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Abstract: Recently, developments in linear control theory have concentrated on the multiple-input multiple-output control systems 

(MIMO). Many systems, particularly in technologically advanced areas such as aerospace systems, are represented by models with 

several inputs, with each input having several outputs. Such cross-coupling makes the use of single-input, single-output (SISO) methods 

complicated. In this paper, we introduced the basic closed-loop expressions for MIMO. We then discussed 2-norms, stability, and 

uncertainty. The standard design problem defined and H2 solutions are worked out. 

 

1. Introduction 
 

In parallel with developments in MIMO systems, the past 

twenty years have seen a renewed emphasis on frequency 

response. The ability of the state framework to handle 

uncertainty, especially nonparametric uncertainty, proved 

deficient. In contrast, uncertainty fits quite naturally in an 

input-output setting such as frequency response. The state 

framework has not been cast aside; rather connections have 

been made between it and the frequency response approach.  

 

Developments in frequency response design have been 

greatly abetted by the theory of H

. Quadratic performance 

indices do lead to integrals in the frequency domain, through 

Parseval
,
s integral. However, engineers are usually 

concerned with specifications expressed pointwise in the 

frequency domain, not with the averages yielded by 

integrals. The H

 theory provides a direct handle on this 

type of specification[10]. 

 

1.1 Modeling MIMO Linear Time-Invariant 

 

Consider a MIMO system defined by  

𝑈 𝑡 =

 
 
 
 
 
𝑈1 𝑡 

𝑈2 𝑡 
:
:

𝑈𝑚  𝑡  
 
 
 
 

, 𝑋 𝑡 =

 
 
 
 
 
𝑋1 𝑡 

𝑋2 𝑡 
:
:

𝑋𝑛 𝑡  
 
 
 
 

, 𝑌 𝑡 =

 
 
 
 
 
𝑌1 𝑡 

𝑌2 𝑡 
:
:

𝑌𝑝 𝑡  
 
 
 
 

 

 

Where U is the inputs,X is state variables andY is the 

outputs.The state variable representation can be arranged in 

the form of 'n' first order differential equations 

 
𝑑𝑋1 𝑡 

𝑑𝑡
= 𝑋 1 𝑡 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ + 𝑎1𝑛𝑋𝑛 + 𝑏11𝑈1 + 𝑏12𝑈2 + ⋯ + 𝑏1𝑚𝑈𝑚

𝑑𝑋2 𝑡 

𝑑𝑡
= 𝑋 2 𝑡 = 𝑎21𝑋1 + 𝑎22𝑋2 + ⋯ + 𝑎2𝑛𝑋𝑛 + 𝑏21𝑈1 + 𝑏22𝑈2 + ⋯ + 𝑏2𝑚𝑈𝑚

:                                                                                               
:                                                                                               

𝑑𝑋𝑛 𝑡 

𝑑𝑡
= 𝑋 𝑛 𝑡 = 𝑎𝑛1𝑋1 + 𝑎𝑛2𝑋2 + ⋯ + 𝑎𝑛𝑛 𝑋𝑛 + 𝑏𝑛1𝑈1 + 𝑏𝑛2𝑈2 + ⋯ + 𝑏𝑛𝑚 𝑈𝑚

 

 

For the linear time invariant systems, the coefficientsaij  ,

bij are constants. Thus all equations can be written in vector 

matrix form as 

𝑋  𝑡 = 𝐴𝑋 𝑡 + 𝐵𝑈(𝑡) 
 

Where 𝑋 𝑡 = State vector matrix of order n×1 

𝑈 𝑡 = Input vector matrix of order m×1 

𝐴= System matrix or Evolution matrix oforder n×n  
 𝐵 = Inputmatrix or controlmatrix oforder n×m 

 

 

 

Similarly the output variables can be expressed  

 

 

𝑌1 𝑡 = 𝑐11𝑋1 + 𝑐12𝑋2 + ⋯ + 𝑐1𝑛𝑋𝑛 + 𝑑11𝑈1 + 𝑑12𝑈2 + ⋯ + 𝑑1𝑚𝑈𝑚

⋮                                                                                                                             ⋮
𝑌𝑝 𝑡 = 𝑐𝑝1𝑋1 + 𝑐𝑝2𝑋2 + ⋯ + 𝑐𝑝𝑛𝑋𝑛 + 𝑑𝑝1𝑈1 + 𝑑𝑝2𝑈2 + ⋯ + 𝑑𝑝𝑚 𝑈𝑚
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For the linear time invariant systems, the coefficients  

cij  , dij  are constants. Thus all output equations can be 

written in vector matrix   form as 

𝑌 𝑡 = 𝐶𝑋 𝑡 + 𝐷𝑈(𝑡) 

 

Where 

𝑌 𝑡 = Output vector matrix of order p×1 

𝐶= Output matrix or observation matrix oforder p×n 

𝐷= Direct transmissionmatrix oforder p×m 

 

The two vector equations together is called theState model 

of the linear system 

𝑋  𝑡 = 𝐴𝑋 𝑡 + 𝐵𝑈 𝑡       𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑌 𝑡 = 𝐶𝑋 𝑡 + 𝐷𝑈 𝑡   𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [2], [4]. 

 

1.2 Systems in Terms of Transfer Function 

 

Taking the Laplace transform of the state equation, we see 

that 

𝑠𝑋 𝑠 − 𝑥 0 = 𝐴𝑋 𝑠 + 𝐵𝑈 𝑠  

𝑋 𝑠 = (𝑠𝐼 − 𝐴)−1𝐵𝑈 𝑠           𝑖𝑓   𝑥 0 = 0 

𝑎𝑛𝑑 𝑌 𝑡 =  𝐶 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷 𝑈 𝑠 ≡ 𝐺(𝑠)𝑈(𝑠) 

 

The matrix quantity G(s) is the transfer function matrix 

(TFM) to make this explicit 

𝐺 𝑠 =  

ℊ11 𝑠        … ℊ1𝑚 (𝑠)
⋮                ⋮

ℊ𝑝1 𝑠        … ℊ𝑝𝑚 (𝑠)
  

Where 𝑦𝑘 𝑠 =  ℊ𝑘𝑗  𝑠 𝑢𝑗  𝑠 
𝑚
𝑗 =1 , 𝑘 = 1, … , 𝑝 [9]. 

 

1.3 Short Mathematical Review (Matrices, Complex and 

Vectors) 

 

Definition (1): For two vectors   

u =  𝑢1𝑢2 … 𝑢𝑛 
𝑇    𝑎𝑛𝑑    v =

𝑣1𝑣2… 𝑣𝑛𝑇   𝑖𝑛  ℂ𝑛 , 𝑢𝑘, 𝑣𝑘∈ℂ  The Euclidean inner 
product defined by   

 u. v = 𝑢 1𝑣1 +  𝑢 2𝑣2 + ⋯ + 𝑢 𝑛𝑣𝑛 = u 𝑇v   
𝑤𝑕𝑒𝑟𝑒  u =  𝑢 1𝑢 2 … 𝑢 𝑛  

𝑇the conjugate of  u . 
 

The Euclidean length (or magnitude) of a vector u ∈  ℂ𝑛  is 

defined by 

 

 u = (u. u)
1

2 =   𝑢1 
2 +  𝑢2 

2 + ⋯ +   𝑢𝑛  
2 

 

The Euclidean norm of  u, defined by  

 u 2 =  u𝐻𝑢 =   (𝑎𝑖
2 + 𝑏𝑖

2)

𝑛

𝑖=1

 

Where u𝐻  is the Complex conjugate transpose of  u  i.e. 

u𝐻 =  𝑢1
∗, … , 𝑢2

∗ = 𝑎𝑇 − 𝑗𝑏𝑇. We define the Hermitian of a 

complex matrix𝑀 ∈ ℂ𝑝×𝑚  as the complex-conjugate 

transposes of𝑀, that is,𝑀𝐻  is computed by𝑀𝐻 = 𝐴𝑇 − 𝑗𝐵𝑇  . 

A complex-valued matrix 𝑀 is called Hermitian if = 𝑀𝐻 . A 

nonsingular, complex-valued matrix is called unitary 

if𝑀−1 = 𝑀𝐻 . a complex-valued matrix M is unitary if its 

column vectors are mutually orthonormal (which 

satisfyu𝐻v = 0, are said to be orthogonal). The spectral 

norm of a matrix  𝑀 ∈ ℂ𝑝×𝑚 , denoted 𝑀 2, is defined by 

 𝑀 2 =  max 𝑢 2=1 𝑀𝑢 2 [7], [5]. 

2. Results and Discussion 
 

2.1 Frequency Response for MIMO Plants 

 

Consider the stable, linear, time-invariant system. The input 

and output of the system hose transfer function is G(s), If the 

input u(t) is a sinusoidal signal, the steady-state output will 

also be a sinusoidal signal of the same frequency, but with 

possibly different magnitude and phase angle. 

  

In MIMO Suppose that we have in mind a complex 

exponential input, as below, 

𝑢 𝑡 = 𝑢 𝑒−𝑗𝜔𝑡  

Where   𝑢 = (𝑢 1, … , 𝑢 𝑚 )𝑇   is a fixed (complex) vector 

in𝐶𝑚 . This input is applied to our stable LTI system G 

(frequency response 𝐺(𝑠 = 𝑗𝜔)) the steady state  

𝑦𝑘 𝑡 =  ℊ𝑘𝑗  𝑗𝜔 

𝑚

𝑗 =1

𝑢 𝑗𝑒
𝑗𝜔𝑡          ; 𝑘 = 1, … , 𝑝 

The vector output y(t) at steady state as follows 

 

𝑦 𝑡 = 𝑦 𝑒𝑗𝜔𝑡       ,      𝑦 = (𝑦 1, … , 𝑦 𝑝)𝑇 ∈ 𝐶𝑝  

Where  

𝑦 𝑘 =  ℊ𝑘𝑗  𝑗𝜔 

𝑚

𝑗 =1

𝑢 𝑗          ; 𝑘 = 1, … , 𝑝 

In generally  

𝑦 = 𝐺(𝑗𝜔)𝑢  
 

2.2 The Singular Value Decomposition 

 

2.2.1 The Singular Values of a Matrix 

In  matrix  𝑀 ∈ ℂ𝑝×𝑚with rank=k  the singular values of  M, 

computed by 

𝜎𝑖 𝑀 =  𝜆𝑖 𝑀
𝐻𝑀 =  𝜆𝑖 𝑀𝑀𝐻 > 0  , 𝑖 = 1, … , 𝑘 

Where𝜆𝑖  ∙ is  "the ith nonzero eigenvalue of " .It is 

common to index and rank the singular values as follows: 

𝜎1 𝑀 ≥ 𝜎2 𝑀 ≥ ⋯ ≥ 𝜎𝑘 𝑀 > 0 [2]. 

 

2.2.2 The Singular Value Decomposition 

For any matrix  𝑀 ∈ ℂ𝑝×𝑚 there exist the matrices𝑈 ∈ ℂ𝑝×𝑝 ,
𝑉 ∈ ℂ𝑚×𝑚   such that 

𝑀 = 𝑈 𝑉𝐻 

Where  𝑈is a unitary matrix of eigenvectors of𝑀𝑀𝐻(left 

singular vectors) 

𝑉is a unitary matrix of eigenvectors of𝑀𝐻𝑀 (right singular 

vectors) 

 = is a real "diagonal" matrix of the non-negative singular 

value i.e. 

 

 𝑝×𝑚 =

 
 
 
 
 
 
 
𝜎1 0 ⋯ 0
0 𝜎2 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝜎𝑘

0𝑘×(𝑚−𝑘)

.
0 (𝑝−𝑘)×𝑘

.

.
0(𝑝−𝑘)×(𝑚−𝑘) 

 
 
 
 
 
 

 

And 𝑀−1 = 𝑉 −1𝑈𝐻      where   −1 = 𝑑𝑖𝑎𝑔  
1

𝜎1
,

1

𝜎2
, … ,

1

𝜎𝑚
  

[8]. 
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2.2.3 Some Properties (Define the maximum and 

minimum amplifications) 

1)   𝜎 =  𝜎𝑚𝑎𝑥  𝑀 = max
 𝑢 𝟐=𝟏

 𝑀𝑢 𝟐 =  𝑀 𝟐 =
𝟏

𝜎𝑚𝑖𝑛  𝑀−1 
 

2)    𝜎 = 𝜎𝑚𝑖𝑛  𝑀 = min 𝑢 𝟐=𝟏 𝑀𝑢 𝟐 =
𝟏

 𝑀−1 𝟐
=

𝟏

𝜎𝑚𝑎𝑥  𝑀−1 
  

 

2.3 The SVD and MIMO Frequency Response 

 

The SVD of the matrix 𝐺(𝑠 = 𝑗𝜔)for each frequency s = jω 

𝐺 𝑗𝜔 = 𝑈 𝑗𝜔   𝜔 𝑉𝐻(𝑗𝜔) 

Where      ∈ ℝ𝑝×𝑚 thediagonal elements𝜎𝑘 ≥ 0  𝑜𝑓      are 

the singular values of 𝐺 𝑗𝜔  

 

𝜎𝑖 =  𝜆𝑖 𝐺
𝐻𝐺         𝑜𝑟      𝜎𝑖 =  𝜆𝑖 𝐺𝐺𝐻  

 

The matrix    𝑈(𝑗𝜔) ∈ ℂ𝑚×𝑚  whose column vectors 

(eigenvectors) 𝑢𝑗 (𝑗𝜔)are the left singular vectors 

of  𝐺 𝑗𝜔      𝑖. 𝑒.    𝐺𝐻𝐺𝑣𝑗 = 𝜎𝑖
2𝑣𝑗  

 

The matrix    𝑉(𝑗𝜔) ∈ ℂ𝑝×𝑝  whose column vectors 

(eigenvectors) 𝑣𝑗 (𝑗𝜔)  are the rightsingular vectors 

of  𝐺 𝑗𝜔       𝑖. 𝑒.    𝐺𝐺𝐻𝑢𝑗 = 𝜎𝑖
2𝑢𝑗 [3]. 

  

2.4 Analysis Singular Value Plots (SV Plots) 

 

Once we calculate the maximum and minimum singular 

values of 𝐺 𝑗𝜔  for a range of frequencies  𝜔, we can plot a 

Bode plot (decibels versus rad/sec in log-log scale). Figure 1 

shows a hypothetical SV plot. this “gain-band” of the plant 

at each frequency is described by two curves, not one. It is 

crucial to interpret the information contained in the SV plot 

correctly. At each frequency 𝜔we assume that the input is a 

unit complex exponential   𝑢 𝑡 = 𝑢 𝑒−𝑗𝜔𝑡   then, assuming 

that we have reached steady state, we know that the output is 

also a complex exponential with the same frequency 

𝑦 𝑡 = 𝑦 𝑒𝑗𝜔𝑡 [4], [6]. 

 
Figure 1: A hypothetical SV plot 

 

Now, by looking at an SV plot, we can say that, at a given 

frequency 

1- The largest output size is 𝑦  2,𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥 𝐺 𝑗𝜔    ,
𝑓𝑜𝑟    𝑢  2 = 1 

2- The smallest output size is 𝑦  2,𝑚𝑖𝑛 = 𝜎𝑚𝑖𝑛 𝐺 𝑗𝜔    ,
𝑓𝑜𝑟    𝑢  2 = 1 

 

This allows us to discuss qualitatively the size of the plant 

gain as a function of frequency 

 

𝐺𝜔 is said to be large if𝜎(𝐺𝜔 ) ≫ 1  

and𝐺𝜔 is said to be small if𝜎 (𝐺𝜔 ) ≫ 1 [5]. 

 

2.5 Computing Directional Information 

 

2.5.1 Maximum Amplification Direction Analysis 

1)  Compute the SVD of  𝑗𝜔  , where 𝜔 is Select a specific 

frequency.  

2)  find  𝜎𝑚𝑎𝑥 𝐺 𝑗𝜔   (maximum singular value) 

3) find𝑣𝑚𝑎𝑥  𝜔     (maximum right singular vector) Write in 

polar form 

 𝑣𝑚𝑎𝑥  𝜔  𝑖 =  𝑎𝑖 𝑒
𝑗𝜓 𝑖  ,        𝑖

= 1, … , 𝑚     where 𝑎𝑖  and 𝜓𝑖  are really functions of ω 

4) find𝑢𝑚𝑎𝑥  𝜔     (maximum left singular vector) Write in 

polar form  

 𝑢𝑚𝑎𝑥  𝜔  𝑖 =  𝑏𝑖  𝑒
𝑗Φ𝑖  ,        𝑖

= 1, … , 𝑝     where 𝑏𝑖  and Φ𝑖  are really functions of ω 

5) Constructthe real sinusoidal input signals that correspond 

to the direction of maximum amplification and to predict 

the output sinusoids that are expected at steady state.  

The input vector u(t) is defined by 

𝑢𝑖 𝑡 =  𝑎𝑖 sin 𝜔𝑡 + 𝜓𝑖                𝑖 = 1, … , 𝑚      
We can utilize the implications of the SVD to predict the 

steady-state output      sinusoids as 
𝑦𝑖 𝑡 = 𝜎𝑚𝑎𝑥 (𝑤) 𝑏𝑖 sin 𝜔𝑡 + Φ𝑖                𝑖

= 1, … , 𝑝      
That all parameters needed to specify the output sinusoids 

are already available from the SVD[1 ], [10]. 

 

2.6 Norms 

 

The Euclidean norm of a vector X is : 

  2/1
2/1

1

2
2

XXxX T
n

i
i 













 



. 

.)()(

2/1














 





dttXtX T
 

To calculate the norm of 















 22

)2(3
)(

23

1
2 s

ss
sG

ss

,  

we compute: 

)2)(1)(2)(1(

213

)2)(1)(2)(1(

)2)(2()2)(2(4)3)(3(
)()(

2











ssss

s

ssss

ssssss
sGstrGT

 

If we integrate about a contour enclosing the positive 

direction, then the sum of residues at       s = -1 and s = -2 : 

4
9

)4)(3)(1(
9

)3)(2)(1(
182

2



G .  

Therefore, .2/32
2

G  
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A different type of norm is the induced norm, which applies 

to operators and is essentially a type of maximum gain. But 

for matrices induced Euclidean norm is: 

 

  

  .)(sup

)()(sup

)()(

.)()(

2
2

2

2

2
12

2

2
1

22

2
12

2

ujG

jujG

djujG

djujGy




















































 

Which can be approached arbitrary closely by proper choice 

of u(j). Essentially, we picku(j) to be the eigenvector of 

)()(  jGjG
corresponding to the largest 

eigenvalue[2]. 

 

3. Conclusion 
 

The cross-coupling makes the use of single-input, single-

output (SISO) methods complicated. Thus, we introduced 

the basic closed-loop expressions for MIMO. We then 

discussed 2-norms, stability, and uncertainty. The standard 

design problem defined and H
2
solutions are worked out. 

And we concentrated the spectrum of u(j) at the frequency 

where  is the largest, and may be some arbitrary 

frequency large if has no maximum but a supremum.  
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