A behavioral specification model

description

The proposed a specification model it captures the behavior

of software systems that have an internal state [10]. Abstract

data types (ADT's) are a typical software product with an

internal state, and other types of software products also can

fall under this category.Alneelain specification language is

based on this model which uses axiomatic representation [9]

[10]. This model is described by specification of queue as an

example of abstract data type as follows:

1) An input space, say X, which includes all the input

symbols that may be submitted to the ADT. For the

Queue, we have

X = {init, deq, front, rear, size, empty}  {enq}

itemtype,
Where itemtype is the data type of the items we wish to

store in the queue. We distinguish between two types of

input symbols:

o Those that change the state of the ADT and produce

no outputs; in the case of the stack these include,

XO = {init, enq, deq}.

o Those that do not change the state of the ADT but

return an output value; in the case of the stack ADT,

these include

XV = {front, rear, size, empty}.

2) From the input space X we compute set H as the set of

sequences of X, and we refer to H as the set of input

histories, or input sequences.

3) An out spaceY, which includes all the possible outputs

that the ADT may return when the last symbol of an input

history is in XV. For the queue ADT, the output space Y

may be defined as follows:

Paper ID: ART20182930 DOI: 10.21275/ART20182930 412

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Y = itemtype  integer  Boolean  {error}.

A Relation R from H to Y, which to each input history

assigns an output. In the case of the queue ADT, this relation

may include the following pairs:

queue(init.enq(a).enq(b).front.deq.size)=1
queue(init.enq(a).deq.enq(b).enq(c).rear)=c
queue(init.enq(a).enq(b).front.deq.empty)= false
queue(init.enq(a).enq(b).deq.deq.front) = error

3. Axiomatic Representation

The model is adopted an axiomatic notation, which

represents the specification by prodding of convention on

the reach of the input history:

 Axioms describe the behavior of the ADT for simple input

histories,

 Rules relate the behavior of the ADT for simple input

histories to its behavior for more complex/ longer input

histories.

As an example, we show below how we represent the

specification of the queue ADT in the axiomatic notation.

Axioms for the queue:
1) Size axiom:

a. queue(init.size)= 0.

 The size of an empty queue is zero.

2) Empty axioms:

a. queue(init.empty)= true

b. queue(init.enq(a).empty)= false

An initial queue is empty. A queue in which an element has

been enqueued is not empty.

3) Front axioms:

a) queue(init.front)= error

Invoking front on an empty queue returns an error.

b) queue(init.enq(a).enq(_)*.front)= a

Where enq(_)* designates an arbitrary number

(including zero) of enq operations. Interpretation:

Invoking front on a non-empty queue returns the first

element enqueued.

4) Rear axioms:

a) queue(init.rear)= error

 Invoking rear on an empty queue returns an error.

b) queue(init.enq(_)*.enq(a).rear)= a

Invoking rear on a non-empty queue returns the last

element enqueued.

Rules of Queue:

1) Init rule:

queue(h.init.h’) = queue(init.h’)

The init operation reinitializes the queue, i.e. renders all past

input history irrelevant.

2) Init deq rule

a) queue(init.deq.h) = queue(init.h)

A deq operation executed on an empty queue has no effect.

3) Enq deq rule

queue(init.enq(a).enq(_)*.deq.h+)=queue(init.enq(_)*.h+)

A deq operation cancels the first enq, by virtue of the FIFO

policy of queues.

4) Size rule:

queue(init.h.enq(a).size) =1+ queue(init.h.size)

An enq operation increases the size of the queue by 1

5) Empty rules:

a. queue(init.h.enq(a).h’.empty) => queue(init.h.h’.empty)

b. queue(init.h.empty) => queue(init.h.deq.empty)

Removing an enq or adding a deq to the input history of a

queue makes it emptier.

6) VX-Operation rules:

a) queue(init.h.front.h
+
) = queue(init.h.h

+
)

b) queue(init.h.rear.h
+
) = queue(init.h.h

+
)

c) queue(init.h.size.h
+
) = queue(init.h.h

+
)

d) queue(init.h.empty.h
+
) = queue(init.h.h

+
)

VX operations leave no trace of their passage; once they are

serviced and another operation follows them, they are

forgotten: whether they occurred or did not occur has no

impact on the future behavior of the queue.

Alneelain specification language [8] is used to specify

abstract data type and then the specification of abstract data

types are checked into phases: Lexical analysis and syntax

checker [8]. A following Fig 1 showed the specification of

queue in Alneelain specification language. It includes

constant, input, output, variables, axioms, and rules.

specification Queue;

constant

 x = 10;

type

 itemtype : char;

input

 vop front: itemtype ,

 vop rear: char ,

 vop size: integer ,

 vop empty: Boolean

 oop init, deq, enq(char)

endinput;

output
 char ^ Boolean ^ integer ^ error

endoutput;

variable

 a: char,

 b: char,

 h: inputstar,

 hprime: inputstar,

 hplus: inputstar;

axioms

 axiomfrontAxiom:

 Queue(init.front)= error &

 Queue(init.enq(a).enq(b).front)= a,

 axiomrearAxiom:

 Queue(init.rear)= error &

 Queue(init.enq(b).enq(a).rear)= a,

 axiomsizeAxiom:

 Queue(init.size)= 0,

 axiomemptyAxiom:

 Queue(init.empty)= true &

Paper ID: ART20182930 DOI: 10.21275/ART20182930 413

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Queue(init.enq(a).empty)= false

endaxioms;

rules

 ruleinitRule:

 Queue(h.init.hprime) =

Queue(init.hprime),

 ruleinitdeqRule:

 Queue(init.deq.h) = Queue(init.h),

 ruleenqdeqRule:

 Queue(init.enq(a).enq(b).deq.hplus)=

 Queue(init.enq(b).hplus),

 rulesizeRule:

 Queue(init.h.enq(a).size)=

Queue(init.h.size),

 ruleemptyRule:

 Queue(init.h.enq(a).hprime.empty)=>

 Queue(init.h.hprime.empty) &

 Queue(init.h.empty)=>

 Queue(init.h.deq.empty),

 ruleVopRule:

 Queue(init.h.front.hplus)=

 Queue(init.h.hplus)&

 Queue(init.h.rear.hplus)=

 Queue(init.h.hplus) &

 Queue(init.h.size.hplus)=

 Queue(init.h.hplus) &

 Queue(init.h.empty.hplus)=

 Queue(init.h.hplus)

endrules;

endspecification

Figure 1: Specification of queue using Alneelain language

4. Alneelain specification language lexical and

syntax checkerinterface

To use the Alneelain specification language, we can open

the language interface as shown in Fig 2 where the user can

edits and writes the specification of the abstract data type

according to language rules or, the user can open a file that

already exists which was written in structureof the Alneelain

language as shown in Fig 1, then the user check the

specification by clicking the () sign or clicking on check

command in checkSpec menu to show analert message

confirming that The specification of the queue is

syntactically correct according to the rules of the Alneelain

language. An out file is created as a result of the checking

process. This file consists only of the axioms and rules that

belong to the queue. This file is used in the validation stage

of the specifications. The Al-Neelain ValidationTool relies

on axioms and rules to automatically simplify and reduce the

user queries that have independent validation data.

Figure 2: Al-Neelain Specification Language Interface

A log file is created as an output result. This output file

shows all axioms and rules for that abstract data type, for

example after checking a queue as shown in Fig 3.

frontAxioms:

 Queue(init.front)= error &

 Queue(init.enq(a).enq(b).front)= a,

rearAxioms:

 Queue(init.rear)= error &

 Queue(init.enq(b).enq(a).rear)= a,

sizeAxiom:

 Queue(init.size)= 0,

emptyAxioms:

 Queue(init.empty)= true &

 Queue(init.enq(a).empty)= false

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

initRule:

 Queue(h.init.hprime) = Queue(init.hprime),

initdeqRule:

 Queue(init.deq.h) = Queue(init.h),

enqdeqRule:

 Queue(init.enq(a).enq(b).deq.hplus) =

 Queue(init.enq(b).hplus),

sizeRule:

 Queue(init.h.enq(a).size) = 1 +

 Queue(init.h.size),

emptyRules:

 Queue(init.h.enq(a).hprime.empty) =>

 Queue(init.h.hprime.empty) &

Queue(init.h.empty) => Queue(init.h.deq.empty),

VopRules:

 Queue(init.h.front.hplus) = Queue(init.h.hplus) &

 Queue(init.h.rear.hplus) = Queue(init.h.hplus) &

 Queue(init.h.size.hplus) = Queue(init.h.hplus) &

 Queue(init.h.empty.hplus) = Queue(init.h.hplus)

Figure 3: A log file output of Queue after checking.

The output summarizes only axioms and rules that will later

be input to the validation tool, where these axioms and rules

are stored as basis for comparison process of simplification

and reduction of the independent data entered by the user.

Paper ID: ART20182930 DOI: 10.21275/ART20182930 414

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The results of user queries are shown after repeated

execution of the rewriting operations. The operation

compares the left-hand side of user’s query with the rules

that stored in the tool.If a matching is found, this meansthe

left-hand sideis equal to the right-hand side of the specific

rule after searching all the rules from the beginning. If no

such rule was matching, the compare it takes place to all

axioms. If one finds an intuitive one identical, the left side of

the axiom is considered the final result.

5. Method of Validation process

Our simplest method is a part of a whole method and flow

chart of designing Alneelain specification language that was

introduced in [8]. Fig illustrate our model, this model can be

added to model in [8] to be as a complete model for software

specification and validation.

Figure 4: Method of Validation process

6. Manual Validation

In the previous section we have written specifications of the

two of ADT's, namely queue. How do we know that our

specifications are valid, i.e. that they capture all the

properties we want them to capture such as completeness

and nothing else such as minimality? To bring a measure of

confidence in the validity of these specifications, we

envision a validation process, though by now we focus

gradually on completeness; so our confidence in the validity

of the specification increases. We imagine that while we are

writing these specifications, an independent validation data

was generated formulas of the form:

Queue(h)=y

For different values of h and y, on the grounds that whatever

we write in our specification should logically imply these

statements. Then the validation step consists in checking that

the proposed formulas can be inferred from the axioms and

rules of our specification. If they do, then we can conclude

that our specification is complete with respect to the

proposed formulas; if not, then we need to check with the

validation data which had been generated independently to

see whether our specification is incomplete, or perhaps the

validation data is erroneous.

For the sake of illustration, we check whether our

specification is valid with respect to the formulas written as

in Fig 3 as sample pairs of input and output of our queue

specification.

1- queue(init.enq(a).enq(b).front.deq.size)=1

2- queue(init.enq(a).deq.enq(b).enq(c).rear)=c

3- queue(init.enq(a).enq(b).front.deq.empty)= false

4- queue(init.enq(a).enq(b).deq.deq.front) = error

Figure 5: Sample pairs of input and output validation data

of queue

We can do a manual validation for this specification shown

in fig 3; let us take the first formula

1- queue(init.enq(a).enq(b).front.deq.size)=1

By virtue of Vop rule:

queue(init.enq(a).enq(b).front.deq.size) =

queue(init.enq(a).enq(b).deq.size)

By virtue of enqdeqRule:

queue(init.enq(a).enq(b).deq.size) =

queue(init.enq(a).size)

By virtue of the size Rule

queue(init.enq(a).size)= 1+ queue(init.size)

By virtue of the size axiom

1+ 0 {Mathematically} is equal to1Qed.

2- queue(init.enq(a).deq.enq(b).enq(c).rear)=c

By virtue enqdeqRule:

queue(init.enq(a).deq.enq(b).enq(c).rear)=

queue(init.enq(b).enq(c).rear)

By virtue rear axiom:

queue(init.enq(b).enq(c).rear) = c Qed.

3- queue(init.enq(a).enq(b).front.deq.empty)= false

By virtue of Vop rule:

queue(init.enq(a).enq(b).front.deq.empty)=

queue(init.enq(a).enq(b).deq.empty)

By virtue of enqdeqRule:

queue(init.enq(a).enq(b).deq.empty)=

queue(init.enq(a).empty)

By virtue of the empty Axiom:

queue(init.enq(a).empty)= false Qed.

4- queue(init.enq(a).enq(b).deq.deq.front) = error

By virtue of enqdeqRule:

queue(init.enq(a).enq(b).deq.deq.front)=

queue(init.enq(a).deq.front)

By virtue of enqdeqRule:

queue(init.enq(a).deq.front) = queue(init.front)

By virtue of initAxiom:

queue(init.front) = error Qed.

7. Automated Validation Proving

A validation of specification is fall in the concepts of an

automated theorem prover. Anautomatic theory focuses on

the aspects of "Finding"[11]. Solution theorem prover

provides means to validate formulas in the proportional and

first-order logic. However, some other systems provide

search procedures and decision-making procedures for

languages and specific scope, such as linear[12],[13] or non-

linear expressions[13] on integers or real numbers. In the

Paper ID: ART20182930 DOI: 10.21275/ART20182930 415

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

other hand abstract data types are special case that have

algebraic behavioral, they differ from the rest but they can

have a similarity in such attributes. Alneelain Validation Tool

is created to automatically use to validate independent

validation data. The tool actually implement rewriting system

algorithm[14]. The most important process in the

implementation of the rewrite algorithm is that it receives the

data in the form1:

Stack(push(a).init.pop.push(a).top.pop.size,

Then the tool simplifies it until it get 0,

Or takes data in the form2:

Stack(push(a).init.pop.push(a).top.pop.size)=0,

andsimplifies it until it finds 0.

Fig shows Alneelain Validation Tool interface and the

validation of independent data in form of query of queue that

have a series of operations

Figure 6a: Result of validation of queue query, form1.

Figure 6b: Result of validation of queue query, form2.

When we find that manual validation is identical to the

automated method, the validation is goes to more significant,

and increases our confidence that our specifications are

absolutely correct.

8. Conclusion

Software requirement specification is a major process in

software engineering lifecycle which involves eliciting

requirements, classifying requirements, resolving conflicts,

capturing requirements, and specifying them. A validation of

specification is needed to ensure that the specification is valid

against completeness, consistency prior to proceed the next

phase, because any error arises in this phase it will affect all

other subsequent phase.

The most two important works that this paper has introduced

is design specification language called Alneelain which use

to specify abstract data types and creation of a validation tool

that is used to validate the specification, a good result of

queue abstract data type was shown include both

specification by the language and validation by the tool

which support or aim and philosophy. However, there is a

need for integration both the language and the tool to be as

whole work as well as not only abstract data types but

include similar to abstract data type such as mathematical

formulas.

9. Acknowledgement

We would like to thank Dr. Ali Mili at NJIT, USA, for his

valuable guidance and Dr. Aisha Hassan at International

Islamic University Malaysia IIUM, Malaysia for her help and

support; we are a very grateful staff of IIUM for their help.

References

[1] M. Broy, E. Dneret, "Software poineers," Springer-

Verlag, pp. 442-452, 2002 Berlin Heidelberg.

[2] Jones, Cliff B, Systematic software development using

VDM, 2nd ed.: Citeseer, 1990.

[3] Bowen, Jonathan P and Dunne, Steve and Galloway,

Andy and King, Steve, ZB 2000: Formal Specification

and Development in Z and B: First International

Conference of B and Z Users York, UK, August 29-

September 2, 2000 Proceedings. UK, UK: Springer,

2003.

[4] Woodcock, Jim and Cavalcanti, Ana, "A Concurrent

Language for Refinement.," in IWFM., 2001, p. 5th.

[5] Jackson, Daniel, Software Abstractions: logic, language,

and analysis.: MIT press, 2012.

[6] Bajwa, Imran Sarwar and Bordbar, Behzad and Lee,

Mark G, "OCL constraints generation from natural

language specification," in Enterprise Distributed

Object Computing Conference (EDOC), 2010 14th

IEEE International, 2010, pp. 204-213.

[7] Abrial, Jean-Raymond and Abrial, Jean-Raymond, The

B-book: assigning programs to meanings.: Cambridge

University Press, 2005.

[8] Ali, Nahid A and Mirghani, Amal A and Ibrahim,

Abdelrasoul Y, "Alneelain: A formal specification

language," in Communication, Control, Computing and

Electronics Engineering (ICCCCEE), 2017 International

Conference on, 2017, pp. 1-9.

[9] Abdelrasoul Yahya Ibrahim, "Specifying abstract data

types a behavioral model, an axiomatic representation,"

in Computing, Electrical and Electronics Engineering

(ICCEEE), 2013 International Conference on,

Khartoum, SUDAN, 2013, pp. 225-228.

[10] Mili, Ali and Tchier, Fairouz, Software testing:

Concepts and operations.: John Wiley \& Sons, 2015.

[11] Ulrik Buchholz, Nathan Carter, Amine Chaieb, Floris

van Doorn, Anthony Hart, Sean Leather, Christopher

John Mazey, Daniel Velleman, and Théo Zimmerman.

(2012) Theorem Proving in Lean. [Online].

https://leanprover.github.io/tutorial/

Paper ID: ART20182930 DOI: 10.21275/ART20182930 416

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 6, June 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[12] Tamura, Naoyuki, "User’s guide of a linear logic

theorem prover (llprover)," Department of Computer

and Systems Engineering, Faculty of Engineering, Kobe

University, Japan, pp. 1-12, May 1998.

[13] Hunt, Warren A and Krug, Robert Bellarmine and

Moore, J, "Linear and nonlinear arithmetic in ACL2," in

Advanced Research Working Conference on Correct

Hardware Design and Verification Methods, Springer,

2003, pp. 319-333.

[14] Paul, Hong Nai, Huan Zhang. (2007) Swansea

Univeristy and McMaster Unverity. [Online].

https://www.meta-

environment.org,http://www.cas.mcmaster.ca

Paper ID: ART20182930 DOI: 10.21275/ART20182930 417

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

