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Abstract: In this work we numerically solve the 1-d Langevin equation to obtain the trajectories of particles moving in a sinusoidal 

potential in a medium that also offers a spatially periodic damping coefficient with a phase difference with respect to the potential. In 

addition, the system is also driven by a weak periodic force. In a limited range of the system’s parameters, two solutions of the 

trajectories are obtained at low noise strength (temperature) and in the deterministic limit (no noise). These solutions are of small 

amplitude and large amplitudes with respect to the forcing. The occurrence of stochastic resonance (SR) in a similar system has been 

explained as due to the existence of these two solutions. Also, due to the frictional asymmetry, the system also exhibits the phenomenon 

of ratchet effect (RE). In this work, we attempt to obtain both SR and RE simultaneously in the same domain of parameter space 

considered. 

 

PACS numbers: 05.10.Gg, 05.40.-a, 05.40.Jc, 05.60.Cd 

 

1. Introduction  
 

Brownian particles diffusing in periodic structures and 

driven by not so obvious periodic forcing abound in nature. 

Such systems arise in biological domains [1], electronic 

setups [2], and Josephson structures [3], to name a few. In 

Feynman’s famous thought experiment [4], initially 

proposed by Smoluchowski [5], the conclusion was made 

that no matter what the anisotropy of the periodic structure 

is, directed transport or the so called ratchet effect (RE) is 

not possible for a system in equilibrium. In order to get a 

net current in isothermal conditions, the system has to be 

driven out of equilibrium in conjunction with broken 

symmetry. Such criteria can generate a plethora of noise 

induced phenomena apart from the ratchet effect. 

Consequently various models of ratchets have been 

proposed, see [6]. Another one of those is a phenomenon 

called stochastic resonance (SR). Initially proposed in the 

early 1980’s by Benzi [7], to explain the recurrence of the 

ice-ages in the earth, SR was quantified by the peaking 

behavior of the signal-to-noise ratio. This climatic change 

was modeled as a bistable system. Although, SR was later 

found to be an incorrect explanation to the ice-age 

phenomenon, it however divulged in other bistable systems 

[8] and was met with great success. Soon questions were 

raised whether SR could also be observed in periodic 

(sinusoidal) systems which were multistable. It was only a 

few years ago that this question met a positive response 

through a numerical work [9]. The authors this time used a 

different quantifier of SR - Sekimoto’s Stochastic 

Energetics definition of input energy [10]. Input energy is 

defined as the work done by the drive (signal/weak periodic 

force) on the system. In this paper, we consider the system 

to be 1d so the path taken by the particles is linear. At low 

temperatures (low noise strengths) and in the deterministic 

regime (no noise applied), it was seen that the particles 

undergo oscillations either with large amplitudes (LA) as 

well as larger phase difference with respect to the periodic 

forcing of suitable frequency or with smaller amplitudes 

(SA) and smaller phase lag. These oscillations are ascribed 

to have the status of dynamical states with their apparent 

resemblance to the wells of bistability. They were later also 

subsequently observed in other related numerical works in 

[11–13]. At higher temperatures however, their distinct 

identities becomes a blur owing to the transitions between 

them. Moreover only in the parameter space where the two 

states of trajectories coexist, SR was found to occur [9, 13, 

14]. In this small paper, we aim to show that both the 

phenomenon of RE and SR can be observed simultaneously 

in the same domain of parameter space that we have chosen 

to explore. This same work had been carried out in a similar 

inhomogeneous system but in a different parameter space 

[14]. By an inhomogeneous system, we mean that the 

spatially periodic friction coefficient offered by the medium 

and the periodic potential where the particles move, are out 

of phase with one another by a phase difference θ. Such 

inhomogeneity arises in biological systems [15] and can 

also be designed artificially [16]. 

 

2. The Model  
 

We consider the motion of an ensemble of underdamped 

non-interacting Brownian particles each of mass m in a 

periodic potential V(x) = −V0 sin(kx), with peak value V0 

and wave number k. As mentioned in the introduction, the 

medium in which the particle moves is taken to be 

inhomogeneous in a way that it offers a spatially periodic 

friction with coefficient 

 
 

that lags the potential by a phase difference θ. This choice 

of friction coefficient introduces the necessary asymmetry 

for the system to generate a net current. Here, λ is the 

inhomogeneity parameter and it specifies the strength of the 

friction coefficient and γ0 is the average value of the friction 

coefficient over one period. 

  

In addition, the potential is rocked by a weak periodic time-

dependent forcing, weak in the sense that it is unable to 

cause the particle to hop from the initial well to 
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neighbouring wells by itself, F(t) = F0 cos(ωt), with ω = 

2π/τ as the rocking frequency and τ as the rocking period. 

The equation of motion of the particle subjected to a 

thermal Gaussian white noise ξ(t) at temperature T  is given 

by the Langevin equation, 

 
with  

 
 

For simplicity and convenience the equation is transformed 

in to dimensionless units [17] by setting m = 1, V0 = 1and k 

= 1, with reduced variables denoted again by the same 

symbols. Thus, the Langevin equation takes the form 

 
where the potential is reduced to V(x) = - sin(x)  and 

the friction coefficient to γ(x) = γ0(1 − λ sin(x+ θ)) (2.5) 

 

Equation (2.4) is numerically solved to obtain the 

trajectories x(t) of the particle for various initial conditions. 

For initial positions x(t= 0) the period −
𝜋

2
 ≤ 𝑥 < 3

𝜋

2
  is 

divided uniformly into  n = 100 parts (and hence n initial 

positions)and the initial velocity v(t = 0) is set equal to zero 

throughout in the following.  

 

For each trajectory, corresponding to one initial position 

x(0), the work done by the force 

 

F(t) on the system, or the input energy, is calculated as [10]:

   

 

where N is a large integer denoting the number of periods 

taken to reach the final point of the trajectory. The effective 

potential U is given by 

 
The mean input energy per period, for a particular initial 

condition, is therefore given by 

 
Similarly, the mean velocity, for one initial condition is 

calculated as 

 
and the overall mean (net) velocity or the ratchet current, 

< 𝑣 >, is calculated as the ensemble average over all n 

initial conditions. In the same way, the mean input energy 

over the ensemble is denoted as < 𝑊 >. As mentioned 

earlier, we use < 𝑊 > as the quantifier of SR in this work. 

 

3. Numerical Results  
 

We show in Fig. 1, the symmetry breaking between the 

potential V(x) and the friction coefficient γ(x) for two values 

of phase difference θ = 0.25π and 0.75π. As mentioned 

earlier, this symmetry breaking is necessary for observing 

RE although it is not essential for observing SR. SR has 

been shown earlier in a similar system but with constant 

friction coefficient [9]. One expects maximum current when 

the phase difference between the potential and the friction 

coefficient is maximum i.e. at θ = 0.5π, but it has been 

shown earlier [14] that this is not so. It has been argued 

there that although θ = 0.5π exhibits maximum asymmetry, 

yet maximum current occurs at a smaller θ value. This is 

just because the effective friction shows a monotonic 

increase with θ in the range 0 < θ < π. 

 

 
Figure 1:   Oscillating shape of the potential V(x) (in unbroken lines) and the phase-shifted friction coefficient γ(x) (broken 

lines) with λ = 0.9 and γ0 = 1. The corresponding horizontal lines denote the average value of V(x) and γ(x). The top figure is 

when θ = 0.25π and the bottom figure is when θ = 0.75π 
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Figure 2:  Variation of x as a function of t showing the underdamped characteristic after the forcing has been removed after 

500 periods with F0 = 0.2, T = 0, τ = 8, θ = 0.5π, γ0 = 0.1, λ = 0 and x(t=0)= 0. 

 

In this work we focus in the underdamped regime where γ0 

< ω. In the presence of damping, the oscillations die out in 

time but in order to sustain the oscillations, a periodic force 

of frequency ω must be applied to the system. Figure 2 

shows the oscillations of the particle for some interval of 

time in the presence of the forcing. Once the forcing has 

been removed (around 500 periods), the oscillations die out 

exponentially with decaying amplitudes - a characteristic of 

underdamped systems. In Fig. 2, we apply a forcing of 

period τ = 8 i.e. ω ≈ 0.785 and γ0 = 0.1, with the rest of the 

parameters as mentioned in the caption. 

 
Figure 3: Variation of x as a function of t showing the LA state (top figure) and the SA state (bottom figure) both in 

unbroken lines with the periodic force of amplitude F0 = 0.2 in broken lines. Here, T = 0,  τ = 8.2, θ = 0.5π, γ0 = 0.1, λ = 0.9 

and x(t=0)= 0 (LA) and x(t=0)= π (SA) 

 

As mentioned earlier, in the absence of noise (T = 0) and at 

low noise strengths, and within a limited range of the 

parameters τ and F0, the underdamped sinusoidal potential 

system exhibits two solutions - LA and SA. These two 

states of particle’s trajectory apart from having different 

amplitudes and phase differences with respect to the 

periodic drive, also have different energy losses (hysteresis 

loss). Figure 3 shows a typical LA and SA state with their 
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corresponding hysteresis loops in Fig.4. Physically, the 

hysteresis loop area corresponds to the heat lost to the  

               

 
Figure 4: The corresponding hysteresis loops for the LA state (top figure) and the SA state (bottom figure) with the same 

parameters as that of Fig. 3 

 

bath. It is numerically equal to the work done by the periodic force. Clearly, the area enclosed by the loop for SA is smaller 

than that for the LA. 

 
Figure 5: Variation of < 𝑣 > as a function of forcing periods with corresponding error bars when T =0.2, τ = 7.7, θ = 0.5π, 

γ0 = 0.07, λ = 0.9 and F0 = 0.2. The inset is the same plot without errorbars. 

In the presence of noise, in order to get better statistics, we 

take 200000 periods of the forcing. As seen in Fig. 5, < 𝑣 > 

as a function of the forcing periods, for τ = 7.7 and T = 0.2, 

shows larger standard deviations if the number of periods is 

small. So in order to reduce the error bars, we resort to 

larger number of forcing periods. The inset of Fig. 5 shows 

the plot without the error bars.  
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Figure 6: Variation of rightward hops, leftward hops, total hops and net hops as a function of temperature. Here, T =0.2, τ = 

7.7, θ = 0.5π, γ0 = 0.07, λ = 0.9 and F0 = 0.2. The inset shows the magnified plot of the net hops as a function of T. 

 

Figure 6 as a function of temperature, shows the number of 

hoppings of the particles towards the right (rh) of the initial 

well, the number of hoppings towards the left (lh) of the 

initial well, the total number of hoppings (th), and the net 

(difference) hoppings (nh). As seen from the figure and for 

the parameters as mentioned in the caption, there is a 

monotonic increase in rh, lh and th as a function of 

temperature. It is also seen that the particles at every 

temperature has more number of hops to the left of the 

initial well than to the right. This means that the system 

shows a ratchet effect towards the left. The inset in Fig. 6 

shows the magnified plot of the net hops as a function of 

temperature. This difference in hoppings is the ratchet 

current. 

Below we present the main results of this paper. For the 

parameter values considered i.e. θ = 0.75π, γ0 = 0.08, λ = 

0.9, and F0 = 0.2, we show in Fig. 7 the variation of < 𝑣 > 

as a function of noise strengths for various driving periods. 

As seen in Fig. 7, the system generates a current towards the 

left for the parameters considered. 

 
Figure 7: Variation of < 𝑣 > as a function of temperature T for various values of τ as indicated in the figure with θ = 0.75π, 

γ0 = 0.08, λ = 0.9, and F0 = 0.2. 
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Figure 8 shows the variation of < 𝑊 > as a function of 

noise strength for the same parameter values as in Fig. 7. 

We see that there are three behaviors of the variation of 

< 𝑊 > as a function of temperature T: 

a) monotonic decrease when τ = 7.485  

b) when τ = 7.585, there is an increase in < 𝑊 > as T is 

increased which then peaks and subsequently a decrease 

as T is increased further 

c) When τ = 7.74, 7.949, 8.25, there is an initial dip of 

< 𝑊 > as T is increased followed by a peak in < 𝑊 >  

as T is increased and subsequent decrease in < 𝑊 > as 

T is increased further. 

 

The peaking of < 𝑊 > as a function of T is the signature of 

stochastic resonance. However, it must be pointed out that if 

the peak occurs at low noise values, the particles will 

remain in their initial well and the notion of SR in the 

sinusoidal potential is not justified. Also, when the peak 

occurs at large noise values, the effects of the periodic force 

is dampened by the noise. SR is the response of the system 

to a weak periodic force at an optimal value of noise.  Thus, 

from Fig. 8, we conclude that the signature of SR is seen 

when τ = 7.949 at T ≈ 0.2.  

 

 

 
Figure 8:  Variation of < 𝑊 > as a function of temperature T for various values of τ as indicated in the figure with θ = 

0.75π, γ0 = 0.08, λ = 0.9, and F0 = 0.2. 

 

4. Discussion and Conclusion 
 

In this small work, we have chosen a spatially periodic 

friction coefficient that is out-of-phase with respect to the 

sinusoidal potential. The asymmetry in conjunction with a 

weak periodic drive of suitable frequency yields both RE 

and SR simultaneously in the same range of parameter 

space considered. We can see that RE occurs in a wider 

range of drive periods considered as compared to SR. For 

this system, we also notice that the drive period which 

shows SR does not necessarily exhibit maximum current at 

the temperature where SR is observed. This work can 

provide idea to experimentalists who can design structures 

that can be used to separate micro-sized particles having 

different diffusion coefficients.  
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