A Study of Neutrophil Volume, Conductance and Scattergram Parameters in early detection of Neonatal Sepsis

Dr. Vijay Kapse¹, Dr. Jayanti Chandrakar², Dr. Renuka Gahine³, Dr. Girish Suman⁴

¹Associate Professor Department of Pathology Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.) India, 492001
²Director Professor and Head of the Department Pathology, Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.) India, 492001
³Director Professor and Head of the Department Pathology, Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.) India, 492001
⁴PG, Resident Department of Pathology, Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.) India, 492001

Abstract: Background: Neonatal sepsis remains one of the main causes of mortality and morbidity despite the progress in hygiene, introduction of new and potent antimicrobial agents for treatment, and advanced measures for diagnosis. It is responsible for 30-50% of the total neonatal deaths in developing countries. It is extremely important to make an early and accurate identification of neonatal sepsis for prompt antimicrobial therapy and better outcomes. Material and method: A total Number of 350 neonates with clinical suspicion of septicaemia were selected. Blood samples were collected within 24 hours of patient’s admission and before the initiation of antibiotic therapy. Blood samples were tested to obtain culture and haematological results. Results: Out of 350 neonates, we found 184 culture positive and 166 culture negative patients. Klebsiella pneumoniae was the most common micro-organism inoculated. We observed significant increase of MNV and significant decrease of MNS in culture positive patient than culture negative group. However the changes in MNC were not significant. Conclusion: There are several markers to diagnose neonatal sepsis still the researchers are searching for the ideal and accurate marker. We suggest that neutrophil VCS parameters are useful for early diagnosis of neonatal sepsis.

Keywords: Neonates, Septicaemia, Neutrophil Volume, Conductance, Scattergram, Culture, Microorganism, Haematological parameters

1. Introduction

Neonatal sepsis is a clinical syndrome of bacterial infection characterized by signs and symptoms of systemic involvement during first month of life. As per National Neonatal Perinatal Database (NNPD) 2002-2003, the incidence of neonatal sepsis in India was 30 per 1000 live birth. It is estimated that up to 20% of the neonates develop sepsis and approximately 1% die of sepsis related causes. [1] The clinical course of neonatal sepsis can be fulminant within hours of onset so early diagnosis and treatment of neonatal sepsis may help to decrease neonatal mortality. Thus, it is extremely important to make an early and accurate identification of neonatal sepsis for prompt antimicrobial therapy and better outcomes. [2]

The clinical diagnosis of neonatal sepsis is difficult because the signs and symptoms are not always specific. There is no laboratory test with 100% sensitivity and specificity. [3] Laboratory studies used to evaluate for early -onset and late-onset sepsis include a complete blood count (CBC), differential blood count and cerebrospinal fluid (CSF) cultures, and measurement of C-reactive protein (CRP) and possibly other infection markers. Review of peripheral blood smears can also yield important diagnostic information through the identification of the morphologic changes characteristically seen in reactive neutrophils during infection. [4],[5],[6] Such changes include the presence of toxic granularity, toxic vacuolization, and Döhle bodies in the cytoplasm. Younger forms (left shift), such as band cells and metamyelocytes, also can be identified.[7] However, this approach is not only labour-intensive and time-consuming, but also requires the technical expertise of a haematologist to identify correctly these changes. [9][10] With the introduction of newer automated analysers for determining haemogram, technology has a new role to play. The volume, conductivity and scatter (VCS) technology of the Coulter LH 750 haematology analyser (Beckman Coulter, Fullerton, CA, USA) can obtain data from more than 8000 white blood cells (WBCs) in a few seconds, using impedance to measure cell volume (V) for accurate size of all cell types, radio frequency opacity to characterize conductivity (C) for internal composition of each cell, and a laser beam to measure light scatter (S) for cytoplasmic granularity and nuclear structure. The data from VCS technology can thus be a comparable reflection of cell morphology. [9] [10] Hence, we planned present study to identify cost-effective tests for the diagnosis of early neonatal sepsis; it could bring down the morbidity and mortality rate substantially. So that prompt treatment can be initiated and neonatal deaths can be minimized.

Aim

To determine any difference in mean neutrophil volume, conductance and scattergram in patients diagnosed with neonatal sepsis by blood culture positive with those of blood culture negative.

Objectives

- To Investigate the Value of Volume, Conductance and Scattergram Parameters in the Diagnosis of Neonatal Sepsis.

Volume 7 Issue 3, March 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART201862
DOI: 10.21275/ART201862
To determine the most appropriate cut-off value of each parameter in neonatal sepsis.

To determine the diagnostic sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of VCS parameters.

Sample Size
Study size n is calculated using formula n=4pq/E2. Where, p is the prevalence of neonatal septicemia, q is 1-p and E is allowable error taken as 5%. Based on prevalence of 30% obtained from previous studies sample size is worked out to be 336, but we have taken the sample size 350 for convenience of statistical analysis.

2. Materials and Methods

A total number of 350 neonates with clinical suspicion of septicemia were selected. This prospective study was conducted in the department of Pathology and department of Pediatrics in Pt. Jawaharlal Nehru Memorial Medical College and associated Dr. B.R.A.M. Hospital Raipur. Septicemia was suspected from clinical history, signs, symptoms, and presence of predisposing factors in mothers and neonates. The patient’s medical records were reviewed for clinical correlation. Before collection of blood, the puncture site and adjacent area were sterilized by swabbing with spirit. Blood samples were collected within 24 hours of patient’s admission and before the initiation of antibiotic therapy. Blood was collected by vein puncture and transferred into culture broth as well as into EDTA vial for the different hematological tests. Venous blood was used to estimate hemoglobin (Hb), total leukocyte count, differential leukocyte count, platelet count and the VCS parameters of neutrophils. The culture reports were correlated with the hematological parameters.

3. Statistical Analysis

Sensitivity, specificity, positive and Negative predictive values (NPVs) were calculated. All analyses were performed using IBM SPSS 20 (Statistical Package for the Sciences, SPSS Inc., Chicago, IL, USA).

Results were expressed as the mean ± SD.

Comparisons between means were performed
By analysis of variance. Comparison between 2 means was performed

Table 1: Group distribution of study population by Sepsis

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Group</th>
<th>Number of Cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proven sepsis</td>
<td>184</td>
<td>52.57%</td>
</tr>
<tr>
<td>2</td>
<td>Negative for sepsis</td>
<td>166</td>
<td>47.43%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

Mean VCS Parameters
Above table shows out of 350 cases, 184 cases were positive for blood culture (Proven sepsis) and 166 cases were culture negative. We considered blood positive as case group and blood culture negative as control group. In sepsis group majority of the patient were in early onset sepsis group 72.28%, late onset sepsis group make up the rest 27.72%. The most frequent micro-organism which was inoculated from blood culture of our study population is Klebsiella Pneumonae (35.33%) followed by Coagulase negative staphylococcus (27.17%).

Neutrophils plays major role in immune response to acute bacterial infections, we focused mainly on the VCS parameter changes in reactive neutrophils. As shown in Table 2, we observed a significant increase in the MNV for Sepsis cases compared with control Group. On the other hand, the MNS was decreased significantly in sepsis group indicating left-shift transition with increased bands and other immature granulocytes that classically have hypolobated, less complex nuclear morphologic features. We did not observe any difference in the MNC between both the groups. These results indicate the VCS Parameters could identify the morphological changes seen in neutrophils with acute bacterial infection

Correlation of VCS with WBC count
We studied whether changes in VCS parameters correlated with patients’ WBC counts. We initially subdivided the patients into 3 groups based on WBC count: group 1 (n = 14) WBC count <5000, group 2 (n = 53) WBC count 5000-<25000/μL to 25000-<50000/μL and group 3 (n = 117) WBC count ≥25000/μL. We observed a significant increase of the MNV in all 3 groups. The control group, indicating that the MNV may be a more sensitive and reliable indicator of acute bacterial infection than the classically used WBC counts method. However, we observed a significant decrease in the MNS in all 3 groups. There was no significant difference in MNC between control samples and patient groups (Table 3).

Correlation of VCS Parameters with Percentage of Neutrophils
Further, we studied whether changes in VCS parameters are correlated with the percentage of neutrophils. Patient’s samples were stratified based on the percentage of neutrophils into 2 groups: 1 (n = 148), neutrophils ≤ 85% (<0.85) and group 2 (n = 36) neutrophils ≥85%. We observed significant MNV increases in both groups compared with control Subjects. A significant MNS decrease was also noted in both Case groups (Table 4).

Table 2: Mean Value of VCS parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control Group (n=166)</th>
<th>Case Group (n=184)</th>
<th>P - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNV</td>
<td>146±9.8</td>
<td>171±17.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>MNC</td>
<td>144±16</td>
<td>143±16</td>
<td>0.89</td>
</tr>
<tr>
<td>MNS</td>
<td>145±13</td>
<td>121±17.6</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 3: Correlation of VCS Parameters with WBC Count

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control Group (n=166)</th>
<th>Case Group (n=184)</th>
<th>P - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNV</td>
<td>146±9.8</td>
<td>171±17.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>MNC</td>
<td>144±16</td>
<td>143±16</td>
<td>0.89</td>
</tr>
<tr>
<td>MNS</td>
<td>145±13</td>
<td>121±17.6</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Correlation of VCS Parameters with Percentage of Neutrophils
Further, we studied whether changes in VCS parameters are correlated with the percentage of neutrophils. Patient’s samples were stratified based on the percentage of neutrophils into 2 groups: 1 (n = 148), neutrophils ≤ 85% (<0.85) and group 2 (n = 36) neutrophils ≥85%. We observed significant MNV increases in both groups compared with control Subjects. A significant MNS decrease was also noted in both Case groups (Table 4).
Table 4: Correlation of VCS parameters with Percentage of Neutrophils

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control Group (n=166)</th>
<th>Case Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><85%</td>
<td>>85%</td>
</tr>
<tr>
<td>Control</td>
<td>n=148</td>
<td>n=36</td>
</tr>
<tr>
<td>P-Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control vs<85%</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Control vs>85%</td>
<td><0.0001</td>
</tr>
<tr>
<td>MNV</td>
<td>147±9.8</td>
<td>169±17.9</td>
</tr>
<tr>
<td>MNC</td>
<td>144±16</td>
<td>143±16</td>
</tr>
<tr>
<td>MNS</td>
<td>145±13</td>
<td>124±12.4</td>
</tr>
</tbody>
</table>

4. Assessment of Sensitivity and Specificity in Predicting Acute Infection

The sensitivity and specificity of the MNV and MNS, as well as the sensitivity of the MNC and percentage of neutrophils, for predicting infection were analyzed at selected cutoff points. When we selected a cutoff value of MNV equal to or greater than 157 (Table 5), we achieved a sensitivity of 82% and specificity of 92%. Thus, the MNV could be a more sensitive indicator for acute bacterial infection. When we selected a cutoff value of MNC equal to or greater than 136 (Table 5), we achieved a sensitivity of 70% and specificity of 45%. And when we selected a cutoff value of the MNS equal to or less than 131, the sensitivity and specificity were 63% and 78%, respectively (Table 5). Thus, Result shows the MNV was the single most predictable indicator of acute bacterial infection.

ROC curve were constructed for MNV. Area under the curve value for predicting presence of sepsis was 0.557 with 95% confidence interval of 0.503 to 0.610 with p value <0.0662. Optimal cut-off value for predicting presence of sepsis was ≥136.3 with the sensitivity of 70% and specificity of 45%. The positive predictive value MNC was 34% and negative predictive value was 77%.

ROC curve were constructed for MNC. Area under the curve value for predicting presence of sepsis was 0.709 with 95% confidence interval of 0.659 to 0.756 with p value <0.0001. Optimal cut-off value for predicting presence of sepsis was ≤131.2 with the sensitivity of 63% and specificity of 77%. The positive predictive value MNC was 54% and negative predictive value was 82.7%.

Table 5 showing sensitivity specificity positive predictive value and negative predictive value of VCS parameters. Highest values are observed in MNV.

Table 6: Sensitivity and specificity of MNV and MNS in various studies

<table>
<thead>
<tr>
<th>Studies</th>
<th>MNV</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>MNS</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaves at al.</td>
<td>>145</td>
<td>83</td>
<td>54</td>
<td><141</td>
<td>46</td>
<td>80</td>
</tr>
<tr>
<td>Mardi et al.</td>
<td>>150</td>
<td>76</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Celik et al.</td>
<td>>157</td>
<td>79</td>
<td>82</td>
<td><127.5</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Bhargava et al.</td>
<td>>154</td>
<td>95.5</td>
<td>82</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Present study</td>
<td>>157</td>
<td>82</td>
<td>92</td>
<td><131</td>
<td>63</td>
<td>77</td>
</tr>
</tbody>
</table>

The sensitivity of MNV in prediction of neonatal sepsis in other studies is almost similar with our study.
5. Discussion

The WBC count, absolute neutrophil count, percentage of neutrophils, and, other immature neutrophils have been used to predict bacterial infection.[11] the automated hematology analyzers can fast examine the very large numbers of cells to provide all-inclusive haematological profiles. These parameters can be measured by the VCS technology. [12] The Morphologic changes in neutrophils, such as toxic granulation, and Döhle bodies, also provide important diagnostic information for neonatal sepsis. [13],[14],[15] This technology gives the results in few minutes, and no additional blood required to obtain other hematologic parameters such as complete blood cell count (CBC).[16] It also provides measures of cell variability, such as the red cell distribution width, and cell size, mean corpuscular volume, that give valuable information for the differential diagnosis of anemia’s.[15],[17] In this study, we included 350 neonates, 184 neonates with clinical proven sepsis, and 166 negative for sepsis neonates, evaluated neutrophil VCS parameters in the early diagnosis of sepsis and treatment efficacy, and sought to establish the cutoff levels, sensitivity, specificity, and NPV for each parameter.

We showed that the MNV was elevated significantly and the MNS was decreased significantly in septic patients (Cases). An elevation of the MNV was associated with positive blood cultures, higher WBC counts, and higher percentages of neutrophils. This result suggests that the MNV could be a more sensitive and reliable indicator of acute bacterial infection Clinical application of VCS parameters shows several advantages. They are more accurate than manual differential counts methods because more than 8,000 WBCs are evaluated automatically within a minute. [18]

In this study we observed statistically significant differences of the MNV and MNS between samples from bacteremic patient’s group and control subjects. The clinical benefit of these findings was evaluated by comparing the sensitivity and the Specificity of parameters with other standard laboratory tests commonly used in the diagnosis of infection: The MNV shows the highest sensitivity for predicting infection as compare to MNS (Table 5). Furthermore, the MNV was elevated significantly even in samples from patients with normal percentages of neutrophils.

This shows the clinical importance of these findings, because a significant Number of infected individuals (184) are in this category, if the diagnosis of infection had been based on the WBC count or the percentage of neutrophils, the correct diagnosis easily could have been ignored.

Therefore, we consider that the MNV may play possible role and it can be used as an indicator of acute bacterial infection, particularly when the other hematologic parameters do not correlate well with the patient’s clinical signs and symptoms. Large prospective cohort studies are needed to further validate the clinical worth of the VCS parameters in other causes of leukocytosis. Several other clinical applications of the VCS technology remain to be studied. With the vast amount of data that could be obtained relating to the morphologic features of neutrophils, eosinophils, monocytes, and lymphocytes.

Neonatal sepsis remains one of the most important clinical syndromes, especially in preterm infants, leading to high morbidity and mortality, despite advances in neonatology. Although early diagnosis and treatment is needed due to non-specific signs and symptoms and limitations of culturing procedures along with the lack of a perfect indicator/Marker of sepsis. We report cut-off levels of neutrophil VCS parameters in the diagnosis of sepsis, and these parameters seem to be useful in evaluating indicator of sepsisemia. The limitation of this study is that other markers like PCT, CD64, C - reactive protein, ESR, I/T ratio, morphological changes have not been included in the study.

In conclusion, there are several markers to diagnose neonatal sepsis still the Researchers are searching for the ideal and accurate marker. We suggest that neutrophil VCS parameters are useful for early diagnosis of neonatal sepsis.

References

