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Abstract: In this paper, we consider the differential transform method (DTM) for finding approximate and exact solutions of some 

partial differential equations with variable coefficients. The efficiency of the considered method is illustrated by some examples. The 

results reveal that the proposed method is very effective and simple and can be applied for other linear and nonlinear problems in 

mathematical physics. 
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1. Introduction 
 

Up to now, more and more nonlinear equations were 

presented, which described the motion of the isolated waves, 

localized in a small part of space, in many fields such as 

hydrodynamic, plasma physics, nonlinear optic, and others. 

The investigation of exact solutions of these nonlinear 

equations is interesting and important. In the past several 

decades, many authors mainly had paid attention to study 

solutions of nonlinear equations by using various methods, 

such as Backlund transformation (Ablowitz and Clarkson, 

1991; Coely, 2001), Darboux transformation (Wadati et al., 

1975), inverse scattering method (Gardner et al., 1967), 

Hirota’s bilinear method (Hirota, 1971), the tanh method 

(Malfeit, 1992), the sine- cosine method (Yan, 1996; Yan 

and Zhang, 2000), the homogeneous balance method (Wang, 

1996; Yan and Zhang, 2001), and the Riccati expansion 

method with constant coefficients (Yan, 2001). Recently, an 

extended tanh–function method and symbolic computation 

are suggested in Fan (2001) for solving the new coupled 

modified KdV equations to obtain four kinds of soliton 

solutions. This method has some merits in contrast with the 

tanh-function method. It not only uses a simpler algorithm to 

produce an algebric system, but also can pick up singular 

soliton solutions with no extra effort (Fan and Zhang, 1998; 

Hirota and Satsuma, 1981; Malfliet, 1992; Satsuma and 

Hirota, 1982; Wu et al., 1999). The numerical solution of 

Burger’s equation is of great importance due to the 

equation’s application in the approximate theory of flow 

through a shock wave traveling in a viscous fluid (Cole, 

1951) and in the Burger’s model of turbulence (Burgers, 

1948). It is solved analytically for arbitrary initial conditions 

(Hopf, 1950). Finite element methods have been applied to 

fluid problems, Galerkin and Petrov-Galerkin finite element 

methods involving a time-dependent grid (Caldwell et al., 

1981; Herbst et al., 1982). Numerical solution using cubic 

spline global functions were developed in (Rubin and 

Graves, 1975) to obtain two systems or diagonally dominant 

equations which are solved to determine the evolution of the 

system. A collocation solution with cubic spline 

interpolation functions used to produce three coupled sets of 

equations for the dependent variable and its two first 

derivatives (Caldwell and Hinton, 1987). Ali et al (1992) 

applied finite element methods to the solution of Burger’s 

equation. The finite element approach is applied with 

collocation method over a constant grid of cubic spline 

element. Cubic spline had a resulting matrix system which is 

tri-diagonal and so solved by the Thomas algorithm. 

Soliman (2000) used the similarity reductions for the partial 

differential equations to develop a scheme for solving the 

Burger’s equation. This scheme is based on similarity 

reductions of Burger’s equations on small sub-domain. The 

resulting similarity equation is integrated analytically. The 

analytical solution is then used to approximate the flux 

vector in Burger’s equation. The coupled system is derived 

by Esipov (1992). It is a simple model of sedimentation or 

evolution of scaled volume concentrations of two kinds of 

particles in fluid suspensions or colloids, under the effect of 

gravity (Nee and Duan, 1998). In this work, we aim to 

introduce a reliable technique in order to solve partial 

differential equations with variable coefficients. The 

technique is called differential transform method (DTM), 

which is based on Taylor series expansion. But, it differs 

from the traditional high order Taylor series method by the 

way of calculating coefficients. The technique and construct 

an analytical solution is in the form of a polynomial. The 

concept of differential transform was first introduced by 

Pukhov (1986), who solved linear and nonlinear initial value 

problems in electric circuit analysis. Chen and Ho (1999) 

developed this method for PDEs and obtained closed form 

series solutions for some linear and nonlinear initial value 

problems. Recently, Halim (Hassan, 2008) had shown that 

this method is applicable to a very wide range of PDEs and 

closed form solutions can be easily obtained. Halim (Hassan, 

2008) has also been compared very well with Adomian 

decomposition method. The aim of this letter is to extend the 

DTM method proposed by (Pukhov, 1986; Chen and Ho, 

1999; Hassan, 2008; Ali and Raslan, 2009) to solve partial 

differential equations with variable coefficients (Ali and 

Raslan, 2009). The structure of this paper is organized as 

follows: First, we begin with some basic definitions and the 

use of the proposed method, and we then applied the 

reduced differential transformation method to solve some 

test examples in order to show its ability and efficiency. 

2. Methodology 

 
To illustrate the basic idea of the DTM, we considered u(x,t)  

is analytic and differentiated continuously in the domain of 
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interest, then let 

Uk(x)=
1

𝑘!
  

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘                                             (1)  

 

Where the spectrum Uk(x) is the transformed function, 

which is called T-function in brief. The differential inverse 

transform of Uk(x)is defined as follows:   

 
 

Combining (1) and (2), it can be obtained that 

u(x,t)= 
1

𝑘!

∞
𝑘=0  

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘  (t = t0 )
k
 ,                    (3) 

 

when (t0) are taken as (t0=0) then equation (3) is expressed 

as 

u(x,t)=  
1

𝑘!

∞
𝑘=0  

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘  tk
,                               (4) 

 

and Equation (2) is shown as 

u(x,t)=  𝑈∞
𝑘=0 k(x)t

k
,                                        (5) 

 

In real application, the function u(x,t) by a finite series of 

Equation (5) can be written as 

u(x,t)=  𝑈𝑛
𝑘=0 k(x)t

k
,                                        (6) 

 

usually, the values of n is decided by convergence of the 

series coefficients. The following theorems that can be 

deduced from Equation (3) and Equation (4) are given as: 

 

Theorem 1: If the original function is 

u(x,t)=w(x,t)±v(x,t),then the transformed function is     

Uk(x)=Wk(x) ±Vk(x). 

Theorem 2: If the original function is u(x,t)=αv(x,t) then the 

transformed function is Uk(x)=αVk(x), 

Theorem 3: If the original function is u(x,t)=
𝜕𝑚 𝑤(𝑥,𝑡)

𝜕𝑡𝑚 , then 

the transformed function is Uk(x)=
 𝑘+𝑚 !

𝑘!
Wk(x). 

Theorem 4: If the original function is u(x,t)= 
𝜕𝑤 (𝑥,𝑡)

𝜕𝑡
 ,then 

the transformed function is Uk(x)=
𝜕

𝜕𝑥
 Wk(x). 

Theorem 5: If the original function is u(x,y,t)=
𝜕𝑤 (𝑥,𝑦,𝑡)

𝜕𝑦
, the 

transformed function is Uk(x,y)=
𝜕

𝜕𝑥
Wk(x,y). 

Theorem 6: If the original function is u(x,y,z,t)=
𝜕𝑤 (𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
, 

the transformed function is Uk(x,y,z)=
𝜕

𝜕𝑧
Wk(x,y,z). 

Theorem 7: If the original function is u(x,t)=𝑥𝑚 𝑡𝑛 ,then the 

transformed function is Uk(x)=𝑥𝑚𝛿 𝑘 − 𝑛 . 
Theorem 8: If the original function is 

u(x,t)=𝑥𝑚 𝑡𝑛𝑤(𝑥, 𝑡),then the transformed function is  

Uk(x)=𝑥𝑚Wk-n(x). 

Theorem 9: If the original function is u(x,t)=w(x,t) 

v(x,t),then the transformed function is 

Uk(x)= 𝑊𝑘
𝑘
𝑟=0  𝑥 𝑉𝑘−𝑟 𝑥 . 

 

To illustrate the aforementioned theory, some examples of 

partial differential equations with variable coefficients are 

discussed in details and the obtained results are exactly the 

same which is found by varitional iteration method. 

Applications 

Here, the extended differential transformation method 

(DTM) is used to find the solutions of the PDEs in one, two 

and three dimensions with variable coefficients, and 

compared with that obtained by other methods. 

 

Example 1 

Consider the heat equation with variable coefficients in the 

form 

 
 

and the initial condition  

 
where u=u(x,t) is a function of the variables x and t. 

 

we can find the transformed form of equation as; 

 
If k=0, 

 

  (0+1)
d

dx
U0+1=n.

d2

dx 2.U0, 

  U1=n. 
d2

dx 2.( ex ) 

 

  U1=n. ex  

 

If k=1, 

(1+1)
d

dx
U1+1=n.

d2

dx 2.U1, 

 

2U2=n. 
d2

dx 2.(n ex ) 

 

U2=
n2

2!
. ex  

 

If k=2, 

(2+1)
d

dx
U2+1=n.

d2

dx 2.U2, 

3U3=n. 
d2

dx 2.(
n2

2
 ex ) 

U3=
n2

2.3
. ex  

U3=
n2

3!
. ex  

 

Then, the general solution is given as 

Uk=
nk

k!
. ex  

 

Example 2 

Consider the heat equation with variable coefficients in the 

form 

 

 uxt = ux+uxx                              (10) 

 

and the initial condition  

 

  U0=ex ,                                 (11) 

 

Where u=u(x,t) is a function of the variables x and t. 

 

We can find the transformed form of equation as; 

(k+1)
d

dx
Uk+1=

d

dx
Uk+

d2

dx 2.Uk,                   (12) 

If k=0, 

(0+1)
d

dx
U0+1=

d

dx
U0+

d2

dx 2.U0, 

d

dx
U1=

d

dx
U0+

d2

dx 2.U0, 
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U1=
d

dx
 ex +

d2

dx 2 (ex )    

U1=ex+ex  

U1=2ex  

 

If k=1, 

(1+1)
d

dx
U1+1=

d

dx
U1+

d2

dx 2.U1, 

2U2=
d

dx
 2ex +

d2

dx 2 (2ex )    

2U2=2 ex + 2ex  

2U2=4ex  

U2=
4

2!
ex  

 

If k=2, 

(2+1)
d

dx
U2+1=

d

dx
U2+

d2

dx 2.U2, 

3U3=
d

dx
 

4

2
ex +

d2

dx2 (
4

2
ex )    

3U3=
4

2
ex +

4

2
ex  

3U3=
8

2
ex  

U3=
8

3!
ex  

 

Then, the general solution is given as 

Uk=
2k

k!
. ex  

 

Example 3 

Consider the heat equation with variable coefficients in the 

form 

uxt = nux+uxx                                 (13) 

 

and the initial condition  

U0=ex ,                                    (14) 

 

where u=u(x,t) is a function of the variables x and t. 

 

we can find the transformed form of equation as; 

(k+1)
d

dx
Uk+1=n.

d

dx
Uk+

d2

dx 2.Uk,         (15) 

If k=0, 

(0+1)
d

dx
U0+1=n

d

dx
U0 +

d2

dx 2U0, 

d

dx
U1=n.

d

dx
U0+

d2

dx 2U0, 

U1=n.
d

dx
 ex +

d2

dx 2 (ex )    

U1=n. ex+ex  

U1=ex(n+1) 

 

If k=1, 

(1+1)
d

dx
U1+1=n.

d

dx
U1+

d2

dx 2.U1, 

2U2=n.
d

dx
(ex (n + 1))  +

d2

dx 2 (ex (n + 1))    

2U2=n(n + 1)ex +  (n + 1)ex  

2U2=(n + 1)ex(n+1) 

U2=
(n+1)2

2!
ex  

 

If k=2, 

(2+1)
d

dx
U2+1=n.

d

dx
U2+

d2

dx 2.U2, 

3U3=n.
d

dx
 

(n+1)2

2
ex +

d2

dx 2  
(n+1)2

2
ex  

3U3=n.
 n+1 2

2
ex +

(n+1)2

2
ex  

3U3=
(n+1)2

2
ex(n+1) 

U3=
(n+1)3

3!
ex  

 

Then, the general solution is given as 

Uk=
(n+1)k

k!
ex  

 

Example 4 

Consider the heat equation with variable coefficients in the 

form 

 

  uxt = 3ux+uxx                       (16) 

 

and the initial condition  

 

  U0=ex ,                          (17) 

 

Where u=u(x,t) is a function of the variables x and t. 

 

We can find the transformed form of equation as; 

 

  (k+1)
d

dx
Uk+1=3.

d

dx
Uk+

d2

dx 2.Uk,                      (18) 

If k=0, 

 

(0+1)
d

dx
U0+1=3.

d

dx
U0+

d2

dx 2.U0, 

d

dx
U1=3.

d

dx
U0+

d2

dx 2.U0, 

U1=3.
d

dx
 ex +

d2

dx 2 (ex )    

U1=3. ex+ex  

U1=4ex  

 

If k=1, 

(1+1)
d

dx
U1+1=3.

d

dx
U1+

d2

dx 2.U1, 

2U2=3
d

dx
 4ex +

d2

dx 2 (4ex )    

2U2=12ex+4ex  

U2=
16

2
ex  

 

If k=2, 

(2+1)
d

dx
U2+1=3.

d

dx
U2+

d2

dx 2.U2, 

3U3=3.
d

dx
 

16

2
ex +

d2

dx 2  
16

2
ex  

3U3=3.
16

2
ex +

16

2
ex  

3U3=
64

2
ex  

U3=
64

3!
ex  

 

Then, the general solution is given as 

Uk=
4k

k!
ex  

 

Example 5 

Consider the heat equation with variable coefficients in the 

form 

 

  uxt = mux+nuxx                                                (19) 

 

and the initial condition  

 

  U0=𝑒𝑥 ,                                                                (20) 
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Where u=u(x,t) is a function of the variables x and t. 

 

We can find the transformed form of equation as; 

 

(k+1)
d

dx
Uk+1=m.

d

dx
Uk+n.

d2

dx 2.Uk,                         (21) 

 

If k=0, 

(0+1)
d

dx
U0+1=m.

d

dx
U0+n.

d2

dx 2.U0, 

d

dx
U1=m.

d

dx
U0+n.

d2

dx 2.U0, 

U1=m.
d

dx
 ex + n.

d2

dx 2 (ex )    

U1=m. ex+n. ex  

U1= (m+n) 𝑒𝑥  

 

If k=1, 

(1+1)
d

dx
U1+1=m.

d

dx
U1+n.

d2

dx 2.U1, 

2U2=m.
d

dx
  (m + n) ex + n.

d2

dx 2 ( (m + n) ex )    

2U2=m  m + n ex +  n(m + n) ex    

2U2= (m+n) ex m + n  

U2=
(m +n)2

2!
ex  

 

If k=2, 

(2+1)
d

dx
U2+1=m.

d

dx
U2+n.

d2

dx 2.U2, 

3U3=m.
d

dx
 

(m+n)2

2
ex + n.

d2

dx 2  
(m+n)2

2
ex  

3U3=m.
(m+n)2

2
ex + n.

(m+n)2

2
ex  

3U3=
(m+n)2

2
ex  (m+n) 

U3=
 m +n 3

3!
ex  

 

Then, the general solution is given as 

Uk=
(m +n)k

k!
ex  

 

Example 6 

Consider the heat equation with variable coefficients in the 

form 

uxt = -2ux+uxx                                     (22) 

 

and the initial condition  

U0=𝑒𝑥 ,                                        (23) 

 

where u=u(x,t) is a function of the variables x and t. 

 

we can find the transformed form of equation as; 

(k+1)
d

dx
Uk+1=−2.

d

dx
Uk+

d2

dx 2.Uk,              (24) 

 

If k=0, 

(0+1)
d

dx
U0+1=−2

d

dx
U0 +

d2

dx 2U0, 

d

dx
U1=−2.

d

dx
U0+

d2

dx 2U0, 

U1=−2.
d

dx
 ex +

d2

dx 2 (ex )    

U1=−2. ex+ex  

U1=−ex  

 

If k=1, 

(1+1)
d

dx
U1+1=−2.

d

dx
U1+

d2

dx 2.U1, 

2U2=-2.
d

dx
(−ex ))  +

d2

dx 2 (−ex )    

2U2=−2(−ex ) − ex  

2U2=ex  

U2=
ex

2!
 

 

If k=2, 

(2+1)
d

dx
U2+1=−2.

d

dx
U2+

d2

dx 2.U2, 

3U3=−2.
d

dx
 

ex

2
 +

d2

dx 2  
ex

2
  

3U3=−2.
ex

2
+

ex

2
 

3U3=−
ex

2
  

U3=−
ex

3!
 

 

Then, the general solution is given as 

Uk=
(−1)k

k!
ex  

 

Example 7 

Consider the heat equation with variable coefficients in the 

form 

 

uxt = -2ux+3uxx                            (25) 

 

and the initial condition  

 

U0=ex ,                                    (26) 

 

where u=u(x,t) is a function of the variables x and t. 

 

we can find the transformed form of equation as; 

(k+1)
d

dx
Uk+1=−2.

d

dx
Uk+3

d2

dx 2.Uk,           (27) 

 

If k=0, 

(0+1)
d

dx
U0+1=−2

d

dx
U0 + 3

d2

dx 2U0, 

 
d

dx
U1=−2.

d

dx
U0+3

d2

dx 2U0, 

U1=−2.
d

dx
 ex + 3

d2

dx 2 (ex )    

U1=−2. ex+3ex  

U1=ex  

 

If k=1, 

(1+1)
d

dx
U1+1=−2.

d

dx
U1+3

d2

dx 2.U1, 

2U2=-2.
d

dx
(ex ) + 3

d2

dx 2 (ex )    

2U2=−2 ex + 3ex  

2U2=ex  

U2=
ex

2!
 

 

If k=2, 

(2+1)
d

dx
U2+1=−2.

d

dx
U2+3

d2

dx 2.U2, 

3U3=−2.
d

dx
 

ex

2
 + 3

d2

dx 2  
ex

2
  

3U3=−2.
ex

2
+ 3

ex

2
 

3U3=
ex

2
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U3=
ex

3!
 

 

Then, the general solution is given as 

Uk=
ex

k!
 

 

3. Conclusion 
 

The differential transform method has been successfully 

applied for solving partial differential equations with 

variable coefficients. The solution obtained by differential 

transform method is an infinite power series for appropriate 

initial condition, which can in turn express the exact 

solutions in a closed for. The results show that the 

differential transform method is a powerful mathematical 

tool for solving partial differential equations with variable 

coefficients. The reliability of the differential transform 

method and the reduction in the size of computational 

domain give this method a wider applicability. Thus, we 

conclude that the proposed method can be extended to solve 

many PDEs with variable coefficients which arise in 

physical and engineering applications. 
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