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Abstract: The objective of the study is to present a computational algorithm for the numerical calculation of integrals of a function 

with any amount of variables, with defined lower and upper limits of integration for its variables. The method find the integral value for 

functions of any dimensions and comprises of an algorithm that is kind of a modified version of a Monte Carlo method for numerical 

integration, but utilizes more other concepts and structure. The algorithm generates organized points in the Euclidian space towards 

the function, for increasing the accuracy of the results. The results shown the high efficiency of the method through calculated errors 

compared to analytical values, and also show the linked algorithms execution time to its functions.  
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1. Introduction  
 

Computational simulations are advancing each day more, 

assuming an essential role in the human activities. One 

example of prospering, by using these techniques, is the 

universe discovering by human beings, on which before the 

rockets being launched, a partial differential equations (PDE) 

system derived from conservative laws are solved. Such 

methods avoid mistakes and accidents, reduce costs, and 

predict phenomena occurring in a process. 

 

Stanley J. Farlow [1] cites 10 methods to solve PDE in his 

book, and one of them is the Integral Equations, which 

consists on changing the PDE to an integral equation. What if 

integrals could be solved by a new numerical integration 

method with high accuracy? The results would have more 

approximation of the reality. 

 

So the present paper shows a method to improve numerical 

simulation technology by the use of a computational 

algorithm that solves integrals. It can be used not only in the 

simulation field, but also to solve other problems that 

includes integral. 

 

The Monte Carlo Method are in the class of computational 

algorithms and use random sampling to obtain numerical 

results, but aleatory generation of points makes the problem 

more dependent of luck, increasing the chance of obtaining  

uncertainties in the results. 

 

The advantage of placing points with organized distributions 

with an algorithm comprised by conditional statements, is 

that the computer do not need to count the points inside the 

interested region, fleeing the inside or outside problem [2]. 

 

The Monte Carlo integration method for calculating the area 

under the curve of a function of one variable, as shown in 

Figure 1.1, comprises of the following steps [3,4]: 

 

1) Put the function curve inside of a rectangle with known 

area; 

2) Place a known amount of random points inside the 

rectangle; 

3) Count the number of points that lie inside the rectangle; 

4) The area under the curve of the function is proportional to 

the number of points that lie below it and is given by 

Equation (1):  

 
 

 
Figure 1.1: Figure merely illustrative of the Monte Carlo 

method for the calculation of the integral of the function of 

one variable 

 

Af is the area below the function curve; AR is the area of the 

rectangle; Nf is the number of points below the function 

curve; NR is the number of points inside the rectangle. 

 

One disadvantage, if the amount of the generated points is 

huge and if the function has a few amount of variables, is the 

slow convergence. But with the advancing of the technology, 

more specifically of the super and quantum computers, the 

convergence time will expressively reduce.  

 

The methodology’s technique of the present paper is to 

calculate the integrals of a function of any variables by 

generating organized points in an imaginary region, and 

through the use of analogous equations of Equation (1), and 

others equations. By definition, in this method, the imaginary 

region is a region on a Euclidian space to which covers all 

the function surface or curve at specified limits. If it is being 

calculated a single integral, the imaginary region is an area 
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and has therefore two dimensions. The integration of a 

function of two variables gives a volume of three dimensions, 

but for a function of more than two variables, it gives a 

“volume” of more than three dimensions and it starts to 

become a complex observing problem, but a feasible one. 

 

The generation of points is done through the computational 

algorithm. The count of points, between the function surface 

and the Euclidian space origin of the imaginary region, is 

done through conditional statements in the computational 

algorithm. The total points inside the imaginary region is also 

counted through conditional statements. 

 

The space dimension of an imaginary region of the method, 

in the Euclidian space, are given by the number of variables 

that are being integrated plus one. The dimensional limits of 

the imaginary region are the variables limits of integration 

and the chosen maximum and minimum limits of the y axis 

value for the range of generated points. The values for the 

function that is being integrated are in the same axis of the 

mentioned y axis above. Figure 1.2 illustrates a Euclidian 

space with the surface of a function of two variables, and also 

shows an imaginary region covering all the function at a 

limited domain. 

 
Figure 1.2: Figure merely illustrative of a Euclidian space 

with an imaginary region covering the surface of a function 

of two variables 

 

Some concepts must be presented before using the method, 

more specifically, the meaning of the variables PSNC, 

PSNTP, NSNC, NSNTP, PSTR, PSR, NSTR and NSR: 

 PSNC: The sum of points that are distributed in the 

positive side of the imaginary region (also in positive side 

of Euclidian space) and are placed between the function 

surface and the Euclidian’s space origin; 

 PSNTP (Positive side’s number of total points): The sum 

of all points that are distributed in the positive side of the 

imaginary region (also in positive side of Euclidian 

space); 

 NSNC: The sum of points that are distributed in the 

negative side of the imaginary region (also in negative 

side of Euclidian space) and are placed between the 

function surface and the Euclidian’s space origin; 

 NSNTP (Negative side’s number of total points): The 

sum of all points that are distributed in the negative side 

of the imaginary region (also in negative side of Euclidian 

space); 

 PSTR (positive side total region): Quantity of points 

distributed in all the positive side of the imaginary region; 

 PSR (positive side region): Quantity of points distributed 

between the function surface inside the positive side of 

the imaginary region, and the Euclidian’s space origin; 

 NSTR (negative side total region): Quantity of points 

distributed in all the negative side of the imaginary 

region; 

 NSR (negative side region): Quantity of points distributed 

between the function surface inside the negative side of 

the imaginary region, and the Euclidian’s space origin. 

 

On analogous with Equation (1), Equations (2) and (3) 

below, calculate the PSR and NSR value: 

 

 
 

 
 

PSNC, PSNTP, NSNC and NSNTP values are determined 

during the code execution through the counting of the 

generated points under certain conditions. The PSTR and 

NSTR values are calculated by Equations (4) and (5): 

 

 
 

 
 

In the summation of Equations (4) and (5), “n” and “i”, are 

respectively, the quantity of the function integrating variables 

and the integrating variable. “ ” and “ ”, are 

respectively,  the variable “i” upper and lower limits of 

integration. “ ” and “ ”, are respectively, the function 

maximum and minimum possible value at the domain of the 

given limits of integration at the Euclidian space. If “n” is 

equal to 2, e.g., Equations (4) and (5) can only represent the 

volume of a rectangle or cube.  

 

The value of the y axis for a point in the positive side of the 

Euclidian space is only comprised by positive values for the 

y coordinate, while the opposite is true for the negative side. 

For example, each of the positive side and the negative side 

of a third dimensional imaginary region is comprised by 4 

octants of a Euclidian three-dimensional coordinate system.  

 

With the values of PSR and NSR in hands, the integral value 

of the function with defined limits of integration is calculated 

by Equation (6) below: 
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2. Methodology and Solved Examples 
 

The algorithm calculate the definite multiple integral of any 

function that has all of its components defined with the limits 

of integration. For example, the Gaussian function defined by 

Equation (7), may not be compatible with the method 

described on this article if the constants a, b and c are not 

specified as a numerical value: 

 
 

The reason for this is that Equation (7) has a constant 

variable that is defined as a symbol instead of a number, 

compromising the reading of the algorithm by the computer. 

In the use of this method, all the variables inside the 

integrated function must be defined as a number, and its 

limits of integration must be specified. Meaning that if ,  

and  are numerically defined, Equation (7) can be solved by 

this paper methodology. 

 

The method calculate the definite integral or the definite 

multiple integrals ( ) of a function (f(x1,…,xn)) of any 

variables, just like in Equation (8):  

 

 
 

2.1. Algorithm’s Methodology 

 

The algorithm is comprised by multiple nested loops and 6 

conditional statements, which the construction of the 

computational algorithm is comprised by the following steps: 

 

Step 1: Define the lower and upper limits of integration for 

all the function variables;  

Step 2: Use an analytical or numerical method to find the 

global minimum and maximum values of the function that is 

being integrated. These found values must be the function’s 

possible minimum and maximum values comprised between 

the variables’ limits of integration; 

 

On another words, Step 2 also says that the minimum and 

maximum global values do not need to be an inflection point. 

The found global minimum and maximum values, are 

respectively, the lower and upper limits for the y axis of the 

imaginary region along the Euclidian space, and are used in 

the y axis loop at Step 4. Step 2 is used to guarantee that the 

imaginary region will cover all the function surface, saving 

computational effort and execution time in the program 

running, comparing to the case wherein chosen values for the 

y axis of the imaginary region are used. At this step, a lot of 

numerical methods can be used, and Domain’s Sweep 

algorithm [5] is strongly recommended, because it is a 

method that finds minimum and maximum values of 

functions, in a specified range of domain, even if they are not 

an inflection point.  

 

Step 3: Set the initial values for PSNC, PSNTP, NSNC and 

NSNTP as zero; 

 

Step 4: Put nested loops statements, one loop for each 

variable, to which the outer loop is always linked to the first 

variable (x1). Each loop vary its variable value with a given 

step size (step size for the generation of points), starting in its 

lower integration limit until the upper limit of integration. 

The last inner loop of these nested loops, must correspond to 

the y axis values (linked to y variable) of the generated points 

in the imaginary region, which is the same axis of the 

integrated function as mentioned earlier;  

 

In this step, each variable step size must be defined according 

to the users will. When the nested loop is being executed by 

the computer, it is like the program is walking into the 

Euclidian space while generate points on each conjunct of 

variables values (x1, …, xn, y). These generation is 

organized because this “walk” is chosen by the user when it 

is specified each variable step size. 

 

Step 5: Inside the last inner loop, define the function (f(x1, 

…, xn)) that is being integrated and calculate its value with 

the currently variables values supplied by the nested loops in 

Step 4; 

 

Step 6: Yet inside the last inner loop, put the first conditional 

statement which says that if the y value is higher than zero, 

then, add the currently PSNTP value by one and store the 

new value; 

 

If the first conditional statement is not satisfied during the 

code execution, then, the currently PSNTP value is not 

updated and it skips to the next step. 

 

Step 7: Inside the first conditional statement, put the second 

conditional statement which says that if the y value is less 

than the function currently value, then, add the currently 

PSNC value by one and store the new value; 

 

If the second conditional statement is not satisfied during the 

code execution, then, the currently PSNC value is not 

updated and it skips to the next step. 

 

Step 8: Put an end statement for the second and first 

conditional statements; 

 

Step 9: Yet inside the last inner loop, put the third 

conditional statement which says that if the y value is less 

than zero, then, add the currently NSNTP value by one and 

store the new value; 

 

If the third conditional statement is not satisfied during the 

code execution, then, the currently NSNTP value is not 

updated and it skips to the next step. 

 

Step 10: Inside the third conditional statement, put the fourth 

conditional statement which says that if the y value is higher 

than the function currently value, then, add the currently 

NSNC value by one and store the new value; 

 

If the fourth conditional statement is not satisfied during the 

code execution, then, the currently NSNC value is not 

updated and it skips to the next step. 
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Step 11: Put an end statement for the third and fourth 

conditional statements; 

 

Step 12: Put an end statement for each loop statement; 

 

With these technique, the generated points’ coordinates will 

always lie inside of the chosen variables limits, because the 

loop statements are only working inside the variables limits 

of integration.  

 

Step 13: Put the fifth conditional statement which says that if 

the last stored PSNTP value is higher than zero, then, 

calculate the PSTR value using Equation (4), and PSR value 

using Equation (2); 

 

If the fifth conditional statement is not satisfied during the 

code execution, then, the PSR value is zero. 

 

Step 14: Put an end statement for the fifth conditional 

statement; 

Step 16: Put the sixth conditional statement which says that if 

the last stored NSNTP value is higher than zero, then, 

calculate the NSTR value using Equation (5), and NSR value 

using Equation (3); 

 

If the sixth conditional statement is not satisfied during the 

code execution, then, the NSR value is zero. 

 

Step 17: Put an end statement for the sixth conditional 

statement; 

 

Step 18: Calculate the integral using Equation (6). 

 

2.2. Computational Code Example 

 

The present method was used to calculate the integral of 

functions with one, two and three variables. It was used the 

MATLAB® (R2015a, Mathworks, Natick, MA, USA) for 

making the implementation of the algorithm. In this software, 

the conditional and the loop statements commands are “if” 

and “for”, respectively. It was calculated the minimum and 

the maximum global values of each exemplified functions 

before the implementation of the method.  

 

2.2.1. Algorithm for the function of one variable 

 

The function of one variable that is being integrated is given 

by Equation (9) below:  

 

 
 

The lower and upper limits of integration for x1 are -2 and 5, 

respectively. The steps size of variation for x1 and y, in the 

algorithm, are 0.0001. The minimax method used was the 

Domain’s Sweep [5], and the function’s maximum and 

minimum possible value in this range of integration are, 

respectively, 131 and -9. The integral that is being 

exemplified is given by Equation (10): 

 

 

The algorithm for the calculation of this integral is: 

1- x1LL = -2; 

2- x1UL = 5; 

3- ymin = -9; 

4- ymax = 131; 

5- PSNC = 0; 

6- PSNTP = 0; 

7- NSNC = 0; 

8- NSNTP = 0; 

9- for x1 = x1LL: 0.0001 : x1UL 

10- for y = ymin: 0.0001 : ymax  

11- func = (x1^3)+ x1 + 1; 

12- if y > 0 

13- PSNTP = PSNTP + 1; 

14- if y < func 

15- PSNC = PSNC + 1; 

16- end 

17- end 

18- if y < 0 

19- NSNTP = NSNTP + 1; 

20- if y > func 

21- NSNC = NSNC + 1; 

22- end 

23- end 

24- end 

25- end 

26- if PSNTP>0 

27- PSTR = abs ((x1UL-x1LL) * (ymax-0)); 

28- PSR = (PSNC*PSTR)/(PSNTP); 

29- else PSR=0; 

30- end 

31- if NSNTP>0 

32- NSTR = abs((x1UL-x1LL) * (ymin-0)); 

33- NSR = (NSNC*NSTR)/(NSNTP); 

34- else NSR =0; 

35- end 

36- INTEGRALFUNC = PSR - NSR; 

37- fprintf ('The integral of the function of one variable at the 

given limits of integration is = %10.8f \n',INTEGRALFUNC) 

 

2.2.2. Algorithm for the function of two variables 

The function of two variables that is being integrated is given 

by Equation (11) below:  

 

 
 

The lower and upper limits of integration for x1 and x2 are -2 

and 3 for both. The steps size of variation for x1, x2 and y, in 

the algorithm, are 0.005. The minimax method used was the 

Domain’s Sweep [5], and the function’s maximum and 

minimum possible value in this range of integration are, 

respectively, 37 and -7. The integral that is being exemplified 

is given by Equation (12): 

 

 
 

The algorithm for the calculation of this integral, with the 

including of Domain’s Sweep algorithm in lines 1 to 17, is: 
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1- YMINIMUM = 10^32;  

2- YMAXIMUM = -(10^32); 

3- for x1 = -2:0.01:3  

4- for x2 = -2:0.01:3 

5- fun = (x1^2)+(x2^3)+1; 

6- if fun > YMAXIMUM; 

7- YMAXIMUM = fun; 

8- X1MAX = x1; 

9- X2MAX = x2; 

10- end 

11- if fun < YMINIMUM 

12- YMINIMUM = fun; 

13- X1MIN = x1; 

14- X2MIN = x2; 

15- end 

16- end 

17- end 

18- x1LL = -2; 

19- x2LL = -2; 

20- ymin = YMINIMUM; 

21- x1UL = 3; 

22- x2UL = 3; 

23- ymax = YMAXIMUM;  

24- PSNC = 0; 

25- PSNTP = 0; 

26- NSNC = 0; 

27- NSNTP = 0; 

28- for x1 = x1LL: 0.005 : x1UL 

29- for x2 = x2LL : 0.005: x2UL 

30- for y = ymin: 0.005 : ymax  

31- func =  (x1^2) + (x2^3) + 1; 

32- if y > 0  

33- PSNTP = PSNTP + 1; 

34- if y < func 

35- PSNC = PSNC + 1; 

36- end  

37- end 

38- if y < 0 

39- NSNTP = NSNTP + 1; 

40- if y > func 

41- NSNC = NSNC + 1; 

42- end 

43- end 

44- end 

45- end 

46- end 

47- if PSNTP>0 

48- PSTR = abs( (x1UL-x1LL) * (x2UL-x2LL) * (ymax-0) );  

49- PSR = (PSNC*PSTR)/(PSNTP); 

50- else PSR=0; 

51- end 

52- if NSNTP>0 

53- NSTR = abs( (x1UL-x1LL) * (x2UL-x2LL) * (ymin-0) ); 

54- NSR = (NSNC*NSTR)/(NSNTP); 

55- else NSR =0; 

56- end 

57- INTEGRALFUNC = PSR - NSR; 

58- fprintf ('The integral of the function of  two variables at 

the given limits of integration is = %10.8f 

\n',INTEGRALFUNC) 

 

 

2.2.3. Algorithm for the function of three variables 

The function of three variables that is being integrated is 

given by Equation (13):  

 

 
 

The lower and upper limits of integration for x1, x2 and x3 

are respectively: -2 and 1, -2 and 1, -2 and 1. The steps size 

of variation for x1, x2, x3 and y, in the algorithm, are 0.01. 

The minimax method used was the Domain’s Sweep, and the 

function’s maximum and minimum possible value in this 

range of integration are, respectively, 11 and -8.25. The 

integral that is being exemplified is given by Equation (14): 

 

 
 

The algorithm for the calculation of this integral is: 

1- x1LL = -2; 

2- x2LL = -2; 

3- x3LL = -2; 

4- x1UL = 1; 

5- x2UL = 1; 

6- x3UL = 1; 

7- ymin = -8.25; 

8- ymax = 11; 

9- PSNC = 0; 

10- PSNTP = 0; 

11- NSNC = 0; 

12- NSNTP = 0; 

13- for x1 = x1LL: 0.01 : x1UL 

14- for x2 = x2LL : 0.01: x2UL 

15- for x3 = x3LL : 0.01 : x3UL 

16- for y = ymin: 0.01 : ymax  

17- func = x1^2 + x2^2 + x3^3 - x1; 

18- if y > 0 

19- PSNTP = PSNTP + 1; 

20- if y < func 

21- PSNC = PSNC + 1; 

22- end 

23- end 

24- if y < 0 

25- NSNTP = NSNTP + 1; 

26- if y > func 

27- NSNC = NSNC + 1; 

28- end 

29- end 

30- end 

31- end 

32- end 

33- end 

34- if PSNTP>0 

35- PSTR = abs( (x1UL-x1LL) * (x2UL-x2LL) * (x3UL-

x3LL) * (ymax-0) ); 

36- PSR = (PSNC*PSTR)/(PSNTP); 

37- else PSR=0; 

38- end 

39- if NSNTP>0 

40- NSTR = abs( (x1UL-x1LL) * (x2UL-x2LL) * (x3UL-

x3LL) * (ymin-0) ) ; 

41- NSR = (NSNC*NSTR)/(NSNTP); 
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42- else NSR =0; 

43- end 

44- INTEGRALFUNC = PSR - NSR; 

45- fprintf ('The integral of the function of  three variables at 

the given limits of integration is = %10.8f 

\n',INTEGRALFUNC) 

 

3. Results and Discussions 
 

The exposed results are based in the discussed conditions in 

the methodology and through the use of a computer Intel(R) 

Core(TM) i5-7200U CPU @ 2.50 GHz, 64 bits and RAM of 

8 GB. The computational algorithms were executed with 

windows 10 (operating system) with a total utilization of 

25% of the processor in all the cores. 

 

3.1. Results for the function of one variable 

 

The algorithm execution time for the function of one variable 

was 42489.41 seconds and its integral value was 169.75345. 

The analytical integration of the function of one variable, at 

the given limits of integration, provides a value equal to 

169.75. The error between the analytical value and the 

present method’s value is given by Equation (15) below: 
 

 
 

If the steps size of variation for x1 and y were 0.001 instead 

of 0.0001, the algorithm execution time and the function’s 

integral value would be respectively, 487 seconds and 

169.78457206.  Then, the error would be given by Equation 

(16): 

 

 
 

3.2 Results for the function of two variables 

 

The algorithm execution time for the function of two 

variables was 3853.36 seconds and its integral value was 

164.79618309. The analytical integration of the function of 

two variables, at the given limits of integration, provides a 

value equal to 164.5833. The error between the analytical 

value and the present method’s value is given by Equation 

(17) below: 

 

 
 

3.3. Results for the function of three variables 

 

The algorithm execution time for the function of three 

variables was 22816.73 seconds and its integral value was 

33.76086042. The analytical integration of the function of 

three variables, at the given limits of integration, provides a 

value equal to 33.75. The error between the analytical value 

and the present method’s value is given by Equation (18): 

 

 
 

4. Conclusion 
 

The present method calculate the definite multiple integral of 

a multivariable function, even if it does not have an analytical 

solution. The shown algorithm execution time is directly 

proportional to the given variables’ steps of variation, to the 

quantity of integrated variables, to the limits of integration, 

and to the difference value between the function’s maximum 

and minimum possible value (imaginary region y axis limits) 

at the variables limits of integration. Smaller the step size of 

variation for a variable, higher the tendency to get an 

optimum accuracy value. The calculated errors proved that 

the method has high efficiency.  

 

5. Future Scope 
 

One scope is to use the present method for the numerical 

integration of partial differential equations, e. g. fluid 

mechanics and electromagnetism PDEs, wave equation etc. 

Another scope is to use the shown method for the numerical 

integration of mathematical functions of all areas, e.g. 

potential theory, and to compare the accuracy of the results 

with others numerical methods. 
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