
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Automated Software Testing with

Machine Learning Techniques

Satish Kathiriya1, Rajath Karangara2, Narayana Challla3

1Software Engineer, JP Morgan & Chase Co.

2American Express, U. S

3ETL Developer.

Abstract: This paper investigates the application of machine learning (ML) techniques to enhance the efficiency of software testing

automation systems. Recognizing the escalating complexities and the critical need for quality assurance in software development, our

study focuses on leveraging ML algorithms to refine the testing process. The methodology encompasses a comparative analysis of

conventional testing methods against our ML - integrated approach, measuring performance through accuracy, execution speed, and

resource utilization metrics. Our findings reveal a notable enhancement in testing efficiency, with the ML model proficiently identifying

and rectifying software anomalies. This advancement signifies a pivotal shift towards more intelligent, adaptable, and efficient testing

mechanisms in software development. The research underscores the transformative potential of ML in software testing, proposing a new

paradigm for future explorations in this domain. The implications extend beyond immediate testing improvements, providing a

foundational approach for continuous advancement in software quality assurance.

Keywords: Software testing, Manual Testing, Automation Testing, Machine learning

1. Introduction

The landscape of software development has been profoundly

transformed by the advent of Artificial Intelligence (AI). This

transformation is not just in the creation of software but

extends to various aspects of its life cycle, including testing

and quality assurance. AI's role in enhancing efficiency,

accuracy, and reliability in software development processes

has been increasingly recognized, laying the groundwork for

more advanced and automated methods.

Among the various applications of AI in software

development, machine learning (ML) has shown exceptional

promise in automating and optimizing software testing.

Traditional software testing methods, while effective, often

grapple with limitations such as high time consumption and

manual effort. ML offers a pathway to overcome these

challenges, introducing capabilities that can learn from data,

adapt to new scenarios, and improve over time. This has

opened new frontiers in the automation of software testing,

making it more efficient and less prone to human error.

This paper aims to explore and demonstrate the efficacy of

ML techniques in software testing automation. By integrating

ML into the testing process, we propose a novel approach that

not only streamlines the testing phase but also enhances its

accuracy and speed. The core argument of this research is that

the incorporation of ML into software testing represents a

significant leap forward in software development practices,

offering a more efficient, accurate, and cost - effective

solution to the challenges of traditional testing

methodologies.

2. Software Testing: A Comparative Overview

With the escalating demand in software development,

ensuring quality through effective testing has become

paramount. Initially dominated by manual methods, software

testing has evolved significantly. Manual testing, though

integral in the early development phases, presents challenges

like higher costs and time consumption, necessitating the shift

towards automated methods, particularly those employing

metaheuristic techniques for enhanced efficiency and cost -

effectiveness [1].

2.1 Manual Software Testing: Characteristics and

Limitations

Quality Assurance (QA) analysts primarily carry out manual

testing, which entails individually performing tests to detect

and fix bugs in software applications. This method is

particularly effective in the initial development phase, where

writing automated test scripts may be more time - consuming

or infeasible. It's also preferred for exploratory testing and in

scenarios where UI testing focuses on the visual aspects of the

application.

2.2 Advantages of Manual Testing

• Employs human intelligence for identifying technical

errors.

• Enables focused testing on complex features and

functions.

• Facilitates detection of non - code errors, like UI look and

feel.

• Offers flexibility to emulate various user experience

scenarios.

• Helps in identifying critical bugs that could render

software untestable.

However, the scalability of manual testing is limited. It

becomes less efficient with the growth of software projects,

especially for repetitive tasks like regression testing. The

manual approach, reliant on step - by - step human execution,

is prone to errors and can lead to increased long - term costs.

Paper ID: SR24304113021 DOI: https://dx.doi.org/10.21275/SR24304113021 1960

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.3 Disadvantages of Manual Testing

• Consumes more time compared to automated methods.

• Higher susceptibility to human errors.

• Inadequate for extensive regression, load, and

performance testing.

• Challenges in managing and executing numerous tests.

• Difficulty in accurately assessing UI elements like size

and color combinations.

Given these limitations, there's a growing inclination towards

automated testing techniques to enhance efficiency and

accuracy in software testing.

2.4 Automated Software Testing: Characteristics and

Limitations

Automated testing is a process in which expected software is

compared with the developed software. In automated testing,

tests are executed automatically via test automation

frameworks, along with a few tools and pre - developed

software such as Selenium, Katalan Studio, Unified

Functional Testing (UFT), Appium, and Cucumber.

Automation testing is a process in which testers utilize tools

and scripts to perform the testing. It is mainly used where

repetitive tests or time - consuming tests need to be run, to do

parallel testing, and undertake non - functional testing like

load, performance, and stress testing, to overcome human -

made errors. There are both pros and cons of automated

testing techniques.

2.5 Advantages of Automated Testing Techniques:

• Consistent reliability through uniform operations.

• Long - term cost - effectiveness.

• Reusability of automated test scripts.

• Versatility in application, especially for regression testing.

• Reduced need for human intervention, allowing automatic

test execution.

Automated testing significantly lowers time and cost in

software development, directing manual efforts more

effectively. It's transformative across various business sizes,

driving competitive advantages. However, challenges persist:

2.6 Disadvantages of Automated Testing Techniques:

• High initial setup costs due to expensive tools.

• Limited applicability to exploratory testing.

• Necessity for programming expertise.

• Limitations in assessing certain UI elements and dynamic

content.

• Need for meticulous maintenance.

Businesses can fail to identify the right areas to automate to

attain the best possible results. Moreover, automated testing

can prove to be advantageous as long as it is developed and

executed properly. In the current business environment, the

testing automation benefits far outweigh the disadvantages,

thus making the software development process more efficient.

3. Testing Frameworks and Tools: Necessity

and Evolution

In today's world, software permeates many aspects of life, but

human error can lead to software defects. These errors, if not

addressed early in development, can escalate in cost and

impact. To mitigate these risks, developers are encouraged to

employ effective testing methods, such as Machine Learning

(ML) and Data Mining Algorithms, alongside the right tools

and frameworks. The realm of automated testing is rapidly

advancing, offering a variety of frameworks and tools, each

distinct in its architectural design and methodology. This

paper will explore key test automation tools and frameworks

vital for deploying Machine Learning and Data Mining

techniques in software testing [7].

3.1 Test Automation Frameworks: Structure and

Varieties

Test automation frameworks provide a structured

environment for automating software testing processes. These

frameworks consist of various elements, such as physical

models for test creation, methodologies for handling test data,

mechanisms for storing test results, object repositories, and

integration with external resources. The flexibility of these

frameworks allows for efficient modification, editing, and

deletion of test scripts, offering scalable solutions with

minimal effort and time.

Developers utilize these frameworks to write structured code,

testing different components of the application. Key

advantages include enhanced maintainability of scripts,

higher test component reuse rates, and overall improvements

in test speed, efficiency, and accuracy. This approach reduces

risks and maintenance costs associated with testing.

There are several distinct types of test automation

frameworks, each characterized by its unique architecture and

suited for specific testing needs:

1) Modular Frameworks: These divide the software into

isolated modules for individual testing, followed by a

combined approach for comprehensive testing. This method

ensures modularity and thorough coverage.

2) Data - Driven Frameworks: In this type, test data is

separated from the scripts and stored externally. This

separation allows for repetitive and versatile testing without

needing to alter the original scripts, thus enhancing the

flexibility of the testing process.

3) Keyword - Driven Frameworks: These frameworks

separate test data and logic, using keywords and objects

stored externally. This approach provides independence from

the specific automation tools used, allowing for a more

versatile testing process.

4) Hybrid Frameworks: As a combination of different

framework types, hybrid frameworks aim to maximize the

benefits of each individual type. They are particularly suitable

for agile and adaptable testing environments, offering a

comprehensive approach to automation. The research and

development in these frameworks have made them robust and

Paper ID: SR24304113021 DOI: https://dx.doi.org/10.21275/SR24304113021 1961

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

versatile, capable of effectively testing a wide range of

applications. The choice of framework should align with the

project's specific needs, ensuring seamless integration with

other testing tools and adaptability to software changes [5].

5) Relevant Automated Testing Tools: Integration and

Application

An automation tool is a software that is built on frameworks.

Automated testing offers access to several features;

automated testing enhances and expands the tester's capacity

to evaluate the application. Different testing automation

technologies are backed by their unique testing approach. The

Test Automation Framework differentiates the testing code

from the raw code, produces logs, and offers a list of

frequently used libraries of functions. These utilities that

testers employ when the real code is being used in the

background are called automation tools. These tools provide

enhancement in the testing process.

Test Suite Prioritization does upgrade the testing process by

Combinational Criteria. Combinatorial testing is the testing

approach where multiple combinations of the imputed

parameters are used to ensure that the product is without any

bug and is able to handle different sets of combinations. The

significant strategy behind such an experiment is to change

the weblogs into the test suites applicable to the client meeting

and further record it into an Extensible Markup Language

(XML) design. The algorithms utilized for this approach are

precisely focused by the inclusion because of combinatorial

test suites. The significant upgrade in the testing system

drives the testing process towards test automation, which

refers to the utilization of specific programming to execute

testing and examine genuine outcomes with the normal

outcomes. The light - footed lifecycle is one more

advancement in programming testing. It incorporates short

and expedient test cycles as often as possible, adjusting

prerequisites. Furthermore, Test Driven Development is a

procedure that utilizes mechanized unit tests for driving the

plan of programming and compelling the decoupling

interaction of the conditions.

Every testing automation tool has some strengths and some

weaknesses based on which they are used for different

purposes. Therefore, before selecting the tool a detailed

comparative analysis should be made by the software

developer. One should consider the budget, application type,

and skill sets required to use the tools. Few automation tools

that can be used in developing parallel automation testing

architectures are discussed [8]:

a) Selenium: Selenium is an eminent testing framework

comprising various tools and plugins used for testing web

applications compatible with browsers and platforms like

Windows, Linux, and Mac. The tool assists testers to

write tests using various programming languages like

Java, PHP, C#, Python, Ruby, Perl, etc. This tool

supports recording and playback features without any

need to learn test scripting languages. Selenium is

primarily used in open - source test automation because

of its powerful capability in performance testing. It is a

user community to stay aligned with software technology

advancements. Selenium can be integrated with other

automation tools and frameworks that can enhance the

software capabilities. Selenium is an open - source

platform and there is no need for licensing or

maintenance fees.

b) Katalon Studio: It is an automated testing framework to

implement a complete automated testing solution for

Desktop, Mobile Applications, API, and Web. It is an

open - source framework and there is no need to have

advanced programming skills to use it. Katalon Studio

integrates required frameworks and features for effective

test creation and execution. However, there is only one

programming language option available that is

Java/Groovy which is one of the drawbacks of Katalon

Studio.

c) Unified Functional Testing (UFT): UTF formally

known as QTP (QuickTest Professional) is an automation

testing tool used for functional and regression testing.

UFT covers most of the functional automated testing

requirements of Web, Desktop, and Mobile Applications.

UFT supports VBScript (Visual Basic Script) to register

the test processes, operate, and control the test runs.

A lot of enhancement is undertaken in automated testing

models to tackle complex software testing challenges. One of

the challenges is that automated testing tools at times ignore

the parallel execution. A complex test suite generates a huge

data set from iterative code commits and multiple test runs.

The sequential execution of tests abruptly stops the test cases

due to queue timeout issues. Resultantly, the speed of

detecting the regression bugs depletes during code integration

and hence compromises the quality of the test queue in the

designated test automation framework. To overcome this

challenge Machine Learning Approach is implemented for

better performance on test - case prioritization tasks. Machine

learning will allow for the parallel execution of multiple tests

in different environments at the same time.

6) Implementing Machine Learning in Automated

Testing: Methods and Algorithms.

Machine learning is one of the techniques in automated

testing that helps the programmer to get an early indication of

the test runs having a higher probability of failing. This will

help them to prioritize their work accordingly and thus

increase the speed of the testing process. In addition, by

prioritizing the execution of such test programs, the actual

defects are found earlier in the Agile iteration [1]. To help run

a test, Data Mining is used which is the collection and

extraction of any unrecognized information or patterns that

can potentially help run the test. This technique uses various

statistical methods like developing statistical models and

automation architectures. This helps capture the visible and

usable characteristics evidenced in the given data [2].

Machine learning is more recommended as it strives to

improve the overall performance and deduce effective and

accurate predictions.

Paper ID: SR24304113021 DOI: https://dx.doi.org/10.21275/SR24304113021 1962

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Machine Learning in Automated Testing

Few Machine learning techniques are being implemented

which are not completely up to the mark. However, with more

research, usability can be increased for automated test tools.

According to the research published in IEEE by D. Talby and

G. Fraser, they have already developed a machine learning

algorithm where the method will generate the assertion

statements and even summarize current behavior using a

hybrid approach [3]. Using these assertions, developers can

detect changes in the current situation of the project and help

them identify future defects that may break other

functionality. A lot of research is undertaken for Designing

Regression Tests and evaluating the correctness of the

software. Researchers have made several observations on

testing methods to help programmers compare different

automated testing methods and tools. Machine learning

automated techniques are used to determine which Java

source files are likely to have loopholes.

Based on the research conducted, the automated tests take

four to five hours to run completed end - to - end integration

tests that examine a complete flow of the data. Also, the tests

run in alphanumeric order in which the newest test cases are

executed at the last. Hence, it becomes essential to prioritize

which test is more important or which test is more likely to

have defects.

In the history of software development, various software

metrics have been developed. Chidamber and Kenmere

published a report to put forward new metrics to measure

object - oriented design [9]. They defined six metrics based

on measurement theory and reflected the viewpoints of

experienced object - oriented software developers.

WMC Weighted Methods per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

RFC Response For a Class

LCOM Lack of Cohesion in Methods

Chidamber - Kenmere metrics

This research was to prioritize testing of existing Java

applications. The research was specifically about testing the

existing codes. However, the majority of the Chidamber -

Kemere metrics were ignored except WMC as at the time of

testing, the design was finalized in the existing software. The

WMC metric was used in calculating some class values and

some average values per method. To calculate the collected

metrics, a tool was developed. JavaParser was implemented

to do the actual parsing of Java source code. An additional

tool was developed to retrieve the Subversion (Source

Control) data of each file. Using this research, defect fixes are

flagged by entering specific code words in the subversion

commit message. By retrieving the Subversion logs for each

source file, it was possible to find which source files had

defects at any point in time using the keywords Yes/No. The

algorithm had a general format where 9 metrics value was

separated by a comma:

Paper ID: SR24304113021 DOI: https://dx.doi.org/10.21275/SR24304113021 1963

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Filename, value1, value2, …value9, Yes/No

In the given machine learning approach, the historical

messages and values from the source code control system are

accessed to uncover the defects in previous source code. From

these source inputs, a data set is created containing the metrics

and number of erroneous faults in the source file. This data is

then sent to Weka which provides a wide range of tools that

can be used to analyze and visualize the data. Weka is an

interactive tool and a working bench of machine learning that

creates a decision tree indicating the possible defects.

7) Goal of this Project

The paper intends to highlight how the automated test -

generating methods would contribute to developing any

software as compared to the single - handed dependency on

manual testing. In the software industry, 50% of the project

development cost is utilized for testing purposes.

Nonetheless, the primitive way of testing software is manual.

The Manual testing used by developers is not the most

efficient testing procedure. It consumes time, and cost, and is

vulnerable to erroneous outcomes. While automated testing

tools can help subside these drawbacks. Evenly, while doing

software testing, both manual testing and automated testing

persuades us to consider our requirements of tools, costs, and

expected benefits in the long run. Manual testing helps dig

deep into the project enabling us to explore all the

perspectives of the test. Whereas automated testing helps

accomplish several tests in a short period. Thus, the true value

of manual testing, automated testing, test automation tools,

and frameworks are obtained when the right testing

methodology and techniques are implemented in the right

environment.

With the growth in the project, the number of test runs also

increases. At times, even automated testing can take hours to

run. As the test suits get longer, a technique is required where

the tests which are more likely to fail are displayed in the front

of the queue. The paper focused on machine learning

techniques to discover the characteristics of a Java source file

that indicates potential defects in the given source file. Using

different sets of metrics, the subversion commit entries were

accessed to find the historical defects. The extracted data was

then analyzed using Weka’s 148 decision tree [10]. Our main

project justification states that by implementing machine

learning techniques in automated testing, the number of test

cases will be reduced based on the change in the software files

and control flow, thus, improving the performance of

software deployment.

4. Conclusion

Software automation testing processes are gaining more

importance as it is more time efficient and reduces the

frequency of human errors. According to the World Quality

Report 2018 - 19, test automation is the most crucial part to

deliver “Quality at Speed.” The primary goal of this project is

to understand the different types of testing and their

advantages and disadvantages. We strived to create an

understanding of when to use different testing techniques in

different scenarios. Furthermore, we discussed various

frameworks and tools available in automation testing

methodologies and explained their importance in attaining

successful test automation results. We stated the problems

faced by the software team with the projected growth and

provided them with effective solutions to overcome potential

issues using machine learning algorithms and processes like

data mining. There are several recommendations for future

research studies such as employing these automation testing

methods on a large scale and experimenting with their usage

in various fields.

References

[1] K. Sneha and G. M. Malle, “Research on software

testing techniques and software automation testing

tools, ” in Proc.2017 Int. Conf. Energy, Commun., Data

Anal. Soft Comput. (ICECDS), 2017, pp.77 - 81. doi:

10.1109/ICECDS.2017.8389562.

[2] M. R. Blackburn, R. D. Busser, and J. S. Fontaine,

“Automatic Generation of Test Vectors for SCR - Style

Specifications, ” in Proc.12th Annu. Conf. Comput.

Assurance, Gaithersburg, MD, Jun.1997.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and P. J.

Stone, Classification and Regression Trees. Wadsworth,

1984.

[4] G. Fraser and A. Arcuri, “Evosuite: automatic test suite

generation for object - oriented software, ” in Proc.19th

ACM SIGSOFT Symp. and the 13th Eur. Conf. Found.

Softw. Eng., 2011, pp.416–419.

[5] C. Pacheco and M. D. Ernst, “Randoop: feedback -

directed random testing for java, ” in Companion to the

22nd ACM SIGPLAN Conf. Object - oriented

Programming Syst. Appl. Companion, 2007, pp.815–

816.

[6] S. Berner, “About the Development of a Point of Sale

System: an Experience Report, ” in Proc. ICSE 2003,

Portland, OR, May 2003.

[7] F. P. Brooks, “No silver bullet – essence and accidents

of software engineering, ” Comput., vol.20, no.4,

Apr.1987.

[8] Q. Yang, J. J. Li, and D. M. Weiss, “A Survey of

Coverage - Based Testing Tools, ” Comput. J., vol.52,

no.5, pp.589 - 597, Aug.2009. doi:

10.1093/comjnl/bxm021.

[9] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad,

“Software Testing Techniques: A Literature Review, ”

in Proc.2016 6th Int. Conf. Inf. Commun. Technol.

Muslim World (ICT4M), 2016, pp.177 - 182. doi:

10.1109/ICT4M.2016.045.

[10] D. Talby et al., “Agile software testing in a large - scale

project, ” IEEE Software, vol.23, no.4, pp.30 - 37, 2006.

[11] G. Fraser and A. Arcuri, “Evosuite: automatic test suite

generation for object - oriented software, ” in Proc.19th

ACM SIGSOFT Symp. and the 13th Eur. Conf. Found.

Softw. Eng., 2011.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite

for object - oriented design, ” IEEE Trans. Software

Eng., vol.20, no.6, pp.476 - 493, 1994. Available: https:

//ieeexplore. ieee. org/abstract/document/295895/

Paper ID: SR24304113021 DOI: https://dx.doi.org/10.21275/SR24304113021 1964

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://ieeexplore.ieee.org/abstract/document/295895/
https://ieeexplore.ieee.org/abstract/document/295895/

