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Abstract: Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., 

Gaussian noise, impulse noise, deadlines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs. 

Image restoration is one of the main parts of image processing. Mathematically, this problem can be modeled as a large scale structured 

ill-posed linear system. Ill-posedness of this problem results in low convergence rate of iterative solvers. For speeding up the 

convergence, preconditioning usually is used. We show that the higher order singular value decomposition (HOSVD) of the blurring 

tensor is obtained very fast and so could be used as a preconditioner. Iterative median filtering for restoration of images corrupted by 

mixed noise is considered. A median filtering that can be applied iteratively is also proposed. The boundary condition for the iteration is 

based on minimum distance between any two successive iterations is less than a threshold value. Experimental results show that 

proposed system has higher convergence speed. The complexity of an image restoration process reduces highly further we measures 

Peak Signal Noise Ratio (PSNR) and Mean Square Error (MSE). The PSNR values appear to be high while the MSE values appear to 

be low.   
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1. Introduction 
 

Image restoration is an emerging field of image processing 

in which the focus is on recovering an original image from a 

degraded image [1], [2]. Image restoration can be defined as 

the process of removal or reduction of degradation in an 

image through linear or non-linear filtering. Usually, 

iterative methods are used to solve this structured large scale 

and ill-posed linear system [1], [2], [5], [6], [7]. Therefore, at 

each step of iterative methods, the matrix-vector 

multiplication can be carried out very fast by FFT, without 

using the explicit form of the blurring matrix, which reduces 

the computational and storage costs [4]. Also, iterative 

methods like CGLS (Conjugate gradient for least square 

problems) have regularization property which is known as 

semi-convergency [8], [9]. 

 

Hyperspectral imaging employs an imaging spectrometer to 

collect hundreds of spectral bands ranging from ultraviolet to    

infrared wavelengths for the same area on the surface of the 

Earth. It has a wide range of applications including 

environmental monitoring, military surveillance,     mineral 

exploration, among numerous others [3], [4].  Due to various 

factors, e.g., thermal electronics, dark current, and stochastic 

error of photocounting in imaging process, hyperspectral 

images (HSIs) are inevitably corrupted by severe noise 

during the acquisition process. This greatly degrades the 

visual quality of the HSIs. Hence, the task of removing the 

noise in hyperspectral imagery is a valuable research topic. 

 

The discrete version of the blurring procedure can be 

modeled as the following large scale ill-posed linear system, 

 

y = Ax, y = b + e                       

 

where A is a blurred matrix and its structure depends on the 

PSF array and boundary conditions. The concept of 

preconditioning for discrete ill-posed problems differs from 

the standard preconditioning. The standard preconditioning 

tries to speed up the convergence by clustering the entire 

singular values of the preconditioned system around 1, while 

in the context of the ill-posed problems, the preconditioner 

should provide regularization property and only the large 

singular values need special attention. Therefore, in ill-posed 

problems, a preconditioner should able to improve the 

distribution and location of the large singular values and 

leave the rest of them to prevent the propagation of the noise 

in solution [4]. So, the truncated version of singular or 

eigenvalue decomposition of the blurring matrix is an ideal 

preconditioner. But, its computation is very time-consuming 

and so is not reasonable. In the literature, different kinds of 

approximations have been proposed that implicitly 

approximate the blurring matrix in the space corresponding 

to large singular values (which called signal space). These 

preconditioning methods are dependent on the boundary 

conditions [10], [11]. 

    

To restore the lost samples of image infected with impulsive 

noise we should employ interpolation techniques. Basic 

well-known interpolation techniques for this purpose include 

low-pass filtering, bilinear interpolation and median 

filtering. The techniques are numerically efficient but they 

cannot restore the original images exactly even if the 

Nyquist Rate is satisfied [12], [13]. All of the mentioned 

methods are based on the approximation of the blurring 

matrix. In this paper, we propose a novel preconditioner with 

a different viewpoint based on tensor modelling. In recent 

years different tensor based methods has been used in image 

processing [14], [15], [16]. Here, we demonstrate that image 

restoration problem can be modeled as a contractive tensor- 

tensor equation, which its matricization is equal to matrix 

modeling. This modeling enables us to construct new 

preconditioners based on approximations of the blurring 

tensor which could not be obtained with the matrix 

framework. We show that due to the structure of the blurring 

tensor, the HOSVD of the blurring tensor can be obtained 

very fast.  

 

Paper ID: ART20182396 DOI: 10.21275/ART20182396 876 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 

Volume 7 Issue 5, May 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

The median filter is a simple nonlinear smoothing technique 

that takes the median value of the data inside a sliding 

window of finite length [17], [18]. Median Filtering is 

particularly efficient in suppressing impulse noise [19] that 

is usually caused by transmission errors, malfunctioning of 

pixel elements in the camera sensors, faulty memory 

locations, or timing errors in analog-to-digital conversion 

[20]. Median Filtering can preserve edges in restored images 

[19], but its falters when the probability of impulse noise 

occurrence becomes high [21].   

    
We use this fast tensor-based preconditioner on some 2D 

and 3D image restoration problems. Experimental results 

confirm the high quality of this preconditioner. So, using 

HOSVD of the blurring operator as preconditioner is 

reasonable. The results show that applying the median filter 

iteratively results in well sighted resulting images. 

Moreover, despite the implementation simplicity, the 

proposed iterative median filtering scheme provides a 

considerably higher convergence speed which intends a 

lower numerical complexity. 

 

This paper is organized as follows. Section II introduces 

some notations and preliminaries of tensors. In Section III, 

the proposed system and its motivations are introduced. We 

then develop algorithm for solving the proposed model. 

Section IV presents some experimental results. Finally, we 

conclude this paper with some discussions on future research 

in Section V. 

 

2. Notation and Preliminaries 
 

Tensors can be considered as a generalization of vectors and 

matrices of high dimensions. A real-valued tensor of order N 

is denoted by 𝑋 ∈ 𝑅I
1

xI
2

x…xI
N. It is known that a tensor can be 

seen as a multi-index numerical array, and its order is 

defined as the number of its modes or dimensions. Different 

“dimensions” of tensors are referred to as modes. It is 

represented as 

𝐴 𝑖, 𝑗, 𝑘 = 𝑎𝑖𝑗𝑘                                                         (II.1) 

 

A fiber is a sub-tensor, where all indices but one are fixed. 

For example mode-2 fibers of A, have following form 

𝐴(𝑖, : , 𝑗) ∈ 𝑅𝐼2                           (II.2) 

    

All mode-n fibers of A are multiplied by the matrix X. A is 

the same as 𝐴 × 𝑛𝑋 in that system. The Frobenius norm of 

the order-M tensor A can be defined as 

         | 𝐴 | = ( 𝑎𝑖1………𝑖𝑀
2 )𝑖1,…….𝑖𝑀

1

2                                  (II.3) 

 

The discrete N-dimensional true and blurred images, now by 

definition of contraction product in the image restoration 

model could be represented as the following tensor equation 

           𝑌 =  𝐴,𝑋 𝑁+1:2𝑁;1:𝑁                                  (II.4) 

 

The tensor equation can be reformulated as the following 

linear equation 

             𝑦 = 𝐴𝑥                                   (II.5)

       

Although these two models are equal, using tensor 

framework allows us to use new tools to deal with this 

problem. For example in the following, we use an 

approximation of the blurring tensor A to derive a new 

preconditioner, which cannot be obtained with matrix 

framework. Since A is not guaranteed to be nonsingular, its 

least squares (LS) should be considered,  

 

                    min𝑥 | 𝐴𝑥 − 𝑦 |                                            (II.6) 

 

Median filter replaces a pixel by the median, instead of 

average all pixels in a neighborhood w.  

 

               𝑦 𝑚,𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥 𝑖, 𝑗 , (𝑖, 𝑗) ∈ 𝑤}            (II.7) 

 

Where w represents a neighborhood defined by the user, 

centered around location [m, n] in the image. The important 

parameter in using median filter is size of the window. 

Choice of the window size depends on the context. 

 

3. Proposed Method 
 

The proposed system uses a tensor framework in the 

modeling of image restoration problem. This framework 

enables us to deal with two or three-dimensional images 

directly without folding them to the vectors and without 

dealing with complicated multilevel matrices. Also, based on 

the structure of the obtained tensor, for the first time, we 

introduce a new tensor-based preconditioner. The 

performance of the proposed strategy and demonstrate that 

the complexity of computing and applying this new 

preconditioner is comparable with well-known matrix 

preconditioners. 

 

A. Motivation 

Digital images could be contaminated by noise during image 

acquisition or transmission in a noisy environment. In such 

case, image restoration is an essential technique for noise 

suppression while preserving the detail of image. 

Hyperspectral imaging, collect and processes information 

from across the electromagnetic spectrum. The goal of 

hyperspectral imaging is to obtain the spectrum for each 

pixel in an image of a scene, with the purpose of finding 

objects, identifying materials, or detecting processes. In 

many real situations, the observed HSI data are 

contaminated by a mixture of several different kinds of 

noise. As a result, a noise HSI cube denoted by a three order 

tensor X={X
1
,X

2
,…..X

B
}, where B denotes the number of 

bands, can be described as 

                       Y = X + E                                        (III.1) 

 

where X and E are with the same size of Y, which represent 

the clean HSI cube and the mixed noise term, respectively. 

Now the objective of HSI restoration is to estimate X from 

the observed Y by exploiting the structures of the clean HIS 

X and the noise terms E. We divide the noise term E into 

two sub-terms as Gaussian noise term N and the sparse noise 

term S including stripes, impulse noise, and dead pixels, 

leading to the following degradation model: 

 

                         Y = X + N + S                               (III.2) 

 

As such, the Frobenius norm and the `L norm can be 

naturally used to model such two noise terms N and S 

respectively. The purpose of image restoration is to 

“compensate for” or “undo” defects which degrade an 
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image. Degradation comes in many forms such as motion 

blur, noise, and camera misfocus. Gaussian noise is 

statistical noise having a probability density function (PDF) 

equal to that of the normal distribution, which is also known 

as Gaussian distribution. In other words, the values that the 

noise can take on are Gaussian-distributed. The probability 

density function p of a Gaussian random variable z is given 

by 

                          𝑃 𝑧 =
1

𝜎√2𝜋
𝑒
−

(𝑧−𝜇 )2

2𝜎2  
                           (III.3) 

where z represents the grey level, µ the mean value and σ the 

standard deviation. Compared with Gaussian noise, the 

stripe has significantly structural characteristics. Moreover, 

these line structures exhibit directional characteristic. 

 

Impulse noise is a category of (acoustic) noise, which 

includes unwanted, almost instantaneous sharp and sudden 

disturbances. It presents itself as sparsely occurring white 

and black pixels, also known as salt and pepper noise, noisy 

pixels take either maximum or minimum value. Thus, it 

could severely degrade the image quality and cause some 

loss of information details. Noises of the kind are usually 

caused by electromagnetic interference. An effective noise 

reduction method for this type of noise is a median filter or 

morphological filter. 

 

B. Higher Order Singular Value Decomposition  

Different kinds of preconditioning methods have been 

proposed for image restoration in two and three dimensions. 

All of these preconditioners have been computed based on 

the structure of blurring matrix and try to approximate this 

blurring matrix in the subspace corresponding to signal 

space. In this section, we demonstrate that based on tensor 

modeling framework used in, one can obtain a novel 

preconditioner with a new viewpoint based on an 

approximation of the blurring tensor operator, which cannot 

be achieved with the matrix modeling. Here, we show that 

HOSVD of the structured tensor operator can be used as a 

preconditioner. Now consider the HOSVD of the blurring 

tensor A as follows 

               𝐴 = (𝑈 1 ,… ,𝑈 2𝑁 )1:2𝑁 . 𝑆   (III.4) 

 

This decomposition has the following intersecting properties 

that encourage us to use its truncated version as a regularized 

preconditioner. The first columns of singular matrices U
(i)

 in 

every mode are smoother than the last ones. So, for an 

appropriate index 

        𝐾𝑖 ,𝑈𝑘𝑖
(𝑖)

=  𝑢1
(𝑖)

,… ,𝑢𝑘𝑖
(𝑖)
 ∈ 𝑅𝑛𝑖×𝑘𝑖𝑣   (III.5) 

 

Which denotes the first ki columns of U
(i)

 has an important 

role in the reconstruction of the exact image. For example, 

consider 2D satellite image restoration test problem which is 

presented as the first test in the experimental section. The 

most important parts of the core tensor S are located in the 

small indices. Also, these parts of the core tensor are 

corresponding to the smooth parts of the singular matrices. 

This means that if Sk denotes the first part of the core tensor, 

for appropriate small indices. By these properties, the 

truncated HOSVD of the blurring operator A defined as 

𝑀 =  𝑈𝑘1
(1)

,… ,𝑈𝑘2
(2𝑁)

 1: 2𝑁.𝑆𝑘           (III.6) 

It is a good approximation of A corresponding to the smooth 

singular vectors of each mode and has regularization 

property. Also, for small values of ki in k, 

| 𝐴 − 𝑀 |2 = | 𝑆 |2 − | 𝑆𝑘  |
2        (III.7) 

This will be very small in ill-posed problems like image 

restoration problem. So this regularized approximation 

tensor M of the blurring tensor A can be used as a 

preconditioner. The matrix presentation of this 

preconditioner is 

                          𝑀 = 𝑈𝐾𝑆𝐾𝑉𝐾
𝑇                     (III.8) 

 

Therefore, at each step of preconditioned iterative method 

finding the solution with minimum length of the following 

least squares problem 

         min𝑥 ||𝑀𝑞 − 𝑍||   (III.9) 

 

Since for ill-posed problems |k| is very small in comparison 

with the dimension of A, the complexity of this LS problem 

is very small and negligible. The tensor based Image 

restoration where the image is converted into tensor by the 

process of the tensorization. Similarly the tensor data is 

converted to matrix form by the process of matricization. 

The degraded image is first converted into tensor by using 

gradient function. The gradient is rate of change of a 

function. The term “gradient” is typically used for functions 

with several inputs and a single output. Image gradients can 

be used to extract information from images. Gradient images 

are created from the original image for this purpose. Each 

pixel of a gradient image measures the change in intensity of 

that same point in the original image, in a given direction. 

To get the full range of direction, gradient images in the x 

and y directions are computed. The Gaussian noise tensor, 

and sparse noise tensor is created. This noise tensor is added 

to create a mixture noise tensor. Using this noise tensor, the 

degraded image is restored to get back the restored image. 

Usually, iterative methods are used to solve this large 

structured and ill-posed linear equation. For this structured 

linear system, the matrix-vector multiplication can be done 

by FFT without a need to explicit form of the blurring matrix 

A. Unfortunately, despite these excellent properties, the 

convergence rate of iterative methods for image restoration 

is low and to speed up the convergence, preconditioning 

techniques should be used.    

 

 
Figure 1: Block diagram of proposed system  for HSI 

restoration. 
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The proposed system restores the degraded images that are 

degraded in remote sensing application. The degraded HSI 

are first tensorized to obtain the HSI tensor. Similarly a 

Gaussian tensor is created from the Gaussian matrix and 

sparse tensor is created from the sparse matrix. This 

Gaussian tensor and sparse tensor are added with the HSI 

tensor to obtain the restored image. Higher order singular 

value decomposition (HOSVD) is one common extension of 

singular value decomposition to the tensors. The HOSVD is 

most commonly applied to the extraction of relevant 

information from multi-way arrays. Singular values measure 

the ‟energy‟ of the tensor. So, it is easy to see that the energy 

of core tensor S focused on the elements of S with small 

indices, especially in S(1,1,…,1). This property of HOSVD 

is very useful in the applications that encounter with 

denoising problem. The iteration stops if the mean square 

error between any two successive iterations is less than a 

threshold value. 

 

C. Iterative Median Filter 

Median Filtering is a type of nonlinear filtering technique, 

often used to remove noise from an image. Such noise 

reduction is a typical pre-processing step to improve the 

results of later processing. In this type of filtering all of the 

pixels in an n by n square mask of the image are selected, 

where n is an odd number usually 3 or 5. The center of the 

mask is a lost pixel that is to be restored. Median filter 

process which estimates by sorting all the pixel values from 

the surrounding neighborhood and replacing the pixel with 

center pixel value. This procedure is performed for all the 

lost pixels in the image. The main idea of the median filter is 

to run through the pixel entry by entry, replacing each entry 

with the median of neighbors is called “window”, which 

slides, entry by entry over the entire pixels. Note that if the 

window has an odd numbers of entries, then the median is 

simple to define: it is just the middle value after all entries in 

the window are sorted numerically. If the neighborhood 

under consideration contains an even number of pixel, then 

average of the two pixel values is used. The detection of 

noisy and noise-free pixels is decided by checking whether 

the intensity of processed pixel lies between the maximum 

(max) and minimum (min) intensities values that occur 

inside the selected window. If the value of the processed 

pixel denoted by p(x, y), is within the range (0<p(x, y)<255), 

then it is an uncorrupted pixel and left unchanged. If the 

value does not lie within this range, then it is a noisy pixel 

and is replaced by median value of selected window. A 

median filtering that can be applied iteratively is proposed. If 

MSE between any two successive iteration is greater than 

0.2, then subdivide an image into NxN sub-images to 

improve efficiency of median filter. The sub-image size 

selection is one of the important factors. In most of the 

applications, the sub-image size is selected as n x n such that 

n is an integer power of 2. The level of computation 

increases as the sub-image size increases. The experiment 

have been conducted by sub-image size nxn for n=16, or 32 

and apply filtering to all sub-images. We propose to apply 

the median filter to image iteratively until MSE between any 

two successive iteration is less than 0.2. Median filtering 

does not need any arithmetic operation and requires a much 

smaller amount of memory. This results to a relatively low 

implementation complexity. 

 

The reason for us to choose the median value is that 

uncorrupted pixels may be wrong classified as “noisy ones” 

at image flat areas with same gray value Lmin or Lmax. Using 

the median filter, the detection errors can be corrected, at the 

same time removing corrupted pixels as many as possible.  

 

4. Experimental Results and Discussion 
 

The proposed an image restoration technique is implemented 

in the working platform of MATLAB with machine 

configuration. In our proposed method, the degraded images 

are given to an image restoration process by using the 

techniques HOSVD and median filter. The original images 

captured by a remote sensing satellite (Remote sensing 1) 

are given Fig. 2. The image that was transmitted by the 

satellite was degraded because of the noise such as Gaussian 

noise, salt and pepper noise and strip noise. Therefore the 

received signal was degraded as shown in Fig. 3. The output 

restored images from HOSVD for 4 noisy inputs such as 

Gaussian noise, salt and pepper noise, strip noise and 

combination of all the three noises as shown in Fig. 4. 

 
Figure 2: Original Image (Remote Sensing 1) 

 

 
Figure 3: Received Degraded Image 

 

 
Figure 4: Restored Images from HOSVD 

 

Similarly, Fig. 5. shows the original images captured by a 

remote sensing satellite (Remote sensing 2) and degraded 

images as shown in Fig. 6. Fig. 7. shows the restored images 

from HOSVD for an input images remote sensing 2. The 
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restored image appears to be good for salt and pepper noise 

and strip noise, when compared to other two restorations.    

 

 

 
Figure 5: Original Image (Remote Sensing 2) 

 

 
Figure 6: Received Degraded Image 

 

 
Figure 7: Restored Images from HOSVD 

 

A. Performance Analysis 

The performance evaluation of the proposed system is 

carried out by calculating the metrics such as Peak Signal to 

Noise Ratio (PSNR), Mean Square Error (MSE), Maximum 

Error, root Mean Square Error. 

 

Let f(x, y) be the original image with size MxN and f’(x, y) 

be the restored image with the same size. The MSE 

measures the average of squares of errors that is, the 

difference between the restored and an original image is 

expressed as in  

             MSE = 
1

𝑀𝑁
   (𝑓 ′ 𝑥, 𝑦 − 𝑓 𝑥, 𝑦 )𝑥𝑦   

2                 
(IV.1)

 

 

and the PSNR is the ratio of maximum possible power and 

the power of corrupting noise in decibel is expressed as in 

          

PSNR = 10 log10(
2552

𝑀𝑆𝐸
)                       (IV.2) 

 

The Maximum Error is the difference between an original 

and restored value as expressed as 

 

                   𝐸 = 𝑧𝛼 2  
𝜎

√𝑛
                                   (IV.3) 

 

Root Mean Square Error (RMSE) measures how much error 

there is between two data sets. In other words, it compares a 

predicted value and an observed value as expressed as in 

 

RMSE =  
1

𝑀𝑁
   (𝑓 ′ 𝑥, 𝑦 − 𝑓 𝑥, 𝑦 )𝑥𝑦  

2
             (IV.4) 

 

Table I shows the performance of proposed system for 

Remote sensing 1. From this table, the PSNR value is high 

for Image 3, that was degraded with strip noise and the 

PSNR value is low for image 4, which is the combination of 

all three noise. The number of iterations is less than 50, 

which is a less value. The performance of proposed system 

is best because it has high PSNR and less Mean square error  

 

Table 1: Performance of Proposed System For Remote 

Sensing 1 
Images PSNR MSE Maximum 

Error 

Root mean 

square Error 

 

Iteration 

Image 1 9.6088 7115 118 84.35 41 

Image 2 10.2783 6098 127 78.09 

Image 3 12.5164 3642 127 60.35 

Image 4 7.6860 11079 127 105.25 

 

Table II shows the performance of the proposed system for 

the Remote sensing 2. It shows that the PSNR results for 

different noise models that have been implemented with 

different noise intensities of an image. The PSNR is high for 

Salt and pepper noise image restoration and strip noise 

restoration, the number of iterations is found to be 37, which 

is less than the conventions methods. It could be observed 

that the proposed method provide a far better performance 

when compared with other well known methods.  

 

Table 2: Performance of Proposed System For Remote 

Sensing 2 
Images PSNR MSE Maximum 

Error 

Root mean 

square Error 

 

Iteration 

Image 1 15.14 1987 98 44.57  

37 Image 2 21.14 499 127 22.34 

Image 3 20.50 579 90 24.06 

Image 4 14.66 2220 106 47.12 

 

Fig. 8. shows the MSE between adjacent iterations. From the 

graph, black color resembles the MSE of Gaussian noise 

image restoration, red color resembles the MSE of salt and 

pepper noise image restoration, blue color resembles the 

MSE of strip noise image restoration and green color 

resembles the MSE of all noise image restoration. Fig. 8. 

graphically illustrate the MSE value of proposed system for 

an image corrupted by different noise. 
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Figure 8: MSE between adjacent iterations 

 

From this figure, it can be easily observe that proposed 

method yield more satisfying results and can be applied to 

different type of image. 

 

5. Conclusion 
 

In this paper, we demonstrated that image restoration could 

be modeled with the tensor framework. Based on this 

context, we proposed a tensor-based preconditioner and 

iterative filtering for removing mixed noise in HSIs  based 

on using an approximation of HOSVD. We showed that due 

to the structure of the blurring tensor, this preconditioner 

could be constructed very fast. Instead of dealing as pixels 

the image is processed as tensor. This project reduces the 

noises that occur in remote sensing satellite images. The 

satellite images are degraded by the noise such as Gaussian 

noise, Impulse noise, Strip noise etc. The tensor of the 

degraded image is added with tensor of Gaussian, Impulse, 

Strip noise. The Singular values are extracted from the 

degraded image which controls intensity of Gaussian, 

Impulse and Strip noise tensor. This process gets repeated 

iteratively to get the restored image. The boundary condition 

for the iteration is based on minimum distance between any 

two successive iteration is less than a threshold value. Also, 

experimental results confirm the high quality of the proposed 

preconditioner in speeding up the convergence rate of 

iterative restoration methods. We suggested to apply median 

filtering on the images with mixed noise iteratively. The 

suggested method has a low implementation complexity. 

The Performance analysis of the median filter shows that an 

image with much lower pixel loss. The results shows that the 

complexity of the image restoration process reduces highly 

because the proposed system restores the image only on less 

number of iterations further we measures Peak Signal Noise 

Ratio (PSNR) and Mean Square Error (MSE). The PSNR 

values appear to be HIGH for the restored images while the 

MSE values appear to be LOW.    

 

References 
 

[1] M. Rezghi, S. M. Hosseini, and L. Elden, “Best 

Kronecker    product approximation of The blurring 

operator in three dimensional image restoration 

problems”, SIAM J. Matrix Anal. Appl., vol. 35, pp. 

1086-1104, 2014. 

[2] C. He, C. Hu, X. Li, and W. Zhang, “A parallel primal-  

dual splitting method for image restoration”, 

Information Science, vol. 358, pp. 73-91, 2016. 

[3] A. F. H. Goetz, “Three decades of hyperspectral 

remote sensing of the earth: a personal view”, Remote 

Sensing of  an Environment, vol. 113, pp. S5–S16, 

2009. 

[4] R. Willett, M. Duarte, M. Davenport, and et al, 

“Sparsity and structure in hyperspectral imaging: 

Sensing, reconstruction, and target detection”, IEEE 

Signal Process. Mag., vol. 31, no. 1, pp. 116–26, 2014. 

[5] M. Rezghi, S. M. Hosseini, “Lanczos based 

preconditioner for discrete ill-posed problems 

Computing”, vol. 88, pp. 79-96, 2010. 

[6] P. C. Hansen, J. Nagy, and D. P. O‟leary, Deblurring 

Images: Matrices, Spectra and Filtering, SIAM, 

Philadelphia, 2006. 

[7] M. Hanke, J. Nagy, and R. Plemmons, “Preconditioned 

iterative regularization methods for ill-posed 

problems”, in: Reichel L, Ruttan A, Varga RS (Eds.), 

Numerical Linear Algebra, 1993, de Gruyter, Berlin, 

Germany, pp. 141-163. 

[8] M. Hanke, Conjugate Gradient Type Methods for Ill-

Posed Problems, Chapman and Hall/CRC, 1995. 

[9] G. Landi, E. Loli Piccolomini, and I. Tomba, “A 

stopping criterion for iterative regularization methods”, 

Applied Numerical Mathematics, vol. 106, pp. 53–68, 

2016. 

[10] P. Dell‟Acqua, M. Donatelli, S. Serra-Capizzano, D. 

Sesana, and C. Tablino-Possio, “Optimal 

preconditioning for image deblurring with Anti-

Reflective boundary conditions”, Linear Algebra and 

its Applications, vol. 502, pp. 159–185, 2016. 

[11] P. Dell‟Acqua, M. Donatelli, and C. Estatico, 

“Preconditioners for image restoration by reblurring 

techniques”, Journal of Computational and Applied 

Mathematics, vol. 272, pp. 313–333, 2014. 

[12] F. G Marvasti, C. Liu, and G. Adams., “Analysis and 

recovery of multidimensional signals kom irregular 

samples using non-linear and iterative techniques”, in 

Proc. IEEE ISCAS „92, vol. 5, Miy 1992, pp. 2445-

2448. 

[13] R. C. Gonzalez and R E. Woods, Digital Image 

Processing, Prentice Hall Pub. Co., 2nd Ed., 2.002. 

[14] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor 

completion for estimating missing values in visual 

data”, In ICCV, 2009, pp. 2114–2121. 

[15] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and 

L. Zhang, “Multispectral image denoising by intrinstic 

tensor sparsity regularization”, in CVPR, 2016, pp. 

1692–1700. 

[16] D. Goldfarb, and Z. Qin, “Robust low-rank tensor 

recovery: models and algorithms”, SIAM J. Matrix 

Anal. Appl., vol. 35, pp. 225-253, 2014. 

[17] A. Rosenfeld, and A. C. Kak, Digital picture 

processing, vol. 1, Elsevier, 1982. 

[18] D. T. Quan, A. A. Sawchuck, T. C. Strand, and P. 

Chavel,   “Adaptive noise smoothing filter for image 

with signal-dependent noise”, IEEE Trans. Pattern 

Anal. Mach. Intell., vol. PAMI-7, pp. 164-177, 1985. 

[19] J. Astola, and P. Kuosmanen, “Fundamentals of 

nonlinear digital filtering”, CRC Press Inc., Boca 

Raton, 1997, pp. 288, ISBN 0-8493-2570-6. 

[20] I. Pitas, and A. N. Venetsanopoulos, “Nonlinear digital 

filters”, Kluwer Academic Publishers, 1990. 

Paper ID: ART20182396 DOI: 10.21275/ART20182396 881 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 

Volume 7 Issue 5, May 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

[21] H. Hwang, and R. A. Haddad, “Adaptive median 

filters: New algorithms and results”, IEEE Trans. 

Image Process., vol. 4, no. 4, 1995. 

[22] Amir R. Fourouzan, and Babak N. Araabi, “Iterative 

median filtering for restoration of images with 

impulsive noise”, 2003 IEEE, ICECS 0-7803-8163-7. 

[23] S. Samsad Beagum, and M. Mohamed Sathik, 

“Improved Adaptive Median Filters Using Nearest 4-

Neighbors for Restoration of Images Corrupted with 

Fixed-Valued Impulse Noise”, 2015 IEEE, ISBN 978-

1-4799-7849-6. 

[24] J. Jezebel Priestley, and V. Nandhini, “A decision 

based switching median filter for restoration of images 

corrupted by high density impulse noise”, 2015 IEEE, 

ISBN 978-81-925974-3-0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper ID: ART20182396 DOI: 10.21275/ART20182396 882 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



