C - Reactive Protein Levels and Its Correlation with Infections, Mortality and Organ Failure in Critically ILL Patients

Dr Avadhesh Narayan Khare¹, Dr Lokendra Dave²

¹Consultant Cardiologist J.K. Hospital and L.N. Medical College, Bhopal, India
²Consultant GMC, Bhopal, India

Abstract: Introduction: A number of inflammatory cells and mediators involved in the inflammatory response have their role as potential markers of the presence and severity of the inflammatory response and organ failure in critically ill patient. Serum levels of C-reactive protein (CRP), markedly increase within hours after infection or inflammation. Aims and Objectives: To study the association between early serum CRP concentrations and the development of organ failure and mortality in ICU patients. Design: Prospective cohort study. Material and Method: The study was carried out in emergency medical ward Hamidia between April to November 2011. Patient divided in 3 groups based on CRP at time of admission. In gp 1 CRP<1mg/dl gp2 1-10mg/dl & gp 3 >10mg/dl. Results: Patients with high CRP levels at ICU admission had more severe organ dysfunction and higher mortality rates. CRP concentrations were correlated with the presence and number of organ failures. The incidence of infection was directly related to the CRP level on ICU admission [gp1 27.77% vs gp2 57.57% vs gp3 73.07% p<.05]. The incidence of Coagulation failure was directly related to the CRP level on ICU admission [gp1 0% vs gp2 3.03% vs gp3 15.38%p<.05]. Conclusions: Trends of CRP concentrations during the first 48 h of ICU admission can be important in predicting the outcome and perhaps timely modifying the therapeutic interventions.

Keywords: ICU; outcome; sepsis marker; sequential organ failure assessment

1. Introduction

A number of inflammatory cells and mediators involved in the inflammatory response have been assessed, for their role as potential markers of the presence and severity of the inflammatory response and organ failure in critically ill patient[1-8]. Serum levels of C-reactive protein (CRP), an acute-phase protein synthesized by the liver following stimulus by various cytokines including tumor necrosis factor and interleukin (IL)-6, markedly increase within hours after infection or inflammation[9]. Many studies shows increased CRP in patients with sepsis[10-15].

C-reactive protein (CRP) was first discovered in 1930, when a protein in the serum of patients with Streptococcus pneumonia was found to precipitate and bind to the C-polysaccharide derived from the pneumococcal cell wall (16). It has been known for a long time that CRP is one of many non-specific acute phase reactants that are elevated during an inflammatory process. Because the CRP response to an inflammatory process is non-specific, many clinicians have not adopted its use as a predictive and prognostic test in intensive care medicine. Furthermore, the role of CRP as a predictor of infection, instead of inflammation, has become even more controversial since the introduction of procalcitonin as a test in this regard. Comparing CRP with other inflammatory markers such as procalcitonin can be difficult because of their different kinetics and many studies have looked at different types of patients (17). The overall evidence suggests that procalcitonin has much faster kinetics, both in its onset and offset, and may also be more specific than the CRP in diagnosing some infections (18-20). Because the CRP test is widely available and relatively cheap, it is likely to be widely used in many institutions in the foreseeable future.

2. Aims and Objectives

To study the association between early serum CRP concentrations and the development of organ failure and mortality in ICU patients.

3. Material and Method

The study was conducted in the Departments of Medicine at Gandhi Medical College & Hamidia Hospital, Bhopal from April 2010 to Nov 2011. The study subjects selected from patients who are admitted in the emergency medical wards at Hamidia Hospital

Type of Study
Prospective cohort study

Inclusion Criteria
Patients with acute inflammatory condition like Myocardial Infarction, Stroke, Systemic Inflammatory Response Syndrome Sepsis and Other Critical Illness

To study the association between early serum CRP concentrations and the development of organ failure and mortality in ICU patients.
Exclusion Criteria
1) Patient with alcohol consumption more than 20 gm per day
2) Patient with chronic inflammation like rheumatoid arthritis, gout.

The APACHE (acute physiologic and chronic health evaluation) II score was calculated on ICU admission. Organ function was evaluated according to the sequential organ failure assessment (SOFA) score. For each of the six organ systems included in the SOFA score (respiratory, cardiovascular, neurologic, renal, hematologic, and hepatic), organ failure was defined as a score of six. Infection was diagnosed according to usual clinical, laboratory, and microbiological parameters.

Systemic Inflammatory Response Syndrome (SIRS)
Two or more of the following:
- Temperature of >38°C or <36°C
- Heart rate of >90
- Respiratory rate of >20
- WBC count >12 x 10^9/L or <4 x 10^9/L or 10% immature forms (bands)

Organ dysfunction defined on basis of SOFA score

The Sequential Organ Failure Assessment (SOFA) Score
Each organ is graded from 0 (normal) to 4 (the most abnormal), providing a daily score of 0 to 24 points.

Sequential assessment of organ dysfunction during the first few days of ICU admission is a good indicator of prognosis. Both the mean and highest SOFA scores are particularly useful predictors of outcome. Independent of the initial score, an increase in SOFA score during the first 48 hours in the ICU predicts a mortality rate of at least 50%. Criticality of the patient defined on the basis of APACHE SCORE.

Statistical Analysis
All patients were divided in three groups based on their CRP concentration at time of admission. The data for all the groups are expressed as mean ± SD. Continuous variables were compared with analysis of variance for repeated measures. Proportions were compared using the Z test. Chi square test was done to determine the significance of association of organ failure with CRP. A p value 0.05 was considered statistically significant.

Principle of the Method
Serum C-reactive protein (CRP) causes agglutination of the latex particles coated with anti-human C-reactive protein. The agglutination of the latex particles is proportional to the CRP concentration and can be measured by turbidimetry.

4. Observations

Table 1: Distribution Of Patient In Different CRP Groups At Admission

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 - <1</td>
<td>36</td>
<td>37.89%</td>
</tr>
<tr>
<td>Group 2 - 1-10</td>
<td>33</td>
<td>34.70%</td>
</tr>
<tr>
<td>Group 3 - >10</td>
<td>26</td>
<td>27.36%</td>
</tr>
</tbody>
</table>

Table 2: Sex By Distribution in Different Groups

<table>
<thead>
<tr>
<th>Sex</th>
<th>Group 1 (n=36)</th>
<th>Group 2 (n=33)</th>
<th>Group 3 (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>19</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 3: Age by Distribution in Different Groups

<table>
<thead>
<tr>
<th>Age</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>25-34</td>
<td>3</td>
<td>8.33</td>
<td>5</td>
</tr>
<tr>
<td>35-44</td>
<td>6</td>
<td>16.66</td>
<td>7</td>
</tr>
<tr>
<td>45-54</td>
<td>10</td>
<td>27.77</td>
<td>6</td>
</tr>
<tr>
<td>55-64</td>
<td>9</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>65-74</td>
<td>7</td>
<td>19.44</td>
<td>3</td>
</tr>
<tr>
<td>75-84</td>
<td>1</td>
<td>2.77</td>
<td>1</td>
</tr>
</tbody>
</table>

Major number of patient are between age 35-64 of age in all the three groups.

Table 4: Distribution of Death of Patient in Different CRP Groups at Admission

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 - <1</td>
<td>5</td>
<td>13.88%</td>
</tr>
<tr>
<td>Group 2 - 1-10</td>
<td>6</td>
<td>18.18%</td>
</tr>
<tr>
<td>Group 3 - >10</td>
<td>9</td>
<td>34.60%#</td>
</tr>
</tbody>
</table>

Group 3 have statistically significant increased mortality than group 1 & 2 (p<.05).

! p<.05 Vs Group 1
p<.05 Vs Group 2
significant increased cardiovascular, respiratory and renal coagulation failure statistically significant increased in group 3 than 1 at time of admission (p<.05).

Table 8: Incidence of Organ Failure (Sofa Score 3 Or 4) On Second ICU Day 2 According To Crp Level

<table>
<thead>
<tr>
<th>Variables</th>
<th>CRP Measurements</th>
<th>Group-I (CRP< 1 mg/dL)</th>
<th>Group-II (CRP 1-10 mg/dL)</th>
<th>Group-III (CRP > 10 mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>CRP Measurements</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Respiratory</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Renal</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coagulation</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Liver</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Neurological</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Cardiovascular, respiratory and renal coagulation failure statistically significant increased in group 3 than 1 after 48 hour(p<.05).

5. Results

The study carried out in emergency medical ward Hamidia between April to November 2011 total 95 patient included in study. Patient divided in 3 groups based on CRP at time of admission. In group 1 CRP<1mg/dl group2 1-10mg/dl & group 3 >10mg/dl data are presented in observation tables 1 to 7. Patients with high CRP levels had significantly higher

Volume 7 Issue 4, April 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20181686
DOI: 10.21275/ART20181686
777
SOFA scores, infection, mortality rates, and ICU stays than reported patients with normal CRP levels.

Age: The max. no. of patient between 35-64 [gp1 68% group 2 72% group 78%] the mean age almost same in each group [gp1 53.4±13.36 gp2 51.6±13.18 gp3 51.5±13.6 p>0.05]

Infection: The incidence of infection was directly related to the CRP level on ICU admission [gp1 27.77% vs gp2 57.57% vs gp3 73.07% p<.05]

Organ failure its correlation with CRP: The number of organs failing during the ICU stay increased with increasing CRP concentrations, both at ICU admission and at 48 h.

Coagulation failure: The incidence of coagulation failure was directly proportional to ICU admission CRP levels. Coagulation failure was not in patients with ICU admission CRP concentrations >1 mg/dL; it was 3.03% for patient CRP levels in the range of 1 to 10 mg/dL, and 15.38% for patient ICU for admission CRP values > 10 mg/dL [p<.05].

Respiratory and cardiovascular dysfunction: At admission, CRP levels >10 mg/dL were associated with a significantly higher incidence of respiratory cardiovascular and renal dysfunction than CRP levels < 1 mg/dL (Table 7)

Duration of ICU Stay and Mortality: Duration of ICU admission increased with increase in CRP it is Mortality and its correlation with APACHE score & SOFA score: The overall mortality rate was 21.5%. Nonsurvivors had significantly higher CRP levels than survivors at ICU admission (9.6±6.54 mg/dL vs 5.9±5.13 mg/dL, p < 0.05) and at day 2 (15.55±5.36 mg/dL vs 9.91±5.17 mg/dL, p <0.05). Patients with CRP concentrations between 1 mg/dL and 10 mg/dL on ICU admission, in whom the serum CRP concentration was unchanged or decreased after 48 h (n = 9), had similar APACHE II scores (14.23±4.04 vs 14.75±1.69, not significant, NS) but lower SOFA ICU admission (5.48±2.1 vs 6.81±1.95, p <0.05) and , and a significant lower mortality rate (6.07% vs 18.1%); , than those whose CRP levels increased on day 2 (n = 24). Patients with CRP concentrations >10 mg/dL on ICU admission in whom the serum concentration decreased after 48 h (<10 mg/dL) had no differences in APACHE II score (17.6±2.35 vs 17.92 ±2.29, NS), SOFA ICU admission (6.35±1.96 vs 7.65±2.1, NS) score, or maximum SOFA (7.81±2.43 vs 9.9±2.56, NS) scores, but had a lower mortality rate (11.11% [1 of 9 patients] vs 47.05% [8 of 17 patients]) compared with those whose CRP levels increased on day 2 (>10 mg/dL) [p< 0.05].

6. Discussion

Recently, CRP has been seen not only as a biochemical marker of inflammation but also as an active modulator of the inflammatory response. In this context. The correlation of CRP levels with organ failure and early mortality after ICU admission has been evaluated in a heterogonous group of ICU patients. This is found that increased CRP concentrations were associated with organ failure, prolonged ICU stay, and high infection and mortality rates. Particularly CRP concentrations >10 mg/dL on ICU admission were associated with a high mortality. Increasing or persistently high levels suggesting ongoing inflammatory activity, indicated a poor prognosis, while decreasing values were associated with a more favorable prognosis.

Due to the fast rise in CRP concentrations, critically ill patients will often already have raised CRP levels on ICU admission. The relatively short half-life of approximately 19 h makes it a useful monitor for follow-up of inflammatory response, infection, and antibiotic treatment. In addition, laboratory tests for CRP are easily available and less costly than cytokine tests

Infection: The incidence of infection was directly related to the CRP level on ICU admission. [gp1 27.77% vs gp3 73.07% p<.05]

Póvoa P, Coelho L, et al.[12] Concluded that CRP was a better marker of infection than temperature. This is in accordance to my study that number of infected patient increase as crp level increase [gp1 27.77% vs gp3 73.07% p<.05]

Lisboa T, Seligman R.[155] Similarly conclude C-reactive protein is a useful biochemical surrogate of bacterial burden in patients with ventilator-associated pneumonia. Follow-up measurements of serum C-reactive protein anticipate the appropriateness of antibiotic therapy

Almeida E, Moreira P, Fernandes A.[12]. Found a plasma CRP of 50 mg/l or more was highly suggestive of sepsis.

Gian P Castelli[162] CRP levels are related to the severity of organ dysfunction.

Seller-Pérez G[163], at al also found CRP level on admission is an useful marker for early infection

Parnaby RM, Eaton SE, Shafi MS, Bell D.[164]; assess the value of routine serum C-reactive protein (CRP) measurement in the early diagnosis of infection in ICU patients. Neither absolute CRP levels nor rates of change in CRP were found to relate significantly to proved infection.

Lobo SM,[165], C-reactive protein levels correlate with mortality and organ failure in critically ill patients

W de Werra CRP levels may be useful together with full clinical assessment including signs of sepsis, bacteriological data, and organ function evaluation.

Mortality and multiorgan dysfunction the number of organs failing during the ICU stay increased with increasing CRP concentrations, both at ICU admission and at 48 h.

Coagulation failure: The incidence of coagulation failure was directly proportional to ICU admission CRP levels (Table 7). Coagulation failure was not found in patients with ICU admission CRP concentrations <1 mg/dL. It was 3.03% for patient CRP levels in the range of 1 to 10 mg/dL, and 15.38% for patient ICU for admission CRP values > 10 mg/dL similar result obtained by suzana et al coagulation failure increased as CRP increase.
Respiratory and cardiovascular dysfunction: on admission CRP levels > 10 mg/dL were associated with a significantly higher incidence of respiratory and cardiovascular dysfunction than CRP levels < 1 mg/dL (Table 7). Similar finding got by Mradul Kumar Daga[158] et al in their study in pneumonia patient.

Mendall MA, Study achan DP, Butland BK, et al.[166] also got similar result increase C-reactive protein: associated with increased cardiovascular mortality.

Liver failure not significantly associated with increased CRP level in different group this according to existing literature as Silvestre JP[167] et al also got similar finding in their study on liver failure patient.

Patients with high CRP levels had significantly higher SOFA scores, mortality rates[13.88% in crp < 1 18.18% in crp 1-10 &34.6% in crp >10], and ICU stays [8.89±2.85 V s 12.1±3.82 in gp2 crp 1-10 Vs gp3 crp >10 respectively] than reported patients with normal CRP levels[7.17 ±2.86 in gp1 crp <1]. The number of organs failing during the ICU stay increased with increasing CRP concentrations, both at admission[4.94±2.07 in gp1 crp <1 Vs 6.96±2.78 gp3 crp >10 p <0.05] and at 48 h[5.66±1.73 in gp1 crp <1 Vs 8±1.93 gp3 crp >10 p <0.05]. These finding in similarity with Suzana M. A. Lobo, MD; Francisco R. M. Lobo[165] who reported that, patients with high CRP levels at ICU admission had more severe organ dysfunction (higher sequential organ failure assessment scores, days of longer ICU stays, and higher mortality rates than patients with normal ICU admission CRP levels. CRP concentrations were correlated with the presence and number of organ failures, P reterl et al[15] demonstrated a correlation between the plasma levels of CRP, IL-6 and tumor necrosis factor-sR, and the APACHE III and mortality probability model II scores. Both scoring systems, as well as CRP levels, were significantly higher in the non survivors compared with the survivors.

Non survivors had significantly higher CRP levels. Findings on the relation between the peak concentrations of CRP and the number of organs failing indicate that both these parameters are useful indicators of severity and prognosis. ICU admission serum CRP levels > 10 mg/dL, were associated with a significantly morbidity and mortality

The incidence of coagulation failure was directly proportional to ICU emergence CRP levels. Coagulation failure was not in patients with ICU admission CRP concentrations <1 mg/dL ; it was 3.03% for patient CRP levels in the range of 1 to 10 mg/dL, and 15.38% for patient ICU for admission CRP values > 10 mg/dL. At 48 h, CRP levels > 10 mg/dL were associated with a significantly higher incidence of respiratory[10% in crp gp1 <1 Vs 55.55% gp3 crp >10 p < 0.05]. This is accordence with Suzana M. A. Lobo, MD; Francisco R. M. Lobo at all[165] they also have reported higher incidence of respiratory failures and with higher mortality rates than CRP levels < 1 mg/dL. In patients with CRP concentrations > 10 mg/dL on ICU admission, Nonsurvivors had significantly higher CRP levels than survivors at ICU admission [9.6±6.54 mg/dL vs 5.9±5.13 mg/dL, p < 0.05] (15.55±5.36 mg/dL vs 9.91±5.17 mg/dL)

Reny JL, Vuagnat A, Ract C, Benoit MO, Safar M, Fagon JY[153] evaluate diagnostic and prognostic values of C-reactive protein (CRP) dosage in critically ill patientCRP in combination with SIRS was useful to diagnose infection in ICU patients; a CRP decrease > or = 50 mg/L between admission and day 4 was the best predictor of recovery.

Silvestre J, Póvoa P, Coelho L, Almeida E, Moreira P, Fernandes A, Mealha R, Sabino H[168]. Evaluate CRP as marker of prognosis outcome in septic patients and to assess the correlation of CRP with severity of sepsis n septic patients, CRP of the day of sepsis diagnosis is not a good marker of prognosis.

7. Summary & Conclusion

CRP is a marker of inflammation that has been used to monitor the course of infection and inflammation CRP has been seen not only as a biochemical marker of inflammation but also as an active modulator of the inflammatory response. In this context, we have evaluated the correlation of CRP levels with organ failure and early mortality after ICU admission in a heterogeneous group of ICU patients with different disease.

1) It is found that increased CRP concentrations were associated with organ failure, prolonged ICU stay, and high mortality rates.

2) CRP concentrations > 10 mg/dL on ICU admission were associated with a particularly high mortality.

3) Increasing or persistently high levels, suggesting ongoing inflammatory activity, indicated a poor prognosis.

4) Declining values, suggesting a decreasing inflammatory reaction, were associated with a more favorable prognosis.

5) Hence, trends of CRP concentrations during the first 48 h of ICU admission can be important in predicting the outcome and perhaps timely modifying the therapeutic interventions. However, further studies are needed in this subject.

References

Kollef MH, Sherman G. Acquired organ system derangements and hospital mortality: are all organ systems created equally? Am J Crit Care 1999; 8:180–188

Ikei S, Ogawa M, Yamaguchi Y. Blood concentrations of polymorphonuclear leukocyte elastase and interleukin-6 are indicators for the occurrence of multiple organ failures at the early stage of acute pancreatitis. J Gastroenterol Hepatol1998; 13:1274–1283

[37] Sierra R, Rello J, Bailon MA, Benitez E, Gordillo A, Ledn C et al. C-reactive protein used as an early

[158]Mradul Kumar Daga, Navanshu Arora, S Krishna Prakash, Rajat Jhamb, Naree Kumar1, Neera Gupta C-reactive protein in lower respiratory tract infections
[159]Tenzin Nyandak, Arun Gogna, Sandeep Manorama Deb. High Sensitive C-Reactive Protein (hs-CRP) and its Correlation with Angiographic Severity of Coronary Artery Disease (CAD)
[160]Isaacman DJ, Burke BL. Utility of the serum C-reactive protein for detection of occult bacterial infection in children.
Castelli GP, Pognani C, Cita M, Stuani A, Sgarbi L, Paladini R. C-reactive protein as an indicator of bacterial infection of adult patients in the emergency department.

Seller-Pérez G, Herrera-Gutiérrez ME, Lebrón-Gallardo M, de Toro-Peinado I, Martín-Hita L, Porras-Ballesteros JA. Serum C-reactive protein as a marker of outcome and infection in critical care patients.[Article in Spanish]

Parnaby RM, Eaton SE, Shafi MS, Bell D. The value of serum C-reactive protein levels as a marker of sepsis in intensive care unit patients.

Suzana M. A. Lobo, MD; Francisco R. M. Lobo, MD; Daliana Peres Bota, MD; Flavio Lopes-Ferreira, MD; Hosam M. Soliman, MD; Christian Me’lot, MD, PhD: C-Reactive Protein Levels Correlate With Mortality and Organ Failure in Critically Ill Patients

Silvestre JP, Coelho LM, Póvoa PM. Impact of fulminant hepatic failure in C-reactive protein.

Author Profile

Dr Avadhesh Narayan Khare had done my MBBS from T.N.M.C. Mumbai, MD Medicine from GMC Bhopal and DM Cardiology from PGIMER Dr RML Hospital New Delhi currently working as consultant interventional cardiologist at J.K. hospital and L.N. Medical College, Bhopal.