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1. Introduction 
 

Let 
,m nM be the space of m n  complex matrices and 

, .n n nM M    denotes the unitarily norm.  

 

For all , , nA B X M  , ,A B  are positive semidefinite , for all 

real number 0r   and  every v  with 0 1,v  the 

well-known Cauchy-Schwarz inequality for matrix [5] (see 

also [ 6, p. 267] ) says that 

                                 
1

( ) (0)
2

                          (1.1) 

where  1 1( )
r r

v v v vv A XB A XB    . 

Hiai and Zhan [1] showed the following inequality 

                           
1

( ) ( ) (0),
2

v                        (1.2)    

which is a refinement of  (1.1). 

In [2], Ali et al. gave another refinement of (1.1) as follows: 
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( ) 2( ( ) ( )) (0).
2 2

v dv                 (1.3) 

                    

In this paper, we present new refinements of (1.1) and (1.3).   

 

2. Main Results 
 

Lemma 2.1[3. p.21]  Let f  be a convex function defined on 

an interval I . If , ,x y z I  such that ( )x y z x z    then  
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f z f x

f y f x y x
z x


  


           (2.1)   

Lemma 2.2 (Improved Hermite-Hadamard Integral 

Inequality）[4]  Let f  be a convex function defined on an 

interval [ , ]a b .  Then 
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Lemma 2.3  Let f  be a convex function defined on an 

interval [ , ]a b .Then for positive integers ,m n  with n m  
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Proof.  Since f  is convex on [0,1],  we have 

2 ( ) ( ) ( ))
2

a b
f f a f b


  . 

Thus  
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which is the last inequality. 

On the other hand, form Lemma 2.2, we have 
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which is the middle inequality. 

 

Remark 2.4  Set 1m   in  Lemma 2.2, then we get Lemma 1 

of  [7]. 

 

Theorem 2.5  Let , , nA B X M  such that ,A B  are positive 

semidefinite, and let 0, 0 1,r v   and  0 1.u   Then for 
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positive integers ,m n  with  n m  
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，

  

where 1 1( )
r r

v v v vv A XB A XB    . 

Proof. Since 1 1( )
r r

v v v vv A XB A XB    is convex on 

[0,1] ,  then for 
1

0
2

u  , by Lemma 2.3, we have  
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Combining  (2.2) and (2.3), we get the required inequality. 

 

Theorem 2.6  Let , , nA B X M  such that ,A B  are positive 

semidefinite , and 0,1 0.r v    Then  
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0

1 1 1
( ) [4 ( ) 2 ( ) 2 ( )] (0)
2 2 4

v dv              (2.4)  

where 1 1( )
r r

v v v vv A XB A XB    . 

Proof. Since 1 1( )
r r

v v v vv A XB A XB     is convex on 

[0,1] ,  then for 0 1v  , by Lemma 2.2, we have   
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( ) ( ) (0).
2

v     

 If 
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0
4

v  , by inequality (2.1),  then we have 
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which is  
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Form inequalities (2.5)—(2.8) and 
1 3
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4 4

        

we have 
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Remark 2.5  Inequality (2.4) is better than (1.3). In fact, by the 

convexity  of   , we have 
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Thus 
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Thus inequality (2.4) is an improvement of (1.3). 
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