Laterite and Laterization - A Geomorphological Review

Dr. T. K. Prasad¹, Dr. G. R. Parthasarathy²

¹Assistant Professor, Department of Geography, Government College Kariavattom, Thiruvananthapuram
²Professor & Head (Rtd), Department of Geography, Madurai Kamaraj University, Madurai

Abstract: Laterite is a typical rock formation found commonly in the tropical monsoon regions as a capping over the hillocks. Laterites are residual sedimentary rocks, reddish or brownish coloured, comparatively soft rocks, containing high degree of porosity and are carrying vermiform structures. Laterite brick is generally red in color. In vernacular, it is called as “chenkallu”. Laterite has immense economic value as it contains the ores of iron, aluminium and manganese. The origin of laterite is intimately connected with the physical, climatic and denudational processes of a particular region. The laterization process operates at well under warm and humid tropical climates with seasonal rainfall. Though many hypotheses have been advanced by different geomorphologists, the origin of the laterite is as yet a much debated question. Present investigation is an attempt to analyse the empirical observations on Laterite and laterization from a geographical perspective.

Keywords: Laterite, Laterization, Sedimentary Rocks, Monsoon Region, Denudation, Tropical Climate, Geomorphology

1. Introduction

Laterite occurs principally as a cap over the summits of Basaltic hills and plateaus and is the characteristic feature of tropical monsoon regions. Its geological nature was described only later by Francis Hamilton Buchanan, a medical officer of East India Company. From Angadipuram in Malappuram District of Kerala, he discovered a type of weathered material which was indurated clay, full of cavities and pores, containing large quantity of iron in the form of red and yellow ochre. It was soft when fresh and could be cut easily and when exposed, it became hard and resisted air and water much better than bricks (Buchanan 1807). He used the term laterite to designate this material (laterite in Latin means “brick stone”). He defined it as “a residual product of weathering, rich in secondary oxides of iron and aluminum or both-nearly devoid of bases and primary silicates and commonly found with quartz and kaolin and developed in tropical or warm temperate climatic regions”. These statements were the start of a tremendous number of studies of this strange material, hitherto resulting in more than 3000 publications. Above all geologists dealt at first with laterite but in later epochs also soil scientists, mineralogists, geographers, geomorphologists, mining and construction engineers participated in laterite research. The great interest of so many scientists with their different viewpoints did not only result in a great increase in literature as well as knowledge on the basic understanding and interpretation of laterite and laterization.

2. Studies on Laterites

The term laterite was originally suggested by Buchanan (1807) as a name for highly ferrigenous deposits first observed in Malabar in India. Buchanan described a material that was soft enough to be cut with a knife when in situ but hardened on exposure; it was being quarried to make bricks, and he derived the term from the Latin word, a brick. From Angadipuram in Malappuram District of Kerala. He coined the term laterite when he wrote (1807): “What I have called indurated clay … is one of the most valuable materials for building. It is diffused in immense masses, without any appearance of stratification and is placed over the granite that forms the basis of Malayala. It is full of cavities and pores, and contains a very large quantity of iron in the form of yellow and red ochres. In the mass, while excluded from the air, it is so soft, that any iron instrument readily cuts it, and is dug up in square masses with a pick-axe, and immediately cut into the shape wanted with a trowel, or large knife. It very soon after becomes as hard as brick, and resists the air and water much better than any brick that I have seen in India. … The most proper English name would be laterite, from lateritius, the appellation that may be given to it in science”.

Great interest in the study of laterites developed because of the possible use of laterite as an ore for aluminium (Holland, 1903) and in some cases, for manganese. Fermor (1911) suggested the use of the term only for soft material that could be touting into bricks. Fox (1933) during his visit to Malabar reported that all the laterite occurrences seen by him in Malabar, Kanara and Shimga were associated with granite rocks below them and could be taken as always having been formed from such acid rocks and passed down into them through a zone of Kaolinsed rock. He has further reported that in the Nellore quarries laterite overlies gneissic rocks. Fox described two types of laterites in the Nellore area: first is in situ laterites quarried as building stone and the second is recent age laterites made up of pebble gravels, shining reddish brown in colour. Stephen (1961) revisited Buchanan’s type site to find that the rock-like iron stone was being packed with pickaxes-not with knife. The property of hardening of such material on exposure to the atmosphere was for some time taken as a criterion of laterite.

Since laterite horizons are developed on almost all varieties of rock types including Precambrian crystalline and Cenozoic sedimentaries on the west coast, a proper description of laterites in terms of composition and texture appears to be very difficult. However the works such as...
Laterite Profiles

The general pattern of lateritic profile is similar at all locations, although the individual units of the profiles are not uniform. In the ascending order the parent rock passes through a zone of the partly altered bedrock, followed by a zone of lithomarge, blocky laterite and vermicular laterite. The vermicular laterite represents the uppermost zone of Laterization, which may or may not have a later formed cover of lateritic gravel and/ or a humus zone.

Laterite Profiles

The general pattern of lateritic profile is similar at all locations, although the individual units of the profiles are not uniform. In the ascending order the parent rock passes through a zone of the partly altered bedrock, followed by a zone of lithomarge, blocky laterite and vermicular laterite. The vermicular laterite represents the uppermost zone of Laterization, which may or may not have a later formed cover of lateritic gravel and/ or a humus zone.

Laterite Profiles

The general pattern of lateritic profile is similar at all locations, although the individual units of the profiles are not uniform. In the ascending order the parent rock passes through a zone of the partly altered bedrock, followed by a zone of lithomarge, blocky laterite and vermicular laterite. The vermicular laterite represents the uppermost zone of Laterization, which may or may not have a later formed cover of lateritic gravel and/ or a humus zone.

Hydrological Properties

Laterite, apart from its use as a promising natural resource as building material, is also regarded to act as ground water recharging source because of its physical properties particularly porosity. Laterite constitutes one of the important hydrological provinces in Kerala, as it holds roughly 55% of the total dynamic ground water storage. The laterite terrain receives heavy rainfall during every monsoon season and is getting recharged year after year. The high porosity of it enhances quick infiltration of rain water. The peculiar vesicular structure is a favourable factor in the vertical infiltration of rain water to join ground water reservoir. But the lithomargic clay occurring in between lateritic cap and underlying weathered bedrocks has a low permeability and prevents easy downward movement. This may facilitate retention of water in the pores of laterite for a long period. The ground water condition of laterite is always in a dynamic state due to fluctuations of water table.

Economic Value

Laterite has immense economic value as it contains the ores of iron, aluminium and manganese. The use of laterite as an ore of iron is of very old standing, but its recognition as a source of aluminium is due to the work of Holland and of manganese to the work of Fermor. Contents of gold placer deposits are found in Nilambur valley of Malappuram district in Kerala (Narayanaswamy, 2004). In several parts of southern India and Burma laterite is quarried for use as a building stone. Laterite soils are very poor in lime and magnesia and deficient in nitrogen. Occasionally the phosphate content may be high, probably present in the form of iron phosphate but potash is deficient. There is occasionally a higher content of humus.

Laterites are best developed in the Western Ghats and its foothills. The thickness of lateritic cap varies from few feet to 50 meters. It is the characteristic feature of midland hillocks of north Malabar region of Kerala. Laterite bricks are most ideal for building purposes. In the areas of
extensive laterite formations, its mining has emerged as a major economic activity of the local people with multifaceted effects on socio-economic set up of these regions.

Geomorphology of Lateritic Landscape

Laterite cappings are generally found as isolated but extensive plateaus or as *mesas*. Lateritic cappings over the erosional surface has played a significant role on the denudational processes. The top surfaces are flat to gently rolling with centripetal slope and no significant drainage line and the river valleys that normally follow the lineaments cutting across the laterite are narrow, steep sided but flat bottomed. The erosional intensity on these hard crust duricrusts is comparatively less. The process of valley formation in the laterite mesa region conforms more to the scarp retreat or pediplanation than peneplanation (Narayanaswamy and Chattopadhyay, 1996). Although the humid tropics are mainly dominated by peneplanation process the occurrence of hard crust laterites and consequent edaphic arid situation has been conducive for scarp retreat. Moreover, soft clay layer underneath the hard laterites provides favourable condition for lateral widening of stream valleys and scarp retreat. Headward erosion of certain streams is another factor in shaping the mesas (Chattopadhyay, 2004). Similar landscape features are also reported in the laterite terrain of Australia also (Tweedale, 1984)

Types of Laterites

On the basis of nature of gradational process leading to the origin of laterite it is classified into two groups: Primary and Secondary laterites (Thomas Varghese and Byju, 1993). Primary laterites are formed by aerial weathering and are known as residual laterite whereas Secondary laterite or detrital laterite is formed by partial or complete consolidation of lateritic material.

Based on altitudes laterite has been classified as low level laterite and high level laterite (Wadia, 1975). High level laterites are those that occur on situations above 600 m. above sea-level. The rock characteristic of these occurrences is of massive homogeneous grain and of uniform composition. The low-level laterite occurs on the coastal lowlands. Low level laterite differs from the high-level rock in being much more massive and in being of detrital origin, from its being formed of the products of mechanical disintegration of the high-level laterite.

Young (1976) analysed the physical properties of laterite and has distinguished the following five main types and subdivisions of laterite:

1) Massive laterite: possesses a continuous hard fabric, subdivided into:
 - Cellular laterite – cavities are approximately rounded.
 - Vesicular laterite – cavities are predominantly tubular.
2) Nodular laterite: consists of individual approximately rounded concretions (also called pisolithic laterite) subdivided into:
 - Cemented nodular laterite – individual concretions can be seen but are strongly joined together by the same ironstone material.
 - Partly cemented nodular laterite.

Non-cemented nodular laterite – concretions from over 60 percent by weight of the total soil.
- Iron concretions – concretions are separated by soil but form less than 60% by weight of the total horizon.
3) Re-cemented laterite: contains fragments of massive laterite and wholly or partly cemented.
4) Ferruginized laterite: rock structure is still visible but with substantial isomorphous replacement by iron.
5) Soft laterite: mottled iron-rich clay which hardens irreversibly on exposure to air or to repeated wetting and drying.

Laterite Genesis (Laterization)

Laterization is the process of transformation of an existing rock into laterite. Laterite genesis is one of the most debated areas in geomorphology. A variety of ideas are prevailing on the Laterization process and even today a conclusive explanation on laterite genesis is lacking. One source of difficulty lies in the chemical and segregative changes which are constantly going on in the rock and which obliterate the previously acquired structures and produce a fresh arrangement of the constituents of the rock. It is probable that laterites of all the different places have not had one common origin and that widely divergent views are possible for the origins of the different varieties.

The different interpretations of laterite became occasionally rather exotic because of the conflicting laterite aspects and designations. Even nowadays the differences are not wholly overcome but in the last decades many studies contributed to a better and undivided understanding. Thus the International Geological Cooperation Programme No.129 “Lateritisation Processes” which was sponsored 1975-1983 by UNESCO and the Union of Geological Sciences accelerated laterite research in all parts of the world. “Eurolat” was started 1984 by French geoscientists as “European Network on Tropical Laterites”. Moreover, an “International Interdisciplinary Laterite Reference Collection” was established at the “International Soil Reference and Information Centre (ISRIC)” at Wageningen, the Netherlands.

From its vesicular structure and its frequent association with basalts, it was at first thought to be a volcanic rock. Its sub-aerial nature was however soon recognized beyond doubt and later on it was thought to an ordinary sedimentary formation deposited either in running water or in lakes and depressions on the surface of the traps. Still later views regard the rock as the result of the subaerial decomposition in situ of basalt and other aluminous rocks under a warm, humid and monsoonic climate.

The origin of laterite is intimately connected with the physical, climatic and denudational processes of a particular region. Laterite can be formed from any type of rock. Laterite provides important information on tropical weathering process by which alkali and alkaline earth metals and silica are leached leading to the enrichment of either iron or aluminium or both.

Maclearen (1906) explains that laterite deposits are formed due to the metasomatic replacement (in some cases the mechanical replacement) of the soil or subsoil by the agency of mineralized solutions, brought up by the underground
percolating waters ascending by capillary action to the superficial zone. He concludes that laterites are essentially replacement deposits. According to Martin and Doyne (1927), laterite is a typical tropical weathering product of intensive in situ weathering of surficial rocks. Marbut (1932) suggested that the laterite zone is considered proportional to the zone of fluctuation of the water table, which also upholds the idea that laterite is an in situ weathering product.

Wadia (1975) stated that the laterite distribution is restricted mainly to Koeppen’s ‘A’ climatic zone, extending from 30° N to 30° S latitudes. Major part of Indian peninsula lies within this zone, which also enjoys typical monsoon climate with alternative wetting and drying conditions. Laterite is a residuum, being formed by physico-chemical weathering that leads to the concentration of iron and aluminum oxides and to the removal of silica and alkalis. Favourable weathering conditions needed for the in situ development of laterites are available in tropical regions with monsoon climate where the temperature and rainfall are the highest and with maximum seasonal contrasts. Invariably all rock types under such weathering conditions ultimately give rise to laterite residuum.

McFarlane (1976) viewed that the laterites are essentially residual accumulations of chemically resistant materials. Laterites are the result of the sub-aerial decomposition in situ of rocks under a warm, humid and monsoonic climate. Under such conditions of climate the decomposition of the silicates, especially the aluminous silicates of crystalline rocks, goes a step further and instead of kaolin being the final product of decomposition, it is further broken up into silica and the hydrated oxide of aluminium (bauxite). The silica is removed in solution and the salts of alkalis and alkaline earths are dissolved away by the percolating water. The remaining alumina and iron oxides become more and more concentrated and become mechanically mixed with other products liberated in the process of decomposition. The vesicular or porous structure, occurs among the products left behind. Removal of top soil (alkaline upper horizon) creates an acidic environment which further accelerates the laterization process. McFarlane (1976) envisaged that laterization process had remained suspended temporarily during the glacial episodes of Pleistocene period due to the unfavourable climate but had resumed during the interglacial periods.

The role of climate regional topography in the laterization process is very significant. Mabutt (1961) stated that pedimented surfaces which typically comprise the low amplitude topography characterised by sheet flow, sluggish drainage and very slow rate of erosion but are often associated with deep weathering cause widespread laterization. The laterization process operates at well under warm and humid warm and tropical climates with seasonal rainfall (Widdowson and Gunnel,1999). They argued that the west coast laterite of the country are developed from the prolonged alteration of exposed pedimented surfaces, resulting from the recession of Western Ghat escarpment, when climatic and tectonic conditions favourable to deep weathering reached an acme. They uphold the requirement of hot and humid tropical climate with good rainfall and seasonal contrasts for the effective laterization and envisaged that the laterization processes along the west coast intensified after the inception of present monsoon climate, after late Miocene.

4. Conclusion

Laterites are the products of intensive and long lasting tropical rock weathering which is intensified by high and seasonal rainfall; and elevated temperatures. From the highly variable nature of this peculiar rock, it is possible that every one of the above discussed factors may have operated in the production of the laterites of different parts according to particular local conditions. Laterite rocks, besides are subject to secondary changes, a fact which introduces further complexity. Under conditions of free drainage and high rainfall the laterite may accumulate without much further change, the soluble products of hydrolysis being rapidly lost by leaching. On the other hand, under impeded drainage conditions and alterations of wet and dry seasons, the fluctuating ground water, carrying dissolved silica and bases, may effect a complete change in the laterite. Laterite provides important information on tropical weathering process. The principal effects of the various factors on laterite formation are well known but it is difficult to determine them in space and time in the field. At present geographical discourses on laterites are highly inadequate. It is hoped that present attempt can be a spark for further investigations in these dimensions.

References

Island And Adjacent Areas Of South Australia, J. Geol. Soc. Austr. 2, pp. 387–392.

[25] Narayananswamy and

[34] Prasad T.K 2013, Changing land use pattern of Kannur District in Kerala with Special reference to Laterite mining, Unpublished PhD thesis, MKU

[40] Schellmann W 2009, An Introduction to Laterite, Products and Processes of intensive rock weathering ,pp 1-9

[41] Soman, K. 2002, Geology Of Kerala, Geol. Soc. India, Bangalore, pp. 6-29

Evidence From Laterites And Drainage Patterns Of The Western Ghats And Konkan Coast, Earth Planet. Sci. Lett., 137, pp. 57–69
