
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Computational Algorithm for the Numerical

Integration of a Function of One or More Variables

Alexandre César Balbino Barbosa Filho

Department of Chemical Engineering, Federal University of Campina Grande , PB, BRAZIL

Abstract: The objective of the study is to present a computational algorithm for the numerical calculation of integrals of a function

with any amount of variables, with defined lower and upper limits of integration for its variables. The method find the integral value for

functions of any dimensions and comprises of an algorithm that is kind of a modified version of a Monte Carlo method for numerical

integration, but utilizes more other concepts and structure. The algorithm generates organized points in the Euclidian space towards

the function, for increasing the accuracy of the results. The results shown the high efficiency of the method through calculated errors

compared to analytical values, and also show the linked algorithms execution time to its functions.

Keywords: Integral, Numerical integration, Mathematical programming, Computational algorithm

1. Introduction

Computational simulations are advancing each day more,

assuming an essential role in the human activities. One

example of prospering, by using these techniques, is the

universe discovering by human beings, on which before the

rockets being launched, a partial differential equations (PDE)

system derived from conservative laws are solved. Such

methods avoid mistakes and accidents, reduce costs, and

predict phenomena occurring in a process.

Stanley J. Farlow [1] cites 10 methods to solve PDE in his

book, and one of them is the Integral Equations, which

consists on changing the PDE to an integral equation. What if

integrals could be solved by a new numerical integration

method with high accuracy? The results would have more

approximation of the reality.

So the present paper shows a method to improve numerical

simulation technology by the use of a computational

algorithm that solves integrals. It can be used not only in the

simulation field, but also to solve other problems that

includes integral.

The Monte Carlo Method are in the class of computational

algorithms and use random sampling to obtain numerical

results, but aleatory generation of points makes the problem

more dependent of luck, increasing the chance of obtaining

uncertainties in the results.

The advantage of placing points with organized distributions

with an algorithm comprised by conditional statements, is

that the computer do not need to count the points inside the

interested region, fleeing the inside or outside problem [2].

The Monte Carlo integration method for calculating the area

under the curve of a function of one variable, as shown in

Figure 1.1, comprises of the following steps [3,4]:

1) Put the function curve inside of a rectangle with known

area;

2) Place a known amount of random points inside the

rectangle;

3) Count the number of points that lie inside the rectangle;

4) The area under the curve of the function is proportional to

the number of points that lie below it and is given by

Equation (1):

Figure 1.1: Figure merely illustrative of the Monte Carlo

method for the calculation of the integral of the function of

one variable

Af is the area below the function curve; AR is the area of the

rectangle; Nf is the number of points below the function

curve; NR is the number of points inside the rectangle.

One disadvantage, if the amount of the generated points is

huge and if the function has a few amount of variables, is the

slow convergence. But with the advancing of the technology,

more specifically of the super and quantum computers, the

convergence time will expressively reduce.

The methodology’s technique of the present paper is to

calculate the integrals of a function of any variables by

generating organized points in an imaginary region, and

through the use of analogous equations of Equation (1), and

others equations. By definition, in this method, the imaginary

region is a region on a Euclidian space to which covers all

the function surface or curve at specified limits. If it is being

calculated a single integral, the imaginary region is an area

Paper ID: ART2018801 DOI: 10.21275/ART2018801 923

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and has therefore two dimensions. The integration of a

function of two variables gives a volume of three dimensions,

but for a function of more than two variables, it gives a

“volume” of more than three dimensions and it starts to

become a complex observing problem, but a feasible one.

The generation of points is done through the computational

algorithm. The count of points, between the function surface

and the Euclidian space origin of the imaginary region, is

done through conditional statements in the computational

algorithm. The total points inside the imaginary region is also

counted through conditional statements.

The space dimension of an imaginary region of the method,

in the Euclidian space, are given by the number of variables

that are being integrated plus one. The dimensional limits of

the imaginary region are the variables limits of integration

and the chosen maximum and minimum limits of the y axis

value for the range of generated points. The values for the

function that is being integrated are in the same axis of the

mentioned y axis above. Figure 1.2 illustrates a Euclidian

space with the surface of a function of two variables, and also

shows an imaginary region covering all the function at a

limited domain.

Figure 1.2: Figure merely illustrative of a Euclidian space

with an imaginary region covering the surface of a function

of two variables

Some concepts must be presented before using the method,

more specifically, the meaning of the variables PSNC,

PSNTP, NSNC, NSNTP, PSTR, PSR, NSTR and NSR:

 PSNC: The sum of points that are distributed in the

positive side of the imaginary region (also in positive side

of Euclidian space) and are placed between the function

surface and the Euclidian’s space origin;

 PSNTP (Positive side’s number of total points): The sum

of all points that are distributed in the positive side of the

imaginary region (also in positive side of Euclidian

space);

 NSNC: The sum of points that are distributed in the

negative side of the imaginary region (also in negative

side of Euclidian space) and are placed between the

function surface and the Euclidian’s space origin;

 NSNTP (Negative side’s number of total points): The

sum of all points that are distributed in the negative side

of the imaginary region (also in negative side of Euclidian

space);

 PSTR (positive side total region): Quantity of points

distributed in all the positive side of the imaginary region;

 PSR (positive side region): Quantity of points distributed

between the function surface inside the positive side of

the imaginary region, and the Euclidian’s space origin;

 NSTR (negative side total region): Quantity of points

distributed in all the negative side of the imaginary

region;

 NSR (negative side region): Quantity of points distributed

between the function surface inside the negative side of

the imaginary region, and the Euclidian’s space origin.

On analogous with Equation (1), Equations (2) and (3)

below, calculate the PSR and NSR value:

PSNC, PSNTP, NSNC and NSNTP values are determined

during the code execution through the counting of the

generated points under certain conditions. The PSTR and

NSTR values are calculated by Equations (4) and (5):

In the summation of Equations (4) and (5), “n” and “i”, are

respectively, the quantity of the function integrating variables

and the integrating variable. “ ” and “ ”, are

respectively, the variable “i” upper and lower limits of

integration. “ ” and “ ”, are respectively, the function

maximum and minimum possible value at the domain of the

given limits of integration at the Euclidian space. If “n” is

equal to 2, e.g., Equations (4) and (5) can only represent the

volume of a rectangle or cube.

The value of the y axis for a point in the positive side of the

Euclidian space is only comprised by positive values for the

y coordinate, while the opposite is true for the negative side.

For example, each of the positive side and the negative side

of a third dimensional imaginary region is comprised by 4

octants of a Euclidian three-dimensional coordinate system.

With the values of PSR and NSR in hands, the integral value

of the function with defined limits of integration is calculated

by Equation (6) below:

Paper ID: ART2018801 DOI: 10.21275/ART2018801 924

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Methodology and Solved Examples

The algorithm calculate the definite multiple integral of any

function that has all of its components defined with the limits

of integration. For example, the Gaussian function defined by

Equation (7), may not be compatible with the method

described on this article if the constants a, b and c are not

specified as a numerical value:

The reason for this is that Equation (7) has a constant

variable that is defined as a symbol instead of a number,

compromising the reading of the algorithm by the computer.

In the use of this method, all the variables inside the

integrated function must be defined as a number, and its

limits of integration must be specified. Meaning that if ,

and are numerically defined, Equation (7) can be solved by

this paper methodology.

The method calculate the definite integral or the definite

multiple integrals () of a function (f(x1,…,xn)) of any

variables, just like in Equation (8):

2.1. Algorithm’s Methodology

The algorithm is comprised by multiple nested loops and 6

conditional statements, which the construction of the

computational algorithm is comprised by the following steps:

Step 1: Define the lower and upper limits of integration for

all the function variables;

Step 2: Use an analytical or numerical method to find the

global minimum and maximum values of the function that is

being integrated. These found values must be the function’s

possible minimum and maximum values comprised between

the variables’ limits of integration;

On another words, Step 2 also says that the minimum and

maximum global values do not need to be an inflection point.

The found global minimum and maximum values, are

respectively, the lower and upper limits for the y axis of the

imaginary region along the Euclidian space, and are used in

the y axis loop at Step 4. Step 2 is used to guarantee that the

imaginary region will cover all the function surface, saving

computational effort and execution time in the program

running, comparing to the case wherein chosen values for the

y axis of the imaginary region are used. At this step, a lot of

numerical methods can be used, and Domain’s Sweep

algorithm [5] is strongly recommended, because it is a

method that finds minimum and maximum values of

functions, in a specified range of domain, even if they are not

an inflection point.

Step 3: Set the initial values for PSNC, PSNTP, NSNC and

NSNTP as zero;

Step 4: Put nested loops statements, one loop for each

variable, to which the outer loop is always linked to the first

variable (x1). Each loop vary its variable value with a given

step size (step size for the generation of points), starting in its

lower integration limit until the upper limit of integration.

The last inner loop of these nested loops, must correspond to

the y axis values (linked to y variable) of the generated points

in the imaginary region, which is the same axis of the

integrated function as mentioned earlier;

In this step, each variable step size must be defined according

to the users will. When the nested loop is being executed by

the computer, it is like the program is walking into the

Euclidian space while generate points on each conjunct of

variables values (x1, …, xn, y). These generation is

organized because this “walk” is chosen by the user when it

is specified each variable step size.

Step 5: Inside the last inner loop, define the function (f(x1,

…, xn)) that is being integrated and calculate its value with

the currently variables values supplied by the nested loops in

Step 4;

Step 6: Yet inside the last inner loop, put the first conditional

statement which says that if the y value is higher than zero,

then, add the currently PSNTP value by one and store the

new value;

If the first conditional statement is not satisfied during the

code execution, then, the currently PSNTP value is not

updated and it skips to the next step.

Step 7: Inside the first conditional statement, put the second

conditional statement which says that if the y value is less

than the function currently value, then, add the currently

PSNC value by one and store the new value;

If the second conditional statement is not satisfied during the

code execution, then, the currently PSNC value is not

updated and it skips to the next step.

Step 8: Put an end statement for the second and first

conditional statements;

Step 9: Yet inside the last inner loop, put the third

conditional statement which says that if the y value is less

than zero, then, add the currently NSNTP value by one and

store the new value;

If the third conditional statement is not satisfied during the

code execution, then, the currently NSNTP value is not

updated and it skips to the next step.

Step 10: Inside the third conditional statement, put the fourth

conditional statement which says that if the y value is higher

than the function currently value, then, add the currently

NSNC value by one and store the new value;

If the fourth conditional statement is not satisfied during the

code execution, then, the currently NSNC value is not

updated and it skips to the next step.

Paper ID: ART2018801 DOI: 10.21275/ART2018801 925

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Step 11: Put an end statement for the third and fourth

conditional statements;

Step 12: Put an end statement for each loop statement;

With these technique, the generated points’ coordinates will

always lie inside of the chosen variables limits, because the

loop statements are only working inside the variables limits

of integration.

Step 13: Put the fifth conditional statement which says that if

the last stored PSNTP value is higher than zero, then,

calculate the PSTR value using Equation (4), and PSR value

using Equation (2);

If the fifth conditional statement is not satisfied during the

code execution, then, the PSR value is zero.

Step 14: Put an end statement for the fifth conditional

statement;

Step 16: Put the sixth conditional statement which says that if

the last stored NSNTP value is higher than zero, then,

calculate the NSTR value using Equation (5), and NSR value

using Equation (3);

If the sixth conditional statement is not satisfied during the

code execution, then, the NSR value is zero.

Step 17: Put an end statement for the sixth conditional

statement;

Step 18: Calculate the integral using Equation (6).

2.2. Computational Code Example

The present method was used to calculate the integral of

functions with one, two and three variables. It was used the

MATLAB® (R2015a, Mathworks, Natick, MA, USA) for

making the implementation of the algorithm. In this software,

the conditional and the loop statements commands are “if”

and “for”, respectively. It was calculated the minimum and

the maximum global values of each exemplified functions

before the implementation of the method.

2.2.1. Algorithm for the function of one variable

The function of one variable that is being integrated is given

by Equation (9) below:

The lower and upper limits of integration for x1 are -2 and 5,

respectively. The steps size of variation for x1 and y, in the

algorithm, are 0.0001. The minimax method used was the

Domain’s Sweep [5], and the function’s maximum and

minimum possible value in this range of integration are,

respectively, 131 and -9. The integral that is being

exemplified is given by Equation (10):

The algorithm for the calculation of this integral is:

1- x1LL = -2;

2- x1UL = 5;

3- ymin = -9;

4- ymax = 131;

5- PSNC = 0;

6- PSNTP = 0;

7- NSNC = 0;

8- NSNTP = 0;

9- for x1 = x1LL: 0.0001 : x1UL

10- for y = ymin: 0.0001 : ymax

11- func = (x1^3)+ x1 + 1;

12- if y > 0

13- PSNTP = PSNTP + 1;

14- if y < func

15- PSNC = PSNC + 1;

16- end

17- end

18- if y < 0

19- NSNTP = NSNTP + 1;

20- if y > func

21- NSNC = NSNC + 1;

22- end

23- end

24- end

25- end

26- if PSNTP>0

27- PSTR = abs ((x1UL-x1LL) * (ymax-0));

28- PSR = (PSNC*PSTR)/(PSNTP);

29- else PSR=0;

30- end

31- if NSNTP>0

32- NSTR = abs((x1UL-x1LL) * (ymin-0));

33- NSR = (NSNC*NSTR)/(NSNTP);

34- else NSR =0;

35- end

36- INTEGRALFUNC = PSR - NSR;

37- fprintf ('The integral of the function of one variable at the

given limits of integration is = %10.8f \n',INTEGRALFUNC)

2.2.2. Algorithm for the function of two variables

The function of two variables that is being integrated is given

by Equation (11) below:

The lower and upper limits of integration for x1 and x2 are -2

and 3 for both. The steps size of variation for x1, x2 and y, in

the algorithm, are 0.005. The minimax method used was the

Domain’s Sweep [5], and the function’s maximum and

minimum possible value in this range of integration are,

respectively, 37 and -7. The integral that is being exemplified

is given by Equation (12):

The algorithm for the calculation of this integral, with the

including of Domain’s Sweep algorithm in lines 1 to 17, is:

Paper ID: ART2018801 DOI: 10.21275/ART2018801 926

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1- YMINIMUM = 10^32;

2- YMAXIMUM = -(10^32);

3- for x1 = -2:0.01:3

4- for x2 = -2:0.01:3

5- fun = (x1^2)+(x2^3)+1;

6- if fun > YMAXIMUM;

7- YMAXIMUM = fun;

8- X1MAX = x1;

9- X2MAX = x2;

10- end

11- if fun < YMINIMUM

12- YMINIMUM = fun;

13- X1MIN = x1;

14- X2MIN = x2;

15- end

16- end

17- end

18- x1LL = -2;

19- x2LL = -2;

20- ymin = YMINIMUM;

21- x1UL = 3;

22- x2UL = 3;

23- ymax = YMAXIMUM;

24- PSNC = 0;

25- PSNTP = 0;

26- NSNC = 0;

27- NSNTP = 0;

28- for x1 = x1LL: 0.005 : x1UL

29- for x2 = x2LL : 0.005: x2UL

30- for y = ymin: 0.005 : ymax

31- func = (x1^2) + (x2^3) + 1;

32- if y > 0

33- PSNTP = PSNTP + 1;

34- if y < func

35- PSNC = PSNC + 1;

36- end

37- end

38- if y < 0

39- NSNTP = NSNTP + 1;

40- if y > func

41- NSNC = NSNC + 1;

42- end

43- end

44- end

45- end

46- end

47- if PSNTP>0

48- PSTR = abs((x1UL-x1LL) * (x2UL-x2LL) * (ymax-0));

49- PSR = (PSNC*PSTR)/(PSNTP);

50- else PSR=0;

51- end

52- if NSNTP>0

53- NSTR = abs((x1UL-x1LL) * (x2UL-x2LL) * (ymin-0));

54- NSR = (NSNC*NSTR)/(NSNTP);

55- else NSR =0;

56- end

57- INTEGRALFUNC = PSR - NSR;

58- fprintf ('The integral of the function of two variables at

the given limits of integration is = %10.8f

\n',INTEGRALFUNC)

2.2.3. Algorithm for the function of three variables

The function of three variables that is being integrated is

given by Equation (13):

The lower and upper limits of integration for x1, x2 and x3

are respectively: -2 and 1, -2 and 1, -2 and 1. The steps size

of variation for x1, x2, x3 and y, in the algorithm, are 0.01.

The minimax method used was the Domain’s Sweep, and the

function’s maximum and minimum possible value in this

range of integration are, respectively, 11 and -8.25. The

integral that is being exemplified is given by Equation (14):

The algorithm for the calculation of this integral is:

1- x1LL = -2;

2- x2LL = -2;

3- x3LL = -2;

4- x1UL = 1;

5- x2UL = 1;

6- x3UL = 1;

7- ymin = -8.25;

8- ymax = 11;

9- PSNC = 0;

10- PSNTP = 0;

11- NSNC = 0;

12- NSNTP = 0;

13- for x1 = x1LL: 0.01 : x1UL

14- for x2 = x2LL : 0.01: x2UL

15- for x3 = x3LL : 0.01 : x3UL

16- for y = ymin: 0.01 : ymax

17- func = x1^2 + x2^2 + x3^3 - x1;

18- if y > 0

19- PSNTP = PSNTP + 1;

20- if y < func

21- PSNC = PSNC + 1;

22- end

23- end

24- if y < 0

25- NSNTP = NSNTP + 1;

26- if y > func

27- NSNC = NSNC + 1;

28- end

29- end

30- end

31- end

32- end

33- end

34- if PSNTP>0

35- PSTR = abs((x1UL-x1LL) * (x2UL-x2LL) * (x3UL-

x3LL) * (ymax-0));

36- PSR = (PSNC*PSTR)/(PSNTP);

37- else PSR=0;

38- end

39- if NSNTP>0

40- NSTR = abs((x1UL-x1LL) * (x2UL-x2LL) * (x3UL-

x3LL) * (ymin-0)) ;

41- NSR = (NSNC*NSTR)/(NSNTP);

Paper ID: ART2018801 DOI: 10.21275/ART2018801 927

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

42- else NSR =0;

43- end

44- INTEGRALFUNC = PSR - NSR;

45- fprintf ('The integral of the function of three variables at

the given limits of integration is = %10.8f

\n',INTEGRALFUNC)

3. Results and Discussions

The exposed results are based in the discussed conditions in

the methodology and through the use of a computer Intel(R)

Core(TM) i5-7200U CPU @ 2.50 GHz, 64 bits and RAM of

8 GB. The computational algorithms were executed with

windows 10 (operating system) with a total utilization of

25% of the processor in all the cores.

3.1. Results for the function of one variable

The algorithm execution time for the function of one variable

was 42489.41 seconds and its integral value was 169.75345.

The analytical integration of the function of one variable, at

the given limits of integration, provides a value equal to

169.75. The error between the analytical value and the

present method’s value is given by Equation (15) below:

If the steps size of variation for x1 and y were 0.001 instead

of 0.0001, the algorithm execution time and the function’s

integral value would be respectively, 487 seconds and

169.78457206. Then, the error would be given by Equation

(16):

3.2 Results for the function of two variables

The algorithm execution time for the function of two

variables was 3853.36 seconds and its integral value was

164.79618309. The analytical integration of the function of

two variables, at the given limits of integration, provides a

value equal to 164.5833. The error between the analytical

value and the present method’s value is given by Equation

(17) below:

3.3. Results for the function of three variables

The algorithm execution time for the function of three

variables was 22816.73 seconds and its integral value was

33.76086042. The analytical integration of the function of

three variables, at the given limits of integration, provides a

value equal to 33.75. The error between the analytical value

and the present method’s value is given by Equation (18):

4. Conclusion

The present method calculate the definite multiple integral of

a multivariable function, even if it does not have an analytical

solution. The shown algorithm execution time is directly

proportional to the given variables’ steps of variation, to the

quantity of integrated variables, to the limits of integration,

and to the difference value between the function’s maximum

and minimum possible value (imaginary region y axis limits)

at the variables limits of integration. Smaller the step size of

variation for a variable, higher the tendency to get an

optimum accuracy value. The calculated errors proved that

the method has high efficiency.

5. Future Scope

One scope is to use the present method for the numerical

integration of partial differential equations, e. g. fluid

mechanics and electromagnetism PDEs, wave equation etc.

Another scope is to use the shown method for the numerical

integration of mathematical functions of all areas, e.g.

potential theory, and to compare the accuracy of the results

with others numerical methods.

References

[1] Farlow, S. J. (1993). Partial differential equations for

scientists and engineers. Courier Corporation.

[2] Milgram, M. S. (1989). Does a point lie inside a

polygon?. Journal of Computational Physics, 84(1), 134-

144. Available from: https://doi.org/10.1016/0021-

9991(89)90185-X [Accessed 19th January 2018]

[3] Robert, C. P. (2004). Monte carlo methods. John Wiley

& Sons, Ltd.

[4] Caflisch, R. E. (1998). Monte carlo and quasi-monte

carlo methods. Acta numerica, 7, 1-49.

[5] Balbino Barbosa Filho, A.C. Domain's Sweep, a

Computational Method to Optimise Chemical and

Physical Processes. Preprints 2017, 2017070087 (doi:

10.20944/preprints201707.0087.v1). Available from:

https://www.preprints.org/manuscript/201707.0087/v1

[Accessed 26th January 2018]

Author Profile

Alexandre César Balbino Barbosa Filho is in his last

year of Chemical Engineering graduation at Federal

University of Campina Grande, Campina Grande, PB,

Brazil. Alexandre have been actuating in the areas of

modeling, simulation, optimization and control of

processes, development of processes design and mathematical

programming. During the last semester of the course, he carried out

an internship in a sugar cane mill, Usina Santo Antonio, located in

São Luiz do Quitunde –AL, Brazil.

Paper ID: ART2018801 DOI: 10.21275/ART2018801 928

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0021-9991(89)90185-X
https://doi.org/10.1016/0021-9991(89)90185-X
https://www.preprints.org/manuscript/201707.0087/v1

