The Effects of Crystallographic Orientation of Tl$_2$Se Crystals on Hall Mobility

G. A. Gamal1,2, Salah M. M. Salman3,4, M. M. Kahlid1,2

1College of Engineering - Qassim University- Saudi Arabia
2Physics Department, Faculty of Science, South Valley University, Qena 83511, Egypt
3Physics Department, Faculty of Science, Helwan University, Ain-Helwan-Egypt
4Educational Services, Qassim University, Ministry of High Education, Saudi Arabia

Abstract: New crystal growth method was used in the present investigation to grow the Tl$_2$Se crystals. Electrical conductivity has been measured in two crystallographic directions (σ_1 and σ_2) for Tl$_2$Se crystals. In addition, our work was extended to cover Hall Effect phenomenon in the same temperature range (225-500K). In this way, the Hall mobility behavior and the scattering mechanism of the charge carriers were discussed. The energy gap and the ionization energy were estimated as an important physical constant for the first time for this semiconductor compound.

Keywords: crystallographic orientation, Hall mobility, Tl$_2$Se

1. Introduction

In the last few years, much attention has been devoted to semiconductors of the AIIIBVI group. These chalcogenide semiconductor compounds are of interest because investigations of their physical properties open up the possibility of applications in technology. The layer structure compounds are promising materials in applications. This is due to their unique isotropic semiconducting properties. Although Tl-Se crystals are unique semiconducting materials, they are the less studied compounds in the AIIIBVI group. The characteristic of thallium chalcogenide Tl$_2$Se has been investigated by using x-ray photoelectron spectroscopy approach [1]. The work of Tl$_2$Se compound was extended to deal with the crystalline form. The specific heat capacity of Tl$_2$Se has been measured by applying a heat pulse technique in the temperature range 3-300K and differential scanning calorimetric in the temperature range 190 –640K [2]. Heat capacity and phase transitions in highly anisotropic AIIIBVI-type semiconductors and their analogs at low temperatures were investigated [3]. Tl$_2$Se was involved in that work. Their results were in a satisfactory agreement with other investigators [4]. Stasova and Vainshtein reported that the structure of thallium selenide Tl$_2$Se to consist of Tl tetrahedral united by layers of Se atoms [5]. The sequence of layers Tl and Se should be similar to the sequence, which is found in the hexagonal structure of TlSe. They found that the interatomic distances in the Tl$_2$Se structure correspond to those of structure of TlSe and Tl$_2$S [6]. Tl$_2$Se is a semiconductor with a layered structure of tetragonal symmetry with unit-cell dimensions $a = 0.852$ Å, $c = 1.268$ Å and space group $P4/n$. [7]. Anisotropic properties of semiconductors are associated with their layered structure with strong covalent bonding in the layers and weak Van Der Waal’s bonding between the layers as in Bi$_2$Te$_3$ [8]. We concluded from the literature survey that there is lack of data of the structure and anisotropy of electrical conductivity. Therefore, we undertook such a work to elucidate this confusion. Accordingly, this work will be published for the first time.

2. Experimental Technique

2.1 Crystal Growth

Preparation of Tl-Se needs unusual precautions for growing crystals. So a special growth technique was used as follows: a mixture of thallium and selenium in correct stoichiometric proportions was used to produce Tl$_2$Se (13.62 g of Tl (purity 99.9999 %) and 2.63 g of Se (purity 99.9999 %). The percentages of the charge elements are 83.808% Tl, and 16.192% Se. The chemicals were obtained from Aldrich. They were placed in a sealed evacuated tube, then heated up in the first zone of the furnace and held at 663K (corresponding to the crystallization point of Tl$_2$Se compound) [9]. We used for growth of the single crystals of Tl$_2$Se new method, which has already been [10]. This technique is very simple but it enables us to obtain a highly good quality of crystals. This is because of the absence of the motor vibrations which is not beneficial. Also the growth rate can be controlled easily. Conformation of the product crystal showed that it is single crystal with a tetragonal structure and the unit cell parameters obtained are the same as reported earlier [7]. This is done in Central Metallurgical Research Development Institute (CMRD1), Egypt.

2.2 Electrical conductivity and Hall Effect measurements

A sample of 6.2x2.2x2.1 mm dimensions was prepared directly by a gentle cleavage from the product version ingot. This is because the product crystal is of a layer type. The sample in this way has length of three times its width (to avoid Hall voltage drop as recommended by Insberg [11]). The sample was placed in an evacuated Pyrex cryostat. The cryostat end finger has an isolated electric heater (for high-temperature measurements) and can be immersed in a liquid nitrogen Dewar flask (for low-temperature measurements).
A variac transformer was used for adjusting the required ambient temperature, which was measured by K-type thermocouple. If \(ab \) is the crystal layer plane and \(c \) is the direction perpendicular to both \(a \) and \(b \), then the measuring condition can be summarized as follows: \(a \) is the current direction, \(b \) is the magnetic field direction and \(c \) is the developed Hall voltage. The magnetic field value was 5000g in this experiment. It was supplied from a PHEWE (Germany) electromagnet. In the present work D.C conductivity and Hall measurements were performed as the method recommended by ASTM (F67) [12]. It must be mentioned that for electrical conductivity and Hall measurements the following points were considered:

- The silver conducting paste was employed as an Ohmic contact and its Ohmic nature was checked by recording the I-V characteristics in both forward and reverse bias directions.
- A potentiometer type (UJ33E-England) was used for measuring the Hall voltage.

3. Results and Discussions

In general, two considerations were taken into account in this present work; firstly, it is preferable to study the conductivity rather than the conductance because this ensures that the measurements are of a property of the material rather than of the contact. Secondly; several cuts front the product version were considered for measurement to ensure crystal homogeneity.

Fig (1) depicts the variation of \(\sigma// \) and \(\sigma\perp \) with temperature. The influence of temperature on the electrical conductivity \(\sigma \) was investigated in a temperature range from 225 k to 500K. From the curve, we can observe the following:

- It is observed that \(\sigma \) increases slowly at the low temperatures (the extrinsic region) as a result of liberation of the ionized acceptors from the impurity level.
- Generally \(\sigma\perp \) is always higher than \(\sigma// \) for instance \(\sigma\perp at \) room temperature equals 4.17 x 10\(^{-5}\) \(\Omega^{-1}\)cm\(^{-1}\) while \(\sigma// at \) room temperature equals 2.51 x 10\(^{-6}\) \(\Omega^{-1}\)cm\(^{-1}\).
- The general mode of \(\sigma \) variation against temperature is typically as other semiconductor behaviors.
- The electric conductivity is highly anisotropic where values of that of \(\sigma\perp exceeds the \sigma// by almost one order of magnitude. Such variation can be attributed to the anisotropy of the carrier mobility.

<p>| Table 1: The following of the summarizes the different regions and their corresponding temperatures |
|-------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Region</th>
<th>Corresponding temperature in the case of (\sigma//) (Solid circles)</th>
<th>Corresponding temperature in the case of (\sigma\perp) (circles)</th>
<th>Estimated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic</td>
<td>225 to 270 K</td>
<td>225 to 270 K</td>
<td>(\Delta E_g = 0.11) eV</td>
</tr>
<tr>
<td>Transition</td>
<td>270 to 350 K</td>
<td>270 to 350 K</td>
<td></td>
</tr>
<tr>
<td>Intrinsic</td>
<td>350 to 500 K</td>
<td>350 to 500 K</td>
<td>(\Delta E_r = 0.55) eV</td>
</tr>
</tbody>
</table>

In the intrinsic region the following equation was applied:

\[
\sigma = \sigma_{0} \exp (-\Delta E_g / 2KT) \tag{1}
\]

Where \(\Delta E_g \) is the energy gap and \(\sigma \) is the pre-exponential factor. From the above equation we estimated the value of \(\Delta E_g \) and it was found to be 0.2 eV for \(\sigma// \) and \(\sigma\perp \). The dependence in the low temperature range (extrinsic region) follows the relation:

\[
\sigma = A \exp (-\Delta E_r / 2KT) \tag{2}
\]

Where, \(A \) is a constant (the mobility varies much more slowly with temperature), \(\Delta E_r \) is the ionization energy and \(K \) is Boltzmann constant. From the above equation we estimated the value of \(\Delta E_r \) it was found to be 0.11 eV for \(\sigma// \) and \(\sigma\perp \). The results obtained for both \(\Delta E_g \) and \(\Delta E_r \) are independent of direction and there is no effect of the impurities on \(\Delta E_g \) and \(\Delta E_r \) in both directions The same behavior was observed previously in an already [13].

For gaining much understanding about the anisotropy of \(\sigma \) values.
In the same temperature range, the variation of the Hall coefficient against temperature was carried out as illustrated in Fig (4). This was done based on the relation:

\[R_H T^{3/2} \exp\left(-\Delta E_g/2Kt\right) \]

Where \(R_H \) is the Hall coefficient, \(T \) is temperature, \(\Delta E_g \) is the energy gap, and \(K \) is Boltzmann’s constant.

The Hall coefficient is an isotropic quantity. The general mode of variation similar to the \(\sigma_{\perp} \) and \(\sigma_{\parallel} \) have the same variations.

At \(T < 270K \), (the low temperature part) which corresponds to the extrinsic conduction. The middle region \((270 < T < 420K) \) and, the high temperatures part \((T < 420K) \) which is the intrinsic conductivity part. The observed behavior of the charge carrier’s mobility needs much work for having an accurate explanation for understanding the real scattering mechanism of the charge carriers in this crystal. In the present time we consider the following power laws: \(\mu \propto T^{3.5} \) (in the low temperatures) and \(\mu \propto T^{-3.4} \) (in the high temperatures).

The first power law means that the scattering of the carriers is attributed to impurities. While the second one suggests that the scattering mechanism, in this temperature range, is due to the polar optical mode which results from the polar interaction between charge carriers and optical phonons. The experimental results of the variation of the carrier density versus reciprocal temperature are depicted in Fig (6).

Fig (4) represented the relation between \(R_H T^{3/2} \) and \(10^{3}/T \), which also can be divided into three different parts in the corresponding temperatures, appeared in Table (1). These values are in a good agreement with those obtained from the electrical conductivity measurements. It must be noticed that Hall coefficient is an isotropic against temperature in the both crystallographic directions because it is a scalar quantity.

The Hall mobility was examined in two crystallographic directions. This is done because the electrical conductivity and Hall coefficients are available. Illustration of this combination (Hall mobility) is presented in Fig (4) where we can observe the following: -The general mode of \(\mu_{\parallel} \) and \(\mu_{\perp} \) have the same variations.

- The Hall mobility \(\mu \) is an anisotropic quantity.

- Values of \(\mu_{\perp} \) are much higher than those \(\mu_{\parallel} \). For instance at room temperature \(\mu_{\parallel} = 17.78 \) (cm²/v.sec). Where it is for \(\mu_{\perp} \) at same temperature equals 500 (cm²/v.sec). The general behavior of \(\mu \) against \(T \) can be divided into three parts:

As for the importance of Hall Effect work in the field of solid state and especially semiconductors, the present investigation is extended to cover this unique phenomenon.

In the same temperature range, the variation of the Hall coefficient against temperature was carried out as illustrated in Fig (4). This was done based on the next relation:
At low temperatures (below 270K) the carrier concentration is determined by the number of ionized acceptors. This is noticed evidently because the slope of the variation of the carriers is quite slow. In this range we computed the depth of the acceptor level as 0.11 eV. At high temperatures the crystal is exhibiting an intrinsic behavior then the expected value for the intrinsic concentration could be given by:

\[p_i = 2(2\pi k / h)^{3/2}(m_e^* m_p^*)^{3/4} T^{3/2} \exp(E_g / 2kT) \]

Where \(m_e^* \) and \(m_p^* \) are the effective masses of both electron and hole respectively. Utilization from this formula leads to calculation of the energy gap width of Tl\(_2\)Se. It was found to be 0.55 eV. Both \(\Delta E_g \) and \(\Delta E_a \) values are in a good agreement with those obtained from the electrical conductivity and Hall measurements. Finally the charge carrier’s concentration, at room temperature, equals to 12 x 10\(^{13}\) cm\(^{-3}\) in Tl\(_2\)Se crystal.

4. Conclusion

1) The anisotropy of the electrical conductivity was studied beside the Hall Effect phenomenon was investigated in a temperature range extending from 225 up to 500K.
2) The dependence of anisotropic factor on temperature was checked and found to be similar to dependence of electrical conductivity on temperature.
3) The anisotropy of Hall mobility was also studied in the same temperature range.
4) It is proven that the Hall coefficient is a scalar quantity not a vector one i.e. it does not depend on the crystallographic directions.
5) The scattering mechanism of the charge carriers was discussed.
6) The energy gap was found to be = 0.55 eV;And the ionization energy = 0.11 eV.
7) Tl\(_2\)Se is a promising semiconductor with a layered structure of tetragonal symmetry.
8) In the present work, many physical parameters were estimated.

References

Volume 7 Issue 5, May 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20181989
DOI: 10.21275/ART20181989

897