Calculation of Radionuclids Concentration in the Rising Dust Caused by the Movements of Cars and Wheels in Tikrit Streets

Fareed M. Mohammed¹, Shakir M. AL-Jobori², Ahmed A. Shallal³, Khalid Hadi Mahdi⁴

¹Department of Physics, College of Science, University of Tikrit-Iraq, College of Madinat al Elem ALJamea

²Department of Physics, College of Science, University of Tikrit-Iraq, University of Baghdad / College of Education for pure Sciences, Ibn al-Haytham

Abstract: The aim of this study is to calculate the concentration of radionuclides in the dust rising from the streets of Tikrit as a result of the movement of cars and wheels by using the Gama ray source of 60 Co and the high-purity Germanium (HpGe) detector with 2.6 kV for energy (1332 MeV) ⁶⁰Co. 50 dust samples from the streets of Tikrit were collected The results shows a concentration of ²³⁸U to be $(5.2017 \pm 2.28 \text{ Bk/kg})$, the ²³²Th was $(11.1702 \pm 3.34 \text{ Bk/kg})$, ¹³⁷Cs was $(10.8843 \pm 3.3 \text{ Bq} / \text{Kg})$ and Radium Equivalent Ra_{eq} was $(49.448 \pm 3.3 \text{ Bq} / \text{Kg})$ Bq/Kg), Absorbed Dose (24.09311 nGy / h), External and Internal Hazard Indices was (H_{ex}) (0.0337 mSv / y) and (H_{in}) was (0.1349 mSv/y), Annual Effective Dose Equivalent (AEDE) and Gamma Radiation Level Index (I_y) was (0.38444).

Keywords: Natural radioactivity, Gamma spectroscopy, Iraq

1. Introduction

Radioisotopes are a form of non-stable atomic nuclei that are decomposed by ionizing radiation in the form of alpha, beta or gamma rays, Many radioisotopes such as ²²⁶R, ²³⁵U, ²³⁸U, 232 Th and 40 K are found naturally in rocks and soils, Other radioactive isotopes such as 137 Cs and 60 Co are iodine I, Which are produced mainly as fission products from the atomic dust of atomic bombs, nuclear reactors or radiation of other sources.[1]

Radiation materials was merge, whether solid, liquid or gaseous, with the elements of the environment of water, air and soil, The velocity of gaseous substances in the air is often greater than liquid or solid.[2]

A human is exposed to a low level of background radiation, That radiation has an impact on the environment and may remain in effect for many years, Affects the genetic makeup of humans and animals. Leading to a genetic defect that has an effect on later generations, The impact of this pollution reaches water, soil And enters the food chain of both human and animal.[3]

Therefore, it is a very necessary to study the effect of radiation, on human and its cause on the pollution of the environment by Using several techniques. For the detection of radioactive materials Gamma Ray spectroscopy were adopted.

2. The Theoretical Part

A) Background Radiation

The following equation was used to calculate background radiation [4]:

$$A_{BG} = \frac{Net_{BG}}{I(E_{\gamma}) \times \epsilon(E_{\gamma}) \times T} \qquad (1)$$

where A_{BG} is the background activity of radionuclides in (Bq),Net_{BG} is the net peak area under the specific peak of background. I (E γ): Intensity of the isotopes at energy E γ . ϵ (E γ): Detection efficiency at energy E γ . . T is the time of measurement (10800s).

B) Specific Activity of Radionuclides S. A(E_{γ}) = $\frac{Net}{T \times I(E_{\gamma}) \times \epsilon(E_{\gamma}) \times m}$ (2) Where:

m: weight of sample in kg. The parameters \Box (E₁), I_{\Box}(E_{\Box}) and T are as defined in equation (1).

C) Determination Some Gamma Radiation of **Parameters**

1- Radium Equivalent[5]

 $Ra_{eq} = A_{Ra} + 1.43 A_{Th} +$ $0.07 A_K$(3) where: A_{Ra} , A_{Th} and A_K are the specific activity of 238 U (226 Ra), 232 Th and 40 K in Bq/kg, respectively.

2- Absorbed Dose [6]

 $D_{\gamma} (nGy.h^{-1}) = 0.462 A_{U} + 0.604 A_{Th} + 0.0417 A_{K}...(4)$ where:

 D_{y} : Absorbed dose rate in nGy.h⁻¹.

3- External (Hex) and Internal (Hin) Hazard Indices[7]

$$H_{ex} = \frac{A_U}{370} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \qquad(5)$$
$$H_{in} = \frac{A_U}{259} + \frac{A_{Th}}{470} + \frac{A_K}{4810} \qquad(6)$$

where A_U , A_{Th} and A_K represent the measured activity concentrations in $(Bq.kg^{-1})$ for ²³⁸U, ²³²Th and ⁴⁰K respectively.

4- Annual Effective Dose Equivalent (AEDE) [8]

$$AEDE_{out} (mSv.h^{-1}) = D_{\gamma} (nGy/h) \times 10^{-6} \times 0.2 \times 0.7 (Sv/Gy)$$
(7)

Volume 7 Issue 4, April 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20181925

AEDE_{in} (mSv.h⁻¹) = D_{γ} (nGy/h) x 10⁻⁶ x 0.8 x 0.7 (Sv/Gy) (8)

where D_{γ} is the calculated dose rate in (nGy.h⁻¹).

5- Gamma Radiation Level Index (I_{γ}) : [8]

 $I_{\gamma} = \frac{1}{150} A_{U} + \frac{1}{100} A_{Th} + \frac{1}{1500} A_{K} \qquad(9)$ where A_U, A_{Th} and A_K are as defined in equation (5).

3. Experiment

A- Collection of samples

The rising dust samples were collected from the streets of Tikrit. In October 2017 we collect 50 samples. The city of Tikrit is the administrative center of the province of Salah al-Din in northern Iraq, located 140 kilometers northwest of Baghdad and 220 kilometers southeast of the city of Mosul, on the Tigris River. Where the study area is located according to its astronomical location between the latitudes (45,534 and 50,534) north and the longitude lines (30, 543, 10 544) east. [9] Figure 1 illustrates the geographical location of Salahuddin Governorate and the collection sites.

Figure 1: The geographical location of Salah al-Din Governorate and the collection sites of the samples

B- Preparation of samples

The samples were prepared by drying them at 80C for 1.5 hours, grinding them with $75\mu m$ sieve, and keeping them for one month in order to obtain long-term radiative balance.

C- Measurement system

The gamma ray spectrometer system consists of the (HPGE) High-purity germanium detector. The detector is surrounded by a shield of lead to reduce the radiation background. High-Voltage Power Supply).,Preamplifier, Main Amplifier, Multichannel Analyzer (MCA), Computer and Software, the special program which is an Integrated Computer Spectrometer (ICS-PCI 4K). Figure (2) shows the main components of the gamma-ray spectroscopy system.

Figure 2: Basic gamma spectroscopy system.

1- Energy calibration

The energy was calibrated using the standard Europium (152Eu) source, which contains energies (121.8, 244.7, 344.3, 411.1, 444.6, 778.9, 964, 1085.8, 1112, 1408 Kev).

DOI: 10.21275/ART20181925

Three energy calibration points were selected (121.8, 778.9, 1408.0 keV), It was introduced into the ICS-PCI 4K program to automatically calibrate.

2- Efficiency Calibration

The efficiency equation can be given as follows [10]

The parameters \Box (E_{\Box}), I_{\Box}(E_{\Box}) and T are as defined in equation (1). A represents the specific efficiency of Bq / kg for the standard source used.

4. Results and Discussion

1) Specific Activity of samples

Six radioactive isotopes were detected in the Uranium-238 series, the thorium-232 and the potassium-40 ,Which is found in nature alone and isotope cesium -137, The specific activity of the bismuth-214 and lead-214 Adopted at the two energies (351.92,609.32 keV) as equivalent to the Specific Activity to the Uranium-238, By choosing the most value Specific activity. Specific activity of actinium-228, lead-212, and -talium-208 at energies (583.19, 238.63, 911.16 keV), as equivalent to the specific activity of thorium -232, The specific activity of Potassium-40 was adopted at (1460.8 keV), The specific activity of cesium-137 was adopted at (661.61 keV). The results were arranged in Table 1 according to the samples position in the streets of Tikrit city.

Table 1: Specific levels of effectiveness of different nuclei

 In the rising dust patterns in the streets of Tikrit

	n me nong aa	ist patterns in		man				
No.	Specific Activity (Bq. kg ⁻¹)							
pos.	²³⁸ U	²³² Th	⁴⁰ K	¹³⁷ Cs				
S1	5.2017±2.28	11.1702±3.34	198.4385 ± 18.01	10.8843 ± 3.3				
S2	12.6337±3.55	11.2716±3.35	324.5470 ± 18.01	7.1198 ± 2.67				
S3	5.2890±2.29	6.9878±2.64	238.7221±15.45	4.2035±2.05				
S4	12.7728±3.57	26.7925±5.17	399.2213±19.98	11.1696±3.34				
S5	11.8919±3.44	22.1541±4.70	272.8976±16.51	7.4464±2.73				
S6	12.4636±3.53	23.7856±4.87	210.2179±14.49	1.3007±1.14				
S7	14.3576±3.78	32.4763±5.69	162.0839±12.73	1.6856±1.3				
S 8	9.0755±3.01	10.0471±3.16	150.3998±12.26	4.3992±2.1				
S9	8.0626±2.83	16.1124±4.01	381.4731±19.53	8.1632±2.86				
S10	8.5438±2.92	12.8694±3.58	237.8313±15.42	5.3499±2.31				
S11	13.2880±3.64	8.3439±2.88	313.4500±17.70	8.4547±2.91				
S12	8.6572±2.94	8.2070±2.86	216.2488±14.70	8.8705±2.98				
S13	8.8923±2.98	18.0493±4.24	268.7060±16.39	4.0001±2				
S14	8.4687±2.91	17.5659±4.19	199.1538±14.11	1.9777±1.41				
S15	9.1050±3.01	27.4179±5.23	292.6741±17.10	8.5519±2.92				
S16	3.9351±1.98	3.8300±1.95	279.1419±16.70	11.0882±3.33				
S17	11.9220±3.45	11.3995±3.37	228.8663±15.12	4.0001±2				
S18	5.3692±2.31	21.7791±4.66	154.9912±12.44	5.3499±2.31				
S19	2.8479±1.68	23.9584±4.89	113.1257±10.63	10.6998±3.27				
S20	5.0283±2.24	28.2303±5.31	88.46673±9.40	0.7515 ± 0.87				
S21	6.9577±2.63	18.6227±4.31	166.0417±12.88	11.4364±3.38				
S22	7.5984 ± 2.75	12.6059±3.55	145.1865±12.04	1.2976 ± 1.14				
S23	17.2661±4.15	23.7657±4.87	160.4295±12.66	10.6797±3.27				
S24	2.8998 ± 1.70	10.2774±3.20	294.1640±17.15	9.6842 ± 3.11				
S25	9.2989±3.04	18.5568 ± 4.30	182.1409±13.49	8.9566±2.99				
S26	5.1784±2.27	12.2045±3.49	254.1441±15.94	9.4222±3.07				
S27	12.1120±3.48	19.7758±4.44	243.2084±15.59	7.8993±2.81				
S28	5.8388±2.41	18.7040±4.32	218.0301±14.76	3.3514±1.83				
S29	4.8821±2.20	12.4783 ± 3.53	195.0751±14.76	6.4963±2.55				

4.3286 ± 2.08	22.9800±4.79	298.0959±17.26	6.2833±2.51
8.7995±2.96	28.4672±5.33	227.7361±15.09	3.0061±1.73
7.0710±2.65	27.1481±5.21	344.0677±18.54	5.9888 ± 2.45
4.1886 ± 2.04	22.5313±4.74	179.8845±13.41	6.0526±2.46
11.9377±3.45	5.0423±2.24	130.8191±11.43	6.4880±2.55
6.8125±2.61	22.6094±4.75	350.0807±18.71	6.9092±2.63
12.9963±3.60	8.0872 ± 2.84	318.5611±17.84	9.7121±3.12
4.43153±2.10	22.4644±4.73	174.6426±13.21	1.7343±1.32
4.3643 ± 2.08	26.5489±5.15	175.1816±13.23	2.7328±1.65
6.1026 ± 2.47	15.6743±3.95	289.8973±17.02	9.0911±3.02
8.9868 ± 2.99	5.8430 ± 2.41	263.8906±16.24	6.0762±2.47
9.8837±3.14	16.6879±4.08	280.0403±16.73	0.6441 ± 0.8
8.9022 ± 2.98	9.8628±3.14	262.4244±16.19	1.4931 ± 1.22
17.4864 ± 4.18	8.5811±2.92	249.1988±15.78	1.4931±1.22
25.2843 ± 5.02	14.0178±3.74	171.6780±13.10	5.1104±2.26
7.9169 ± 2.81	6.9666±2.63	258.6724±16.08	11.832 ± 3.44
8.8436 ± 2.97	23.8241±4.88	215.7500±14.68	0.2966 ± 0.54
5.3342 ± 2.30	17.0149±4.12	308.3197±17.55	5.0102±2.24
14.5680 ± 3.81	19.9033±4.46	129.0303±11.35	8.3964 ± 2.9
10.2145 ± 3.19	11.5986 ± 3.40	260.9088±16.15	6.3960±2.53
13.7136±3.70	12.8504±3.58	262.7724±16.21	5.3290±2.31
5.2017 ± 2.28	11.1702±3.34	198.4385±18.01	10.8843±3.3
35	30	400	14.8
	$\begin{array}{c} 4.3286\pm 2.08\\ 8.7995\pm 2.96\\ 7.0710\pm 2.65\\ 4.1886\pm 2.04\\ 11.9377\pm 3.45\\ 6.8125\pm 2.61\\ 12.9963\pm 3.60\\ 4.43153\pm 2.10\\ 4.3643\pm 2.08\\ 6.1026\pm 2.47\\ 8.9868\pm 2.99\\ 9.8837\pm 3.14\\ 8.9022\pm 2.98\\ 17.4864\pm 4.18\\ 25.2843\pm 5.02\\ 7.9169\pm 2.81\\ 8.8436\pm 2.97\\ 5.3342\pm 2.30\\ 14.5680\pm 3.81\\ 10.2145\pm 3.19\\ 13.7136\pm 3.70\\ 5.2017\pm 2.28\\ \end{array}$	4.3286 ± 2.08 22.9800 ± 4.79 8.7995 ± 2.96 28.4672 ± 5.33 7.0710 ± 2.65 27.1481 ± 5.21 4.1886 ± 2.04 22.5313 ± 4.74 11.9377 ± 3.45 5.0423 ± 2.24 6.8125 ± 2.61 22.6094 ± 4.75 12.9963 ± 3.60 8.0872 ± 2.84 4.43153 ± 2.10 22.4644 ± 4.73 4.3643 ± 2.08 26.5489 ± 5.15 6.1026 ± 2.47 15.6743 ± 3.95 8.9868 ± 2.99 5.8430 ± 2.41 9.8837 ± 3.14 16.6879 ± 4.08 8.9022 ± 2.98 9.8628 ± 3.14 17.4864 ± 4.18 8.5811 ± 2.92 25.2843 ± 5.02 4.0178 ± 3.74 7.9169 ± 2.81 6.9666 ± 2.63 8.8436 ± 2.97 23.8241 ± 4.88 5.3342 ± 2.30 17.0149 ± 4.12 14.5680 ± 3.81 19.9033 ± 4.46 10.2145 ± 3.19 11.5986 ± 3.40 13.7136 ± 3.70 12.8504 ± 3.58 5.2017 ± 2.28 11.1702 ± 3.34 35 30	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

from Table 1

- a) The lowest value for the specific activity of 238U detected in the position (S19) (Bq / kg 2.84794 ± 1.68), the highest value (25.28436 ± 5.02 Bq / kg) in the (S44) position and the general rate of specific uranium activity (5.20172 ± 2.28 Bq / kg) The current results show that the specific activity rate of 238U, the dust of the city of Tikrit is lower than the global average quality of 238U (35 Bq / kg) [11].
- b) The lowest value of 232Th in the measured samples was the lowest value $(3.83001 \pm 1.95 \text{ Bq} / \text{kg})$ in the position (S16), the highest value $(32.47632 \pm 5.69 \text{ Bq} / \text{kg})$ in the position (S7) and the general rate of thorium specific activity $(11.17026 \pm 3.34 \text{ Bq} / \text{kg})$. Current results indicate that the specific activity of 232Th in the dust of the city of Tikrit is lower than the global average of 232Th (30 Bq / kg) [11].
- c) The lowest value of the specific activity of 40K in the measured samples with the lowest value (88.466734 \pm 9.40 Bq / kg) in the position (S20) and the highest value (399.22131 \pm 19.98 Bq / kg) in the position (S4) and the general rate of the specific activity of potassium (198.43853 \pm 18.01 Bq / kg). Current results show that the specific activity of 40K in the dust of the city of Tikrit is lower than the global average quality of 40K (400 Bq / kg) [11].
- d) The lowest value of the specific activity of 137Cs in the measured samples with the lowest value (0.49666 ± 0.54 Bq / Kg) in the position (S46) and the highest value was (11.8327 ± 3.44 Bq / kg) in the position (S45) and the general rate of the specific activity of 137Cs was(10.8843 ± 3.3). Current results show that the specific activity of cesium-137 in the dust of the city of Tikrit is lower than the global average quality of 137Cs (14.8 Bq / kg) [11].

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Table 2: Radiation risk factors in the rising dust samples of

1 1КГ1									
	Raeq	Dv	(AEDE)mSv.y-1						
S.No	(Bq.kg -1)	(nGy.h-1)	in	out	I_{γ}	H _{in}	H _{ex}		
S1	35.066	17.42492	0.0976	0.0244	0.27867	0.1125	0.09844		
S2	51.471	26.17849	0.1466	0.0366	0.41331	0.1793	0.14514		
S 3	31.992	16.61892	0.0931	0.0233	0.26429	0.1052	0.09091		
S4	79.032	38.73126	0.2169	0.0542	0.61922	0.2555	0.22097		
S5	62.675	30.25505	0.1694	0.0424	0.48275	0.2066	0.17441		
S6	61.192	28.89083	0.1618	0.0404	0.46109	0.2029	0.16923		
S 7	72.145	33.00782	0.1848	0.0462	0.52854	0.2367	0.19789		
S 8	33.971	16.53304	0.0926	0.0231	0.26124	0.1191	0.09459		
S9	57.807	29.36431	0.1644	0.0411	0.46919	0.1851	0.16331		
S10	43.595	21.638	0.1212	0.0303	0.34421	0.1453	0.12223		
S11	47.161	24.24967	0.1358	0.0339	0.38099	0.1692	0.1333		
S12	35.531	17.97428	0.1007	0.0252	0.28395	0.1234	0.10004		
S13	53.512	26.21511	0.1468	0.0367	0.41891	0.1736	0.14959		
S14	47.529	22.82715	0.1278	0.032	0.36489	0.155	0.13212		
S15	68.8	32.97145	0.1846	0.0462	0.53	0.2159	0.19132		
S16	28.952	15.77156	0.0883	0.0221	0.25063	0.0941	0.08346		
S17	44.244	21.93704	0.1228	0.0307	0.34605	0.156	0.12382		
S18	47.363	22.09832	0.1238	0.0309	0.35691	0.1453	0.13082		
S19	45.027	20.50397	0.1148	0.0287	0.33399	0.1314	0.12372		
S20	51.59	23.0633	0.1292	0.0323	0.3748	0.1546	0.14098		
S21	45.211	21.38654	0.1198	0.0299	0.34331	0.144	0.12523		
S22	35.788	17.17876	0.0962	0.0241	0.27351	0.1199	0.09939		
S23	62.481	29.02138	0.1625	0.0406	0.459/2	0.2184	0.17178		
S24	38.188	19.81395	0.111	0.0277	0.31822	0.1165	0.10868		
S25	48.585	23.09972	0.1294	0.0323	0.36899	0.1598	0.13465		
S26	40.421	20.36182	0.114	0.0285	0.326	0.128	0.11395		
S27	57.416	27.68219	0.155	0.0388	0.44064	0.1924	0.15965		
528	47.848	23.08663	0.1293	0.0323	0.3/132	0.1491	0.13333		
S29 S20	58 057	28 21028	0.1004	0.0251	0.28/38	0.1151	0.10193		
S30 S21	58.057	20.75600	0.1383	0.0390	0.43739	0.1741	0.1024		
S21 S22	60.078	24.01107	0.1722	0.0451	0.49310	0.2048	0.10104		
\$32	10	23 04527	0.1903	0.0470	0.346	0.2140	0.19540		
\$33	47 28 306	23.04327	0.1291	0.0323	0.37310	0.147	0.13371		
\$35	63.65	31 /0187	0.0785	0.0190	0.21722	0.1112	0.07893		
\$35	46.86	24 17207	0.1759	0.044	0.3049	0.1909	0.17049		
\$37	40.00	24.17277	0.1334	0.0338	0.37969	0.1077	0.13238		
\$38	40.701 54 592	25 35698	0.1202	0.0321	0.37002	0.147	0.15072		
\$39	48.81	24 37547	0.142	0.0341	0.39069	0.1025	0.13728		
S40	35 815	18 68533	0.1046	0.0262	0.39009	0.1330	0.10171		
S41	53 35	26 32347	0.1040	0.0262	0.41946	0.120	0 14937		
S42	41 376	21.0131	0.1474	0.0294	0 33293	0.1408	0.14937		
S43	47.201	23.65334	0.1325	0.0331	0.36852	0.1795	0.1322		
S44	57.347	27.30713	0.1529	0.0382	0.42319	0.2265	0.15815		
S45	35.986	18.65215	0.1045	0.0261	0.29489	0.1235	0.10207		
S46	58.015	27.47234	0.1538	0.0385	0.44103	0.1846	0.16074		
S47	51.248	25.59836	0.1434	0.0358	0.41126	0.1586	0.14421		
S48	52.062	24.13263	0.1351	0.0338	0.38217	0.1824	0.14305		
S49	45.064	22.60462	0.1266	0.0316	0.35802	0.1542	0.12663		
S50	50.484	25.05497	0.1403	0.0351	0.39511	0.1784	0.14131		
Av	49.448	24.09311	0.1349	0.0337	0.38444	0.1624	0.13797		
Acce					1	1			
pted	370	55	1	1	1	1	1		
limit	570	55	1	1	1	1	1		
	1	1							

Evaluation of Radiological Hazard Effects for Soil Samples

From Table (2)

a) The lowest value of the radionuclide efficiency (Ra_{eq}) in the measured samples (28.306 Bq / kg) in the position

(S34) and the highest value (79.032 Bq / kg) in the position (S4) and the general average of the radium equivalent (49.448 Bq / kg). The equivalent radium activity rate in the dust of the city of Tikrit is lower than the global average of the equivalent radium activity (370 Bq / kg) [11].

- b) (D) in the increasing soil dose (14.01601 nGy / h) samples in the position (S34) and the highest value (38.73126 nGy / h) in the position (S4) and the general rate (24.09311 nGy / h). The rate of air intake in Tikrit is less than the global average of (55 nGy / h) [11].
- c) The lowest annual effective dose of external exposure (AEDE_{out}) in the measured models (mSv / y 0.019622) for model (34 S), the highest value of (mSv / y 0.054224) for model (S4) and the general average of (0.0337 mSv / y). Current results show that the annual effective external dose rate in Tikrit is less than the global average of (1mSv / y) [11].
- d) The lowest annual effective dose of internal exposure (AEDE_{in}) in the measured samples (0.0940 mSv / y) in the position (S16), the highest (0.2554 mSv / y) in the position (S4) and the general rate of (0.1624 mSv / y). The current results show that the annual effective dose rate in Tikrit is less than the global average of (1mSv/y) [11].
- e) The minimum value of the external risk index (H_{ex}) in the measured samples (0.0789) in the position (S34), the highest value (0.2209) in the position (S4) and the general rate (0.1379). H_{ex} in the city of Tikrit is less than the global average of (1) [11].
- f) The lowest value of the internal risk index (H_{in}) in the measured samples (0.094) in the position (S16) and the highest value (0.255) in the position (S4) and the general rate (0.162405). Current results show that the rate of (H_{in}) in the city of Tikrit is less than the global average of (1) [11].
- g) The lowest value of the risk index for Gama(I_{γ}) was in the measured samples (0.217) in the position (S34), the highest value (0.619) in the position (S4) and the general rate (0.384). The current results show that the risk index for gama radiation in Tikrit Less than the global average of (1) [11].

5. Conclusions

- 1) The results obtained showed that most of the specific efficacy rates of the different neweeds were lower than the global average and indicated in the tables. However, there is a S7 model that indicates a level of specific radiation activity that is relatively higher than the global average for Th232 and we have no explanation for this
- 2) There was a discrepancy in the results of the one site and this confirms that the samples taken from the same site is a variable focus and means that the source is transferred from different areas due to prevailing winds and soil type.
- 3) The results of radioactive effects all are less than the rate allowed globally, but we believe that the accumulation may have a negative impact on public health because it will enter through the respiratory system.
- 4) The results obtained for the values of the specific activity and radiation risk factors are similar to the results of the reference [12].

Volume 7 Issue 4, April 2018

<u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

References

- [1] Saleh Qaiser Najib, Al-Dabbagh, Suhaila Abbas Ahmad ,Saleh and Tariq Mohammed, 1984, "Ecology and Environmental Quality", Translated book, Ministry of Higher Education and Scientific Research, Mosul University.
- [2] Fahad, Ali Abdul Wahab, Ramzi Mohammed Wunas, Abdul Hussain, Ahmed, Hossam El-Din, Mohamed, Ali Abbas, Mahmoud and Mahmoud Shaker, 2002 "Study of the movement and transfer of depleted uranium in the soil of the southern regions of Iraq" Depleted Uranium on Human and Environment in Iraq, Part I, 26-27 March, p. 179, Baghdad, Iraq.
- [3] "Corn Bulletin and Development", 1996, Quarterly Quarterly Bulletin issued by the Arab Atomic Energy Commission, Tunis, vol 8 No(4).
- [4] Ehsanpour E. and et al., "226Ra, 232Th and 40K contents in water samples in part of central deserts in Iran and their potential radiological risk to human population", Journal of Environmental Health Science and Engineering, Vol.12 (No.1), pp. 1-7, (2014).
- [5] Mehra R., "Use of Gamma Ray Spectroscopy Measurements for Assessment of the Average Effective Dose from the Analysis of ²²⁶Ra, ²³²Th, and ⁴⁰K in Soil Samples", Indoor and Built Environment, Vol.18 (No.3), pp. 270-275, (2009).
- [6] Belivermis M. and et al., "The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul", Environmental monitoring and assessment, Vol.163 (No.1-4), pp. 15-26, (2010).
- [7] Faanu A. and et al., "Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana", SpringerPlus, Vol.5 (No.1), pp. 1-16, (2016).
- [8] Kadum A., Bensaoula A. H. and Dahmani B., "Natural Radioactivity in Red Clay Brick Manufactured in Tlemcen-Algeria, Using Well-Shape NaI(Tl) Detector", Advances in Physics Theories and Applications, Vol.25, pp. 120-128, (2013).
- [9] Ministry of Interior, Salah al-Din Governorate Council, Strategic Planning Authority of Salah al-Din Governorate, Issue 1, 2008, unpublished data
- [10] Gilmore G. R., "Practical Gamma-ray Spectrometry.", 2nd Edition, Wiley-VCH Verlag, Wenheim, Germany, (2008).
- [11] Tawfiq, N. F., Mansour, H. L. and Karim, M. S.," Natural Radioactivity in Soil Samples For Selected Regions in Baghdad Governorate", International Journal of Recent Research and Review, Vol. VIII, No.1,pp:1-7 ,2015.
- [12] Khalid H. Mahdi, Soaad A. Eesa and Zina J. Rahim "14 Natural Radioactivity of Soil Samples from the Abu Sakhir- Najaf (Iraq) by Using Gamma Spectroscopy" Journal of Engineering and Technology Volume 34 Part B Issue 3 2016.

DOI: 10.21275/ART20181925