Effect on Flexural Strength of Concrete by Addition of Nano Titanium Dioxide and Nano Calcium Carbonate

Shivanshu Mishra¹, Archana Tiwari²

¹Student, Department of Civil Engineering, Madhav Institute of Technology and Science Gwalior (M.P.), India¹

²Professor Department of Civil Engineering, Madhav Institute of Technology and Science Gwalior (M.P.), India

Abstract: In this paper, resulting change in flexural strength of concrete by the addition of Nano materials are studied. The concrete is prepared by adding Nano titanium dioxide and Nano calcium carbonate by weight. Two types of concrete were prepared by adding Nano titanium dioxide and Nano calcium carbonate. In concrete containing Nano titanium dioxide is prepared by adding 0.5%, 1%, 1.5% and 2% by weight of cement. In concrete containing Nano calcium carbonate is prepared by adding 0.5%, 1%, 1.5% and 2% by weight of specimen is prepared and compared with control concrete. Adding 2% TiO₂ shows maximum improvement in flexural strength, in Nano CaCO₃ concrete adding 0.5% content of Nano CaCO₃ shows maximum strength.

Keywords: Nano-CaCO₃, Nano-TiO₂, concrete, flexural strength

1. Introduction

Concrete which is subjected to the pavement undergoes load in a cyclic pattern. Due this repeated loads the concrete under goes failure. Failure occurs in the form of cracks, wear and tear. To minimise this effect it is necessary to introduce some material in construction to increase the strength of concrete. The second thing is that to material will be used should not be used in huge quantity to increase the cost of construction for the same amount of material for concrete. The Nano materials when added in concrete are improving the strength due to their size effect, quantum effect, surface effect and interface effect. [1, 2, 3]. The concrete produced by replacing cement in small quantity leads to better enhancement in strength. Liu Xiaoyan reported decrease in setting time with 20% increase in flexural strength at 1% replacement of cement by nanoCaCO₃ [3]. Nazari Ali reported 20 % increase in the flexural strength at 1% TiO2 content [4]. Nazari Ali reported 50 % increase in the flexural strength of concrete at 4% TiO_2 content [5]. Lucas S.S. reported that addition of TiO_2 nano particles increases the NO_x degradation of mortar; containing 5% Nano TiO2 and 19% gypsum and is maximum at this level of replacement [6]. Jalal Mostafa reported 42% increase in flexural strength at 4% TiO2 replacement from cement [7]. There are various application of Nano materials in concrete. There are various Nano materials available such as Nano SiO_2 , Nano TiO_2 , Nano Al_2O_3 , Nano Fe_2O_3 , nano $CaCO_3$ etc. Nano-titanium dioxide and nano-calcium carbonate are used in this study. Considerable amount of TiO_2 results in increase in strength of the concrete.

2. Materials and Methods

Table 1 Materials			
Particulars	Туре	Specific gravity	fineness
Cement	CementPortland Pozzolana Cement (prism) Fly ash based conforming to (IS: 1489-1991)Coarse aggregate20mm and 10mm size crushed graniteFine aggregateRiver sand (Zone 2)		2% on 90 micron sieve
			0.1%
			1%
Water	Fresh drinking water(pH value 6-7), free from impurities		

Nano Materials

The properties of the Nano materials which are provided by the supplier are mentioned below:

Tuble 2. Troperties of Ivano Waterians			
Properties	TiO ₂	CaCO ₃	
Purity	99%	99%	
Particle size	0.3 to	Mean 0.8 and Max 5	
	0.5µm	μm	
Specific	3.85	2.91	
gravity			

Table 2: Properties of Nano Materials

* Nano materials are purchased from Sakshi Dyes and Chemicals Delhi.

Details of Samples

A total 3 sets of specimens are prepared in the laboratory. First series consist of control mixture which was made of natural aggregates, cement and water. The Nano TiO₂ concrete are prepared by adding Nano TiO₂ in doses of 0.5%, 1%, 1.5% and 2% by weight of cement. Nano CaCO₃ concrete is prepared by adding 0.5%, 1%, 1.5% and 2% by weight of cement. For flexural strength the specimens prepared by using beam moulds of size 100mm x 100mm x 500mm.

The samples are prepared by adding Nano materials by weight of cement. The details of sample are given below:

Table 3: Details of samples					
Concrete	Sample name	Nano TiO ₂	Nano $CaCO_3$		
		(%)	(%)		
Control mix	СО				
TiO ₂	T1	0.5			
	T2	1.0			
	T3	1.5			
	T4	2.0			
CaCO ₃	C1		0.5		
	C2		1.0		
	C3		1.5		
	C4		2.0		

c 1

3. Experimental Result and Discussion

Flexural strength of specimens at 7, 14 and 28 days obtained by testing on flexure testing machine in the institute laboratory. Tests are carried out on triplicate specimens at specified curing period of 7, 14 and 28 days. Average value of flexural stress for each type of concrete at different ages is reported. The flexural testing machine used for the test is shown below

Figure 1: Test set up for flexural Test

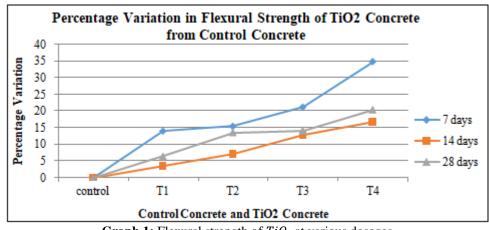

Figure 2: Specimen after Test

Table 4: Flexural strength of the control and TiO_2 blended
cement concrete and percentage strength variation from
control

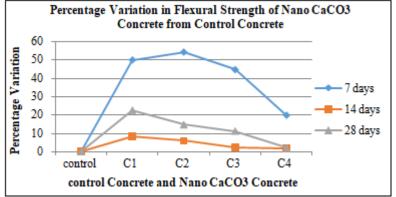
control				
Sample	Nano	7 days	14 days	28 days
designation	TiO_2	Percentage	Percentage	Percentage
	particle	variation	variation	variation
	(%)	From	From	From
		control	control	control
Control	0	00.00	00.00	00.00
T1	0.5	+14.04	+3.63	+6.51
T2	1	+15.47	+7.27	+13.62
T3	1.5	+21.19	+12.90	+14.14
T4	2	+34.76	+16.72	+20.36

Water to binder [cement + Nano TiO2] ratio = 0.5

The flexural strength of TiO_2 concrete increases with the increase in percentage of Nano *TiO*₂at all ages of curing. It can be further increase by increasing the percentage of Nano TiO₂ beyond 2%.

Graph 1: Flexural strength of TiO_2 at various dosages

Table 5: Flexural strength of the control and CaCO₃ blended cement concrete and percentage strength variation from control


Sample designation	Nano $CaCO_3$ particle (%)	7 days	14 days	28 days
		Percentage variation	Percentage variation	Percentage variation
		From control	From control	From control
Control	0	+00.00	00.00	+00.00
C1	0.5	+49.76	+8.50	+22.61
C2	1	+54.04	+6.00	+14.74
C3	1.5	+44.50	+2.18	+11.23
C4	2	+19.76	+1.60	+1.96

Water to binder [cement + Nano $CaCO_3$] ratio = 0.5

Volume 7 Issue 3, March 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

At 7 days the maximum flexural strength is achieved in C1 days the maximum flexural strength is reported in the concrete having 0.5% Nano CaCO₃ content. At 14 and 28 concrete containing 0.5% Nano CaCO₃ content.

Graph 2: Flexural strength of CaCO₃ at various dosages

Relation between Compressive and Flexural Strength This is calculation is done from the experimented compressive strength values by using the formulae flexural strength = 0.7 (Compressive strength)^{0.5}

S.	Particulars	Calculated Flexural	Experimental
No.		strength from compressive	Values of flexural
		strength(MPa)	strength (MPa)
1	Control	3.60	7.12
2	T1	3.63	7.59
3	T2	3.95	8.09
4	T3	4.081	8.23
5	T4	4.234	8.57
6	C1	4.24	8.73
7	C2	4.17	8.17
8	C3	4.11	7.92
9	C4	3.96	7.26

4. Conclusion

Increasing the percentage of Nano TiO_2 leads to increase in flexural strength in concrete. The strength of concrete can also be increase by increasing the percentage beyond 2% of Nano TiO_2 content. With the increase of Nano CaCO_3 content in concrete the strength of the concrete is reduced. The optimum level of Nano CaCO_3 content is 0.5%, further increment can be done by checking it I between 0.5% and 1% of Nano CaCO_3 Content.

References

- Liu X, Chen L, Liu A and Wang, "Effect of Nano-CaCO3 on Properties of Cement Paste", Energy Procedia 16 (2012) 991 – 996.
- [2] Wang Jingxian and Wang Lijiu., "Advances in the applied research of Nano-material in concrete". J Concrete 2004; 11: 18-21.
- Jo BW, Kim CH, Tae GH, Park J.B., Characteristics of cement mortar with nano-SiO₂ particles. *J Construction* and Building Materials 2007; 21: 1251–1255

Materials2007; 21: 1351-1355.

[4] Nazari A., "The effects of curing medium on flexural strength and water permeability of concrete incorporating TiO₂ nanoparticles", *Materials and Structures*, 2011, Vol. 44, pp-773–786.

- [5] Nazari A. and Riahi S., "The effect of TiO2 nanoparticles on water permeability and thermal and Mechanical properties of high strength self-compacting concrete", *Materials Science and Engineering*, 2010, vol. 528, pp. 756–763.
- [6] Lucas S.S., "Incorporation of titanium dioxide nanoparticles in mortars — Influence of microstructure in the hardened state properties and photocatalytic activity", *Cement and Concrete Research*, 2013, Vol.43, pp. 112–120.
- [7] Jalal M. and Tahmasebi M., "Assessment of nano-TiO₂ and class F fly ash effects on flexural fracture and microstructure of binary blended concrete", *Sci Eng Compos Mater*, 2015, Vol.22 (3), pp.263–270.
- [8] Agullo V.J., Ligero V.C. and Rico D.P., "Mortar and Concrete Reinforced with Nanomaterials".
- [9] Borkar S.P.and Kumar V.S., "Effect of silica and calcium carbonate fillers on the properties of woven glass fibre composites", *Indian Journal of Fibre and Textile Research*, Vol.32, June 2007, pp.251-253.
- [10] Givi .N. and Rashid S.A., "Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete", *Composites: Part B 41*, 2010, pp.673–677.
- [11] Kawashima S.and Hou P., "Modification of cementbased materials with nanoparticles", *Cement & Concrete Composites* 36, 2013, pp. 8–15.
- [12] Chen J. and Kou S.C., "Hydration and properties of nano-TiO2 blended cement composites", *Cement & Concrete Composites* 34, 2012, pp. 642–649.

Volume 7 Issue 3, March 2018 <u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY