Three-Phase Mathematical Model of Dehydration and Granulation Process in the Fluidized Bed

Bogdan Korniyenko¹, Svetlana Borzenkova², Lesia Ladieva³

¹National Aviation University, Department of Computerized Information Security Systems, Pr. Komarova, 1, Kyiv, 03058, Ukraine
²National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Department of Automation of Chemical Production, Pr. Peremogy, 37, Kyiv, 03056, Ukraine
³National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Department of Automation of Chemical Production, Pr. Peremogy, 37, Kyiv, 03056, Ukraine

Abstract: The developed mathematical model takes into account the hydrodynamics of the fluidized bed, the contact of droplets with particles and their adhesion to the surface, as well as the kinetics of drying the solution on the surface of the particles. When creating a model, the process of dewatering and granulation in a fluidized bed is considered as a heterogeneous three-phase process, during which interact with three separate phases: particles - granulation centers, the starting material - ammonium sulfate in the form of droplets and heat carrier - air. To get the dynamic characteristics of the developed system, the Simulink library of the Matlab application package is used. With the help of built-in library elements, a scheme of differential equations describing the model of the control object is obtained.

Keywords: mathematical modeling, fluidized bed, dehydration, granulation

1. Introduction

Currently, the granulation process is quite widespread, particularly in the food, chemical and pharmaceutical industries, because it makes possible to convert powdered raw materials into grain with a definite size and composition. Granulation is one of the leading operations in the mineral fertilizers production technology. It has been proved that the granular product has a number of advantages as compared with a powder. Granules are more convenient to use, because they are well absorbed and is not weather out. Therefore, since the mid 80’s, almost all solid fertilizers have being produced in granular form.

The development of the agrarian sector of Ukraine is one of the vectors of sustainable development, which is enshrined in the Strategy of sustainable development of Ukraine for the period up to 2030. Increasing the variety and number of crops grown is envisaged. It requires earth enrichment with easily digestible nutrients. Consequently, the modernization of mineral fertilizer production technologies becomes even more urgent.

The fluidized bed granulators have simple design, are well exposed to mechanization and automation. Therefore they have been widely used in industry. A granulate obtained in a fluidized bed has such advantages: balanced fractional composition, a rounded form, and a better looseness [1-4].

The fluidized bed fertilizer production processes in one machine increases the intensity of moisture removal from the material due to a contact surface's increase between the particles and the drying agent, increases energy efficiency and reduces the resource intensiveness of production.

In the model of the process of dewatering and granulation in a fluidized bed this process is considered as a heterogeneous three-phase process. Three separate phases interact with each: particles - granulation centers, solution - ammonium sulfate in the droplets form and heat carrier – air [5-9].

The following assumptions were made during the model creation:
- The parameters' change occurs by layer height and in time.
- There is convective heat exchange between air, particles and droplets.
- The particles are monodispersed, non-porous. The agglomeration is absent. The mixing intensity of particles between the layers is described by the coefficient of the axial dispersion. The coefficient depends on the velocity of the gas phase and the particles properties.
- The droplets have a narrow size distribution. It allows them to be considered as a mono-dispersed phase. There are no collisions and clinging between the drops, no sticking on the device’s walls. The droplets move in a co-ordinate way with the air flow through the fluidized bed.

The heat transfer process in the granulator is described by the following system of equations.

The first equation describes the change of temperature in particles in the fluidized bed:

\[
M_p C_p \frac{d\Theta_p}{dt} = M_p C_p r_p \Theta_p' + R^{\text{evap}} M_p C_d (\Theta_d - \Theta_p) + M_{a} v_{a,\text{dry,Q}} - M_{a} v_{a,\text{dry,Q}_{\text{cryst}}} + a_{p} S_{p} (\Theta_a - \Theta_p),
\]

(1)

C - specific heat, J/kg K; G - mass flow rate, kg/s; Θ - temperature, K; the indexes p, a, d indicate that the parameter refers to particles, droplets or air; Θ_a" - initial temperature of...
The dependence of the droplets’ density on their temperature can be described by the following formula:

$$\rho_d(\Theta_a) = \frac{\rho_d^{ec}(\Theta_a) P_d}{P_d^{ec} \Theta_d}$$

where ρ_d^{ec} = density of droplets under normal conditions, kg/m³; P_d^{ec} = pressure of droplets at normal conditions, Pa; P_d = pressure of the steam-gas mixture, Pa; Θ_d = temperature of the steam-gas mixture, K.

The final system of equations describing the processes in the apparatus of dehydration and granulation has the following form:

Particle temperature change:

$$M_d C_d \frac{d\Theta_d}{dt} = G_a C_a(\Theta_a - \Theta_d) + R^{ad} M_p C_d (\Theta_d - \Theta_p) + M_d v_d Q_{coup} + \alpha_d S_d (\Theta_a - \Theta_d),$$

$$\Theta_d^0 = \text{initial temperature of drops, } \Theta_d^0 = \text{initial air temperature, } \Theta_d = \text{initial air specific heat, } \alpha_d = \text{coefficient of heat transfer drops, } M_d = \text{weight of loadable particles, kg; } M_p = \text{surface area of particles, m²; }$$

$$G_a = \text{gas flow rate, m³/s; } C_a = \text{molar mass of air, kg/mol; } R = \text{universal gas constant, } \text{m²·kg/(s²·K·mol); }$$

$$P_d = \text{pressure of the steam-gas mixture, Pa; } P_d^{ec} = \text{pressure of droplets at normal conditions, Pa; } $$

$$\Theta_d = \text{temperature of the steam-gas mixture, K.}$$

Changes in temperature of drops:

$$M_d C_d \frac{d\Theta_d}{dt} = G_a C_a(\Theta_a - \Theta_d) - \alpha_p S_p (\Theta_a - \Theta_d) - \alpha_d S_d (\Theta_a - \Theta_d),$$

$$\Theta_d^0 = \text{initial air temperature, } \Theta_d^0 = \text{initial air specific heat, } \alpha_p = \text{coefficient of heat transfer drops, } M_d = \text{weight of loadable particles, kg; } M_p = \text{surface area of particles, m²; }$$

$$G_a = \text{gas flow rate, m³/s; } C_a = \text{molar mass of air, kg/mol; } R = \text{universal gas constant, } \text{m²·kg/(s²·K·mol); }$$

$$P_d = \text{pressure of the steam-gas mixture, Pa; } P_d^{ec} = \text{pressure of droplets at normal conditions, Pa; }$$

$$\Theta_d = \text{temperature of the steam-gas mixture, K.}$$

Air temperature change:

$$M_a C_a \frac{d\Theta_a}{dt} = G_a C_a(\Theta_a - \Theta_d) - \alpha_p S_p (\Theta_a - \Theta_d) - \alpha_d S_d (\Theta_a - \Theta_d),$$

$$\Theta_a^0 = \text{initial air temperature, K; } \Theta_a = \text{initial air specific heat, } \alpha_p = \text{coefficient of heat transfer drops, } M_a = \text{mass of air, kg; }$$

$$G_a = \text{gas flow rate, m³/s; } C_a = \text{molar mass of air, kg/mol; } R = \text{universal gas constant, } \text{m²·kg/(s²·K·mol); }$$

$$P_d = \text{pressure of the steam-gas mixture, Pa; } P_d^{ec} = \text{pressure of droplets at normal conditions, Pa; }$$

$$\Theta_d = \text{temperature of the steam-gas mixture, K.}$$

3. Experiment

To get the dynamic characteristics of the developed system, the Simulink library of the Matlab application package was used. We obtain the following scheme of the system of differential equations describing the model of the control object using the built-in library elements:
Figure 1: Scheme of the system of differential equations of the control object

The mass flow of air G_a was chosen as a controlling influence from the experience of previous analytical and practical studies. Using the simulation of the system reaction to change the controlling influence of G_a by using the scheme, the system of differential equations of dynamics has been solved. As a result transient characteristics on the channels "air flow G_a - particle temperature Θ_p" (Fig. 2) and "air flow G_a - temperature of droplets of solution Θ_d" (Fig. 3) were obtained.

Figure 2: Transient characteristic of the channel "air flow Ga - particle temperature Θp"

Figure 3: Transient characteristic of the channel "air flow Ga - temperature of drops of solution Θd"

Fig. 4 shows the static characteristics of the granulator - cumulative dependence of the temperature of particles Θ_p and droplet flow rate G_d on the air flow G_a

Figure 4: The static characteristics of depending the temperature of particles Θp on the air flow rate Ga and the droplet flow rate Gd

4. Conclusion

It is known that the maintenance of a stable operation of devices with a fluidized bed and the necessary hydrodynamic regime inside the apparatus requires the development of an efficient system for controlling the processes of dehydration and granulation. The quality of management of the developed control system depends on the accuracy of the object model. The results of the above studies allow to specify the model of the control object and become a reliable ground for developing an effective control system.

References

Volume 7 Issue 5, May 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20182893
DOI: 10.21275/ART20182893

Author Profile

Bogdan Korniyenko, Doctor of Technical Sciences, Associate Professor, Head of the Department of Computerized Information Security Systems of the National Aviation University. Author of more than 150 scientific papers. He worked at the Technical University of Munich, Technical University of Dresden (Germany).

Svetlana Borzenkova, Master, Department of Automation of Chemical Production, Engineering and Chemical Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Lesia Ladieva, Doctor, Associate Professor, Department of Automation of Chemical Production, Engineering and Chemical Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine. Author of more than 200 scientific papers. Scientific interests: modeling, optimal control, membrane distillation.