Susceptibility and Interleukins-6 Serum Level of Broilers Chickens Vaccinated with Baculovirus Expressed H5N1-ND after Experimental Infection with Virulent *E. coli*

Ismael Radwan¹, Ahmed Orabi²

¹ Department of Microbiology, Faculty of Veterinary Medicine, Beni-suef University, Egypt
² Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Egypt

Abstract: Avian pathogenic *Escherichia coli* cause severe respiratory and systemic disease in poultry yet the nature and consequences of host immune responses to infection are poorly understood. Here, an experimental study was conducted on broiler chickens for evaluating the effect of BEST; Baculovirus Expressed H5N1-ND “inactivated vaccine on controlling non-specifically of virulent *E. coli* infection with special reference to serum IL6 as indicator for potent immune response. Two groups from broilers chickens each one consisted of 250 birds, 1⁰ group was vaccinated with “BEST” at 10 day of age, while 2⁰ group was vaccinated with inactivated ND vaccine at 6 day of age” and also inactivated H5N3 vaccine at 10 day of age”. *E. coli* suspension 1.5x10⁵ cfu/ml from selected virulent and multidrug resistant isolate was used in experimental infection. Results revealed that 1⁰ group showed slight respiratory signs and slight diarrhea with 8% mortalities begin at 3rd day post experimental infection and ended in 6th day with slight air sacculitis and slight pericarditis, in the other hand 2⁰ group recorded severe respiratory signs with nasal discharge, eye lid inflammation and diarrhea accompanied by 12% mortalities with pericarditis, air sacculitis. IL6 serum level also was recorded for each experimentally infected group as follow, 1⁰ group IL6 conc. was “55 , 62 , 35 , 40 and 55 pg/ml “ while for 2⁰ group IL6 conc. was “32 ,40,30,35 and 40 pg/ml”. Such data inform the rational design of strategies to control of endemic Colibacillosis disease of poultry.

Keywords: *E. coli*, BEST®, IL6

1. Introduction

Escherichia coli is a normal inhabitant chicken’s microflora. Some avian *E. coli* serotypes are pathogenic and induce significant economic problems in broiler chickens (Russell, 2003). Avian pathogenic *E. coli*, “APEC”, which causes of avian colibacillosis . APEC strains are commensals classified as extra intestinal pathogenic *E. coli* "EXPEC" (Ron, 2006; Johnson and Russo, 2002). Several factors have been shown to contribute the virulence of avian *E. coli* as Congo red binding , serum resistance and toxins production (Gjessing and Berkhoof, 1989 and Fecteau et al, 2001). The role of *E. coli* in chronic respiratory diseases in meat-type chickens is well documented and its pathogenicity has been correlated with numerous extrinsic and intrinsic bird related factors and conditions. The extrinsic factors include environment, exposure to other infectious agents, virulence and level of duration of exposure, active and passive immune status and breed of chicken (Gross, 1990). Since intensive breeding has been widely applied in the poultry industry, outbreaks of acute mortality in flocks due to avian colibacillosis have frequently been observed, and are responsible for the significant economic losses (Vandekerchove et al, 2004). Multiple antimicrobial resistance maybe acquired through mobile genetic elements which help in transfer of genes responsible for creation of “MDR” pathogens (Koga et al, 2015) detected the following virulence genes “lly F , iss , ompT , iron and iueA” in Extended Spectrum β-Lactamase producing *E. coli* isolated from chicken carcasses. Currently, the control of APEC has become not only an urgent issue but also a great challenge. Vaccination is an effective method for controlling infectious diseases (Yang, 2003). To date, a number of experimental vaccines have been developed to prevent colibacillosis (Nagano et al, 2012; Lynne et al, 2012). Cytokines as interleukins-6 (IL6) are secreted proteins involved in cell recruitment and regulation of both innate and adaptive responses as they are essential for effective host immune response to pathogens. Chicken IL6 has been confirmed to have a role in pro-inflammatory response (Kaiser et al, 2000). So the present investigation was recording the susceptibility of broiler chickens group vaccinated with "BEST vaccine" to virulent "APEC" when compared with broiler chickens groups vaccinated with other programs.

2. Materials and Methods

1) Strain

E. coli strain was recovered from broiler chickens suffering from pericarditis, perihepatitis and airsacculitis then completely identified according to (Quin et al, 2002) as well as API 20E (BioMerieux) .

2) Isolation and identification of *E. coli*. (Murray et al, 2003).

Swabs were inoculated into Trypticase soya broth medium and incubated at 37°C for 72 hours. A loop-full from the inoculated medium was then sub cultured onto the surface of MacConkey’s agar. All of the inoculated plates were incubated aerobically at 37°C for 24 hours. Smears from the suspected lactose fermenting colonies were stained with Gram stain and examined microscopically. Straight non sporulated Gram negative rods of medium size were selected.
for further identification. The suspected colonies were picked up and examined for their colonial morphology followed by conventional biochemical tests and confirmed by API 20 then preserved in semisolid agar for experimental infection.

3) *E.coli*virulence study

a) *Congo red binding assay* (Berkhoff and Vinal., 1989)
Congo red (CR) binding test *Congo red* binding is one of the indicators of virulence among *E. coli* isolates. All of the *E. coli* isolates were tested for their growth status on *Congo red* medium. Incubation at 37°C then left at room temperature for an additional 2 days (not to exceed 4 days). The *Congo red* positive (CR+) isolates were indicated by the development of bright or orange red colonies. Different intensities in the dye uptake were (+) and (++). *Congo red* negative (CR-) isolates did not bind the dye and appeared as white colonies.

b) *Hemolysis assay* (Marilda et al.,1990).
E. coli isolates were propagated on blood agar base supplemented with 5% washed sheep erythrocytes. Blood agar plates were then incubated at 37°C for 24 hr. and colonies producing clear zones of hemolysis were then recorded as hemolysis positive.

4) *Antimicrobial resistance* (CLSI, 2016)

All purified isolates were tested by the standard disc diffusion method and were subjected to a susceptibility panel of antibiotics (Oxoid) belonging to different drug classes. Isolates were cultured in trypticase soy broth (TSB) supplemented with 0.6% yeast extract, and transferred to Mueller– Hinton agar (Oxoid). The plates were incubated at 37°C for 48 hours.

a) *Serum resistance assay* (Fecteau et al., 2001)
0.05 ml from cell suspension equal to 2.5x10^5cfu/ml in HBSS add to the same amount serum and incubated at 37°C then 10 µl were plated on MHA 0 min and 180 of HBSS add to the same amount serum and incubated at 37

b) Experimental infection with *E.coli*(Gjessing and Berkhoff., 1989)
100 bird from each group were eye dropped with 0.2 ml for each bird using the previously prepared bacterial suspension for 3 successive days and kept under natural conditions of the original flock with daily observation for any clinical signs and mortality till the end of rearing period of the flock “35 days of age”.

c) Serum samples
5 randomly serum samples were collected from each group in the 2nd post last dose of *E.coli* for detection of IL6 level according to (Kaiser et al., 2000)

3. Result and Discussion

Colibacillosis is one of the main causes of economic losses in the poultry industry worldwide (Ewers et al., 2003). Majority of economic losses result from mortality, decreased production, condemnations, costs of chemotherapy and eradication programmes. *E. coli*strains are often resistant to antimicrobials such as cephalidine, tetracyclines, chloramphenical (Rahman et al., 2004; Hooda, 2009), sulfonamides, b-lactam antibiotics (Li et al., 2007; Renu, 2010) and amino-glycosides (Hooda, 2009; Renu, 2010). Resistance to fluoroquinolones was reported with several years of the approval of this class of drugs for use in poultry (Li et al., 2007). The selected *E.coli* isolate was *Congo red* binder which indicated by appearance of red colonies within 24 hr. at 37°C, also it resist serum for 12 hr. and show hemolytic activity on sheep blood agar.Antibiogram revealed that it was highly resistance for Cefotaxime, Gentamycin, Colistin sulphate, Doxycycline, Ciprofloxacin and Sulfamethoxazole-trimethoprime and that is indication for multidrug resistant strain "MDR" .Berkhoff and Vinal ., (1986),found a direct correlation between the ability of clinical *E.coli* isolates to bind *Congo red* dye and their ability to cause septicemic infection in chickens , while (Gaylen et al., 2014) recorded that there was a relationship between *Congo red* binding of *E.coli* and its biofilm formation with resistance to antimicrobial agents .

Serum resistance and hemolysis activity are important virulence associated properties in avian pathogenic *E.coli* (da Rocha ., et al 2002),and (Guabirba and Schouler ., 2015) who concluded that APEC strains constitute a heterogeneous group and different isolates may harbor associations of virulence factors each one is able to induce colibacillosis .In the present study , clinical signs , mortalities and PM lesions for each group were recorded in table (1) as 1st group showed slight respiratory manifestation , slight diarrhea and eye lid inflammation and lacrimation , with 8% mortalities begin at 3rd day post experimental infection and ended in 6th day with slight air sacculitis ,slight pericarditis, and slight liver enlargement, while the incontact broilers showed slight respiratory signs with 1.5% mortalities, in the other hand 2nd group recorded severe respiratory signs with nasal discharge , eye lid inflammation and diarrhea accompanied by 12 % mortalities with perihepatitis, pericarditis and air sacculitis as PM lesions while the incontact broilers recorded 2% mortalities .

Volume 7 Issue 5, May 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Interleukin-6 (IL-6) is a highly pleotropic molecule, with demonstrated roles in diverse biological functions, is an endogenous chemical which is active in inflammation, and in B cell maturation. IL-6 participates in the short-term defense against infection or injury, and warns the immune system against the source of inflammation. However, defective regulation of this molecule results in disease. On the other hand, interleukin-6 overexpression has equally important effects. IL-6 has been demonstrated to be important for primary resistance to several pathogens, including L. monocytogenes (Dalrymple et al., 1995), Chlamydia trachomatis (Williams et al., 1998), Escherichia coli (Dalrymple et al., 1996), and Yersinia enterocolitica (Dube et al., 2004). The IL-6 receptor is present on normal T-lymphocytes in the resting phase, normal activated B-cells, and cells in the myeloid and hepatic cell lines. The present work IL6 serum level also was recorded for each experimentally infected groups in (fig 1) as follow , 1st group IL6 conc. was ”55 , 62 , 35 , 40 and 55pg/ml “ while for 2nd group IL6 conc. was ”32 ,40,30,35and 40 pg/ml”

References

characteristics of the disease and the aetiologic agent.

Table 1: Susceptibility and IL-6 serum level of broilers chickens after experimental infection with virulent E. coli

<table>
<thead>
<tr>
<th>Items</th>
<th>1st group</th>
<th>2nd group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live vaccines</td>
<td>• IB at 1 day old</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IBD at 14 day old</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lasota at 16 day old</td>
<td></td>
</tr>
<tr>
<td>Inactivated vaccine</td>
<td>BEST at 10 day old</td>
<td>ND 0.3 ml + H5N3 0.3 ml at 10 day old</td>
</tr>
<tr>
<td>Experimental infection with field</td>
<td>100 birds from each group eye instilled with 1.5X10^8</td>
<td></td>
</tr>
<tr>
<td>virulent E. coli strain</td>
<td>cfu/ml three successive days</td>
<td></td>
</tr>
<tr>
<td>Clinical signs</td>
<td>• Slight respiratory manifestation</td>
<td>• Sever nasal discharge</td>
</tr>
<tr>
<td></td>
<td>• Slight diarrhea</td>
<td>• Sever diarrhea</td>
</tr>
<tr>
<td></td>
<td>• Slight lacrimation and eye lid inflammation</td>
<td>• Sever lacrimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sever eye lid inflammation</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td>FM lesion</td>
<td>Slight inflammation in serous membranes and liver</td>
<td>Pericarditis, peri hepatitis, air saculitis and</td>
</tr>
<tr>
<td></td>
<td>enlargement</td>
<td>enteritis</td>
</tr>
<tr>
<td>Mean average of IL6 conc.</td>
<td>50 pg/ml</td>
<td>35 pg/ml</td>
</tr>
</tbody>
</table>

Figure 1: IL-6 Serum level of broilers chickens after experimental infection with virulent E. coli