Subsurface Geology and Geothermal Potential of the Kavaklıdere Geothermal Field (Western Turkey)

Ozdemir, A.¹, Sahinoglu, A.²

¹Adil Ozdemir Engineering and Consulting, Öveçler Mah. 1322 Sok. 60/5 Çankaya, Ankara, Turkey
²Istanbul Rumeli University, Graduate School of Natural and Applied Science, Istanbul, Turkey

Abstract: The Kavaklıdere geothermal field which covers a 126 km² area between Alaşehir and Salihli districts in Manisa province, Turkey were studied. The various parameters connected to geological structure and the properties of geothermal systems in the field were measured. The important methods which are various electrical resistivity and thermal methods in geothermal exploration were applied in the field and also containing of geothermal fluids were usually characterized by low resistivity. VES applications AB/2 = 2500 m theoretical depth in 206 locationswere applied. Measuring point range was taken between 250 m and 500 m. In addition to total 206 resistivity measurements were compared with previous studies and all measurements were re-evaluated with EarthImager 1D and RockWorks programs. VES curves, resistivity and stratigraphy cross-sections were re-prepared and re-interpreted. At the result of those measurements, potential geothermal reservoirs were detected for determining the expected thermal activities at intersection points of the different orientationed faults mostly located at middle and north sides of the study area.

Keywords: Western Anatolia, Geothermal Research, High Temperature Geothermal Field, Electric Resistivity, Conceptual Modelling

1. Introduction

Geothermal energy comes from the natural heat of the Earth. The energy is an efficient heating and cooling alternative for residential, commercial, and electrical power generation and industrial applications. 1,200 thermomineral springs due to the geological structure resulting from young tectonic and volcanic activities have been appeared in Turkey. Especially in the western part of Turkey, the conditions are excellent due to the presence of horst and graben structures. The initial studies at Salihli-Alaşehir districts located in the western section of Gediz Graben in Western Anatolia have begun in 1960’s because of many high-temperature geothermal resources located in region. The Kavaklıdere geothermal field is located in the Gediz Graben one of the important Western Anatolia graben structures. In addition, geological mapping, geophysical surveys and exploration drilling of studied field of 126 km² area in the Alaşehir district (Manisa), were carried out in the geothermal fields of the Gediz Graben by MTA (General Directorate of Mineral Research and Exploration of Turkey) (Fig. 1 and 2).

The stratigraphy, petrography, and tectonics of the the field area have been extensively studied (Emre, 1996; Seyitoglu et al., 2000), geological and petroleum survey (Yılmazer et al., 2010; Yazman and Iztan, 1990; Ünal and Havur, 1971); geothermal exploration (Özdemir et al., 2017; Özdemir, 2015) and gravity and magnetic (MTA, 2010); seismic and gravity survey (Yazman et al., 1998; Gürsoy, 1981; Türk, 1981).

Figure 1: Location map of the Kavaklıdere geothermal field

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Six different units were distinguished in the survey area which constitutes the Kavaklıdere geothermal field. These six units from bottom to top were (1) Metamorphic rocks (gneiss, calc-schist, quartz-schist, phyllite, mica-schist) of the Precambrian-Middle Triassic Menderes Massif (2) Paleozoic marbles (3) Granitic rocks (4) Upper Miocene-Lower Pliocene Gediz formation (5) Upper Pliocene-Quaternary sediments and Kaletepe formation (6) Quaternary alluviums, respectively (Özdemir et al., 2017) (Fig. 3). Graben of the study area developed in the control of the structure and lithology. Folds, faults, joint systems and lithologic properties have been effective in morphology. From the Miocene to the present, plains of erosion have seen at several levels. Recent studies suggest that the main faults of the graben are normal faults and cut the detachment fault separating the Menderes Massif rocks from the Neogene terrestrial sediments. Graben faults intersect the Upper Miocene unit conglomerates and sandstones outcropping at the edges of the graben, Pliocene units consisting of detritic sandstones and claystones and Quaternary sediments. The depression basin bordered by normal faults from the edges is a graben, and it is named the Gediz Graben. This graben structure is especially apparent in this basin which ends by narrowing at the eastern edge, but the morphologic borders of the western part of it are difficult to draw. The fault planes are typically flat and no folding has developed at the sediments between the fault blocks. On the other hand, the topographic surfaces of the descending blocks slope towards the ascending blocks. It is known that the basement of graben subsided by a minimum of 1500 m after the Pliocene. This value accounts for 1 mm subsidence per year (Özdemir et al., 2017). Metamorphics that constitute the highlands surrounding the graben from the south and north consist of gneiss, marbles, quartzites and schists. Some of the faults bordering the graben formed contacts between the metamorphic base rocks and Miocene, Pliocene and Quaternary sediments.

![Figure 2](image1.png)

Figure 2: Generalised structural geology of the Kavaklıdere geothermal field (revised from Öner and Dilek, 2011)
2. Geophysical Exploration

Geophysical methods can often provide information as effectively, and certainly at a lower cost, than drilling a borehole. It should be recognized that no particular technique is universally applicable, and methods should be chosen carefully to suit the situation. Most geophysical methods display a progressive reduction of resolving capacity as they are extended to greater depths. The effectiveness of these geophysical methods was greatly increased when emphasis was shifted from prospecting the geology and the structures that contain the geothermal fluids to prospecting the fluids themselves and concentrating on determining those parameters which are most sensitive to changes in temperature. The various parameters connected to geological structure and the properties of geothermal systems were measured. In geothermal exploration the task is the detection and delineation of geothermal resources, the location of exploitable reservoirs and the siting of drillholes through which hot fluids at depth were extracted. In geothermal exploration, the important methods were various electrical and thermal methods. Rocks containing geothermal fluids were usually characterized by anomalously low resistivity. Therefore, those methods which measure the electrical resistivity at depth in the ground were the most useful of all geophysical methods used to prospect for geothermal reservoirs. Further, it should be born in mind that geophysical exploration cannot stand alone, but must be applied along with field geology, geochemistry and drilling in order to resolve the nature of the subsurface geothermal systems in as much detail as possible (Hersir and Bjornsson, 1991).

2.1. Electrical resistivity (Vertical electrical sounding / VES) method

Measuring the electrical resistivity of the subsurface is the most powerful prospecting method in geothermal exploration. Resistivity is directly related to the properties of interest, like salinity, temperature, alteration and porosity (permeability). To a great extent, these parameters characterize the reservoir. The most important factors are the porosity, temperature, salinity and the water-rock interaction. In geothermal areas, the rocks are water-saturated. Ionic conduction in the saturating fluid depends on the number and mobility of ions and the connectivity of flowpaths through the rock matrix. Usually, the saturating fluid is among the dominant conductor in the rock and the degree of saturation is of great importance to the bulk resistivity. The pressure dependence is negligible compared to the temperature dependence, provided that the pressure is sufficiently high so that there is no change in phase. The bigger the mean fracture width of the pores is, the bigger is the fracture porosity. There-fore, in most cases, high fracture porosity is followed by high permeability. This close relationship between porosity and, hence, electrical resistivity, on the one hand and permeability on the other hand, has great importance in electrical exploration of potential geothermal areas. That is, for intergranular porosity, high permeability may accompany low resistivity. An electrical method is either a sounding method or a profiling method, depending on what kind of a resistivity structure is being investigated. The sounding method is used

“Report on Kavaklıdere Field Resistivity Survey” (Özdemir, 2015) in the Kavaklıdere geothermal field was prepared and VES measurements were measured. In addition to the measurements made in the scope of this study, total 206 resistivity measurements measured during previous studies were re-evaluated with EarthImager 1D and RockWorks programs. VES curves, resistivity and stratigraphy cross-sections were re-prepared and re-interpreted. At the result of the those measurements, potential geothermal reservoirs were detected for determining the expected thermal activities at intersection points of the different oriented faults mostly located at middle and north sides of the study area. The aim of this study is to discuss the geological properties and the geothermal characteristics of the The Kavaklıdere geothermal field. Geological materials are generally poor electrical conductors and have a high resistivity. Geothermal fluids in the pores and fractures of the earth, however, increase the conductivity of the subsurface material. This change in conductivity is used to map the subsurface geology and estimate the subsurface material composition. Therefore, those methods which measure the electrical resistivity at depth in the ground have been the most useful of all geophysical methods used to prospect for geothermal reservoirs.

Figure 3: Simplified geological map and generalized stratigraphic vertical section of the Kavaklıdere geothermal field (Özdemir et al., 2016)

Table 1: Quaternary, Kaledo Fm. and Gediz Fm. layers and their properties.
for mapping resistivity as a function of depth. The profiling method maps resistivity at more or less constant depth and is used to map lateral resistivity changes (Hersir and Björnsson, 1991).

Vertical electric sounding (VES) is a geophysical method for investigation of a geological medium. The method is based on the estimation of the electrical conductivity or resistivity of the medium. The estimation is performed based on the measurement of voltage of electrical field induced by the distant grounded electrodes (current electrodes). In the Schlumberger array two potential and two current electrodes are placed along a straight line.

2.2. Electrical resistivity (VES) measurements

Electrical resistivity method were applied for the geothermal exploration in study area. Electrical resistivity method was made Schlumberger electrode array. Lateral interactions decreases and active penetration depth increases in this array where the gradient value of potential function is measured. Especially this method is used for deep surveys.

Electrical resistivity (VES) applications by a private company made in the Kavkhide geothermal field was aimed to develop the field and research the geothermal energy possibilities in the field. Detecting structure of the underground and active tectonism by understanding geology in covered areas were evaluated within the extent of purposes.

There are some other wells drilled previously and in some of these wells high temperatures were reached. Also fluids with various flow speeds and high temperatures were found in drilled wells. "Report on Kavkhide Field Resistivity Survey" (Özdemir, 2015) in the Kavkhide geothermal field was prepared. VES measurements were measured by a private company. In addition to the measurements made in the scope of the this study, total 206 resistivity measurements measured during previous studies re-evaluated with EarthImager 1D and RockWorks programs. VES curves, resistivity and stratigraphy cross-sections is re-prepared and re-interpreted by authors.

Resistivity applications were executed along Schlumberger electrode array by making Vertical Electric Sounding (VES). VES measurements were made in 206 locations (Table 1). VES measurement locations were given in Fig. 4. In VES applications AB/2 = 2500 m theoretical depth has been researched. Measuring point range varies between 250 m and 500 m.

Table 1: Coordinates of measurement points of vertical electrical sounding (VES) (UTM - ED50)

<table>
<thead>
<tr>
<th>VES No</th>
<th>Y (m)</th>
<th>Z (m)</th>
<th>VES No</th>
<th>Y (m)</th>
<th>Z (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES-1</td>
<td>622981</td>
<td>4257504</td>
<td>DES-4</td>
<td>620000</td>
<td>4253000</td>
</tr>
<tr>
<td>DES-2</td>
<td>623495</td>
<td>4257407</td>
<td>DES-5</td>
<td>621000</td>
<td>4255000</td>
</tr>
<tr>
<td>DES-3</td>
<td>622500</td>
<td>4258000</td>
<td>DES-6</td>
<td>623500</td>
<td>4257975</td>
</tr>
<tr>
<td>DES-4</td>
<td>621960</td>
<td>4257975</td>
<td>DES-7</td>
<td>623500</td>
<td>4258000</td>
</tr>
<tr>
<td>DES-5</td>
<td>623000</td>
<td>4258000</td>
<td>DES-8</td>
<td>623500</td>
<td>4257500</td>
</tr>
<tr>
<td>DES-6</td>
<td>622500</td>
<td>4257500</td>
<td>DES-9</td>
<td>623000</td>
<td>4257500</td>
</tr>
</tbody>
</table>

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 7 Issue 3, March 2018
www.ijisr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2018930
DOI: 10.21275/ART2018930
2.3 The electrical resistivity maps and interpretation

In this study, along these profiles relationship between, low resistivity inclusions which indicate the presence of thermal activity with tectonic was determined. Resistivity and the former resistivity surveys were re-evaluated on profiles. Apparent isoresistivity map, electrical structural cross-sections, depth maps and topographic basements map were re-created on these profiles and results of these studies were re-evaluated.

The electrical resistivity maps have been re-prepared from all VES locations in the field, in the same depth measurement results, that is they were re-prepared from visible resistivity data. These maps show the different depths resistivity distributions in the field. By the help of the lateral conductive change data, lateral following of the tectonic structure and heat areas in the different depths is possible. To interpret the working area with this thought by analyzing, in accordance with the aim, from the resistivity depth maps prepared for different theory, depths 18 resistivity map were prepared (80 ohm.mis selected max. resistivity value while prepared cross-sections and depth maps for determined min. low resistivity zones). The vertical resistivity distributions of AB/2 = 900 meter, AB/2= 1000 meter, AB/2 = 1100 meter, AB/2 = 1200 meter, AB/2 = 1250 meter, AB/2 = 1300 meter, AB/2 = 1400 meter, AB/2 = 1500 meter, AB/2 = 1600 meter, AB/2 = 1700 meter, AB/2 = 1750 meter, AB/2 = 1800 meter, AB/2 = 1900 meter, AB/2 = 2000 meter, AB/2 = 2100, AB/2 = 2200, AB/2 = 2300, AB/2 = 2400 and 2500 meter theoretical depths in the study area were followed (from Fig.5 to 24).
The geophysical map shows the depth from the surface of the high resistivity layer under the thick and conductive sediment storage, that is, electrical basement (Fig. 25 and 26). The depth data in this map were received from the results of all locations VES curves using EarthImager 1D software re-evaluations. The depths in this map are equal with the basement rocks depth from the surface. The depth data in the map shows the total thickness of the sedimentary rocks on the metamorphic rocks. Bed rock topography and the structure of the basin in the depth size in the depth map can be easily followed. By this reason, the geophysical survey results are the important sources in the determining stage of especially new wells.

2.3.1. Interpretation and resistivity maps of shallow depths

In the Kavaklıdere geothermal field, the depth was described as shallow depths between 900-1500 meters. The interpretation related to these lateral resistivity distribution, this layer which shows the shallow depths in the field, the resistivity maps were prepared from AB/2 = 900 meter to AB/2 = 1500 meter (Fig., from 5 to 12). In the shallow depths, partially this is detected and continues to the deep by broadening. The low resistivity which is not related to the geothermal activity directly was correlated with cap rocks. But, the resistivity gradient which was seen in some parts of the field were interpreted as having a direct relation with the geothermal activity. That is, in the resistivity maps which were prepared for the deep levels of the field, the low resistivity which was seen in the upper parts of the zones directly related with the geothermal activity is thought as a reflection of the heat.

Figure 5. Resistivity depth map of AB/2 = 900 meter

Figure 6. Resistivity depth map of AB/2 = 1000 meter
Figure 7. Resistivity depth map of AB/2 = 1100 meter

Figure 8. Resistivity depth map of AB/2 = 1200 meter

Figure 9. Resistivity depth map of AB/2 = 1250 meter
2.3.2. Interpretations and resistivity maps of deep depths

In the Kavaklidere geothermal field, the depth described as deep depths between 1500-2500 meters. The interpretation related to these lateral resistivity distribution, this layer which shows the deep depths in the field, the resistivity maps were prepared from AB/2 = 1500 meter to AB/2 = 2500 meter (Fig., from 13 to 23). The low resistivity closure which was determined at the Nort-Northeastern part of the field.

In AB/2= 1500 and 1600 meters theoretical depths, at the Nort-Northeastern part of the field low resistivity was clear and still has a local appearance. Considering the resistivity distribution which was seen in the resistivity maps representing the 1600 - 1750 meters theoretical depth, the
heat effect in these depths was become clear. In the deep depths, the widespreadness of the low resistivity areas related to the fault systems was interpreted in such a way that the depth increases the geothermal potential increases also.

In the resistivity depth map which represents \(AB/2 = 1750 \) and \(AB = 1900 \) meters theoretical depths, the lowest resistivity distribution was completely determined. In North-Northeastern part of the field, the most powerful indicator of the geothermal energy potential was accessed to the lowest values. In the deep depths of the basin filling sediments, measurement of the low resistivity values was described with the electrolytic environment of the high heat liquids in bedrock related to alternation on the cap rocks.

![Figure 13. Resistivity depth map of \(AB/2 = 1600 \) meter](image1)

Figure 13. Resistivity depth map of \(AB/2 = 1600 \) meter

The general appearance in the resistivity depth maps which shows \(AB/2 = 1900 \) and \(AB/2 = 2500 \) meters theoretical depths can be changeable. The related increase of the resistivity values in these maps showed that accessing to the basic units in these levels. But, the resistivity which was seen in these maps was not showed the complete resistivity of the basement units. The falling down of the resistivity to low values, the more sediment thickness in the field, and accordingly increasing the basement depth camouflaged the visible resistivity values.

![Figure 14: Resistivity depth map of \(AB/2 = 1700 \) meter](image2)

Figure 14: Resistivity depth map of \(AB/2 = 1700 \) meter
Figure 15. Resistivity depth map of AB/2 = 1750 meter

Figure 16. Resistivity depth map of AB/2 = 1800 meter

Figure 17. Resistivity depth map of AB/2 = 1900 meter
Figure 18. Resistivity depth map of AB/2 = 2000 meter

Figure 19. Resistivity depth map of AB/2 = 2100 meter

Figure 20. Resistivity depth map of AB/2 = 2200 meter
2.3.3. Map and interpretation of basement depth
Geoelectric basement with the high resistivity value was correlated with Menderes metamorphics which originates the study area's basement. At the places where the base was deep if the thickness over levels is thin this may cause insufficiency while distinguishing. For this reason insulator level under basement was evaluated as geoelectric basement. From the found basement depths, basement rock depth or basement topography maps could be prepared. If a basement topography was going to be prepared then from the depth found from each location, that locations elevation would be calculated and by this way that locations elevation could be found. Basement topography map will be derivated from the elevation value found for each location. In the basement depth map, the depths found by 1D model used directly. The distribution of the contour lines in the basement depth map show compability with the faults in the field (Fig., 24 and 25).
2.4. Resistivity cross-sections and interpretation

Resistivity cross-sections were prepared from the resistivity data determined from the results of the measurements of all levels, in all the VES locations throughout the profile. These cross-sections were shown both horizontal and vertical orientations resistivity distributions. It is possible to follow the tectonic structure and heat areas in the theoretical depth size in the part from which the profile passes of the resistivity vertical change. To interpret the Kavaklıdere geothermal field, resistivity cross-sections as compatibility with tectonic orientations were prepared (Fig., from 26 to 43).

The geoelectrical cross-sections, at the end of the evaluation of VES graphics measured throughout the profile, real resistivities of the layers and beds, thickness and depths were determined. From this data, the geoelectrical cross-sections (model sections) of the profile were prepared. The geoelectrical cross-sections represent the vertical stratigraphic storage and possible tectonic structure throughout the profile with an important approximation. Geoelectrical cross-sections were prepared for a detailed interpretation and evaluation of the area (80 ohm.m is selected max. resistivity value while prepared cross-sections for determined min. low resistivity zones).

Geoelectric cross-sections were prepared in order to reveal possible stratigraphy, fault systems, basement topography and high temperaturely zones along the profile orientations. For this reason, Northwestern-Southeastern and Southwestern profiles were prepared and interpreted.

Numerous horst-graben systems were observed in study area. According to this many fault was originated in study area. Faults are mostly developed in Northwestern-Southeastern and Southwestern-Northeastern orientation. Developed fault systems mostly as each other's follow-up and also they could be evaluated as some faults were branched into several branches.
To interpret the Kavaklidere geothermal field in NW-SE orientation 5 cross-sections and SW-NE orientation 9 cross-sections was prepared. In the cross sections, many fault systems were modelled in corresponding zone. Low resistivity zones was developed together with fault systems. In other words higher temperature fluids within faults causes alterations in cap rocks.

Figure 26. Location map of re-prepared geophysical and geological cross-sections (modified from Özdemir et al., 2016)
Figure 27. Google earth image of re-prepared geophysical and geological cross-sections

Figure 28. A-A’ cross-section and interpretation

Figure 29. B-B’ cross-section and interpretation
Figure 30. C-C cross-section and interpretation

Figure 31. D-D cross-section and interpretation

Figure 32. E-E' cross-section and interpretation
Figure 33. F-F' cross-section and interpretation

Figure 34. G-G cross-section and interpretation
Figure 35. H-H' cross-section and interpretation

Figure 36. I-I' cross-section and interpretation
Figure 37. J-J' cross-section and interpretation

Figure 38. K-K' cross-section and interpretation
Figure 39. L-L cross-section and interpretation

Figure 40: M-M cross-section and interpretation
To interpret the Kavaklıdere geothermal field, 3D resistivity and stratigraphy models (solid model and fence diagram) as compatibility with tectonic orientations were prepared (Fig. 42 and 43).

Figure 41: N-N’ cross-section and interpretation
Figure 42: 3D resistivity model of the Kavaklıdere geothermal field
2.5. Potential Geothermal Reservoirs

Potential geothermal reservoirs were detected at the result of the geophysical measurements made for determining the expected thermal activities at intersection points of the different orientation faults mostly located at middle and north sides of the study area (Fig. 44; Block 3 and 4). By considering geologic and tectonic compatibility it was expected to gather fluid with higher temperature and flow from the drillings going to be open.

The geothermal activities at the Kavaklıdere geothermal field appear to lie at the intersections of minor northerly striking sinistral normal transfer faults and the Gediz detachment fault. Left steps in the transfer faults at the intersection with the detachment were inferred to represent dilational jogs (i.e., small pull aparts) that provide channelways for geothermal fluids (Fig. 44). The left steps may result from refraction across the detachment surface that results from the mechanical contrast between hanging-wall sedimentary rocks and basement gneisses, marbles, and schists in the footwall. Brecciated marble at these intersections provide good reservoirs for the geothermal fluids. It was determined that the reservoirs as plunging gently northward along the intersection of the detachment fault with the transfer faults. Although this model can account for the shallow reservoir and surface springs, it may not predict the location of the main upwelling that feeds these geothermal systems. Major steps in the Alaşehir frontal fault or complex fault intersections between the transverse faults and WNW-striking normal faults may accommodate upwelling in the Kavaklıdere geothermal field.

High resistivity zones were interpreted to be regions of cooled intrusions with minimum porosity and permeability. This interpretation of cooled intrusions may not be conclusive as the MT data do not cover as wide an area as the gravity data covered with basalts or andesites domes may have high resistivity. Unfractured rocks were marked by intermediate to high density zones and high resistivities. The locations of the reservoir region and dikes and sills that provide heating for the system were interpreted. These models present an improved and more complete picture of the upper crustal structure of the Kavaklıdere geothermal fields by identifying all the features related to the geothermal system. Geological and geophysical structure of the Kavaklıdere geothermal field is very similar the Coso geothermal field (Southeastern California/USA) (Fig. 45). This model is available in the Kavaklıdere geothermal field.
Figure 44: Potential geothermal reservoirs (Block 3 and Block 4) are detected at the result of the geophysical measurements and geological interpretations.
3. Conclusions

The Kavaklıdere geothermal field which covers a 126 km² area between Alaşehir and Salihli districts in Manisa province, Turkey were studied. The geophysical features connected to geological structure and the properties of geothermal systems in the field were measured. Various electrical resistivity and thermal methods in geothermal exploration were applied in the field. VES applications AB/2 = 2500 m theoretical depth in 206 locations were performed. In addition to total 206 resistivity measurements were compared with previous studies and all measurements were re-evaluated with EarthImager 1D and RockWorks programs. VES curves, resistivity and stratigraphy cross-sections were re-prepared and re-interpreted according to revealing results. Potential geothermal reservoirs were detected at the result of the geophysical measurements made for determining the expected thermal activities at intersection points of the different oriented faults mostly located at middle and north sides of the study area. By considering geologic and tectonic compatibility, it was expected to gather fluid with higher temperature and flow from the drillings going to be open.

The geothermal activities at the Kavaklıdere geothermal field appear to lie at the intersections of minor northerly striking normal transfer faults and the Gediz detachment fault. Left steps in the transfer faults at the intersection with the detachment were inferred to represent dilational jogs that provide channelways for geothermal fluids. The left steps may result from refraction across the detachment surface that results from the mechanical contrast between hanging-wall sedimentary rocks and basement gneisses, marbles, and schists in the footwall. Breciated marble at these intersections was seen to provide good reservoirs for the geothermal fluids. The reservoirs was determined as plunging gently northward along the intersection of the detachment fault with the transfer faults. Although this model can account for the shallow reservoir and surface springs, it may not predict the location of the main upwelling that feeds these geothermal systems. Major steps in the Alaşehir frontal fault or complex fault intersections between the transverse faults and WNW-striking normal faults may accommodate upwelling in the Kavaklıdere geothermal field.

High resistivity zones were interpreted to be regions of cooled intrusions with minimum porosity and permeability. Unfractured rocks were marked by intermediate to high density zones and high resistivities. The locations of the reservoir region and dikes and sills that provide heating for the system were interpreted. These models were made to present an improved and more complete picture of the upper crustal structure of the Kavaklıdere geothermal fields by identifying all the features related to the geothermal system.

References

