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Abstract: Self-compacting concrete (SCC) is one of the types of concrete which will compact by its own weight. Now a day’s, due to the 

increase in cost of cement and sand it is very much important to think for other materials as a replacement of concrete materials. This 

paper presents the comparative performance of the models developed to predict 28 to 180 days compressive strengths using neural 

network techniques for the data taken from experimentally for SCC mixes containing rice husk ash and baggase ash as partial 

replacement of cement and quarry dust in fine aggregates with two different topologies.  The data used in the models are arranged in the 

format of nine input parameters and are cement, fine aggregate, coarse aggregate, water content, rice husk ash, baggase ash, quarry 

dust, water cement ratio and superplasticizer dosage and an output parameter is 28 to 180 days compressive strength of two different 

topologies 9-8-7 and 9-9-7. The significance of different input parameters is also given for predicting the strengths at various ages using 

neural network. The performance of the model can be judged by the normalized root-mean-square error, coefficient of correlation and 

average absolute relative error. The results of the present investigation indicate that artificial neural network have strong potential 

feasible tool for predicting compressive strength of concrete. 

 

Keywords: Artificial Neural Network, Concrete, Compressive Strength, Bagasse ash, Rice husk ash, Quarry dust

 

1. Introduction 
  

Soft computing techniques are fuzzy logic, probabilistic 

reasoning, neural networks, and genetic algorithms. In recent 

years, Artificial Neural Network (ANN) has shown 

exceptional performance as regression tool, especially when 

used for pattern recognition and function estimation. They 

can capture highly non-linear and complex relations among 

input/output variables in a system without any prior 

knowledge about the nature of these interactions. ANNs are 

very efficient in predicting the concrete degree of hydration 

with great accuracy by using minimal processing data that 

applied a neural network model for performed foam cellular 

concrete. Results showed that the production yield, foamed 

and un-foamed density, compressive strength of cellular 

concrete mixes can be predicted much more accurately using 

the ANN method compared to existing parametric methods 

[1]. In the world, concrete is one of the most widely used 

construction material, concrete has been fabricated from a 

few well-defined components viz: cement, water, fine and 

coarse aggregates, etc. In the concrete mix design and 

quality control, the strength of concrete is a very important 

property.  Predicted properties of cement paste are of great 

significance and difficult to achieve as a function of the 

mixture gradient and physical properties of concrete. So, 

nonlinear prediction models are considered. The 

uncertainties are associated with the parameters affecting the 

density and compressive strength of cement paste which 

makes it difficult to exactly estimate such properties of 

concrete [2]. Prediction of cement degree of hydration using 

ANN is very efficient with the great accuracy using minimal 

processing data [3].  ANN model for performed foam 

cellular concrete, results showed that the production yield, 

foamed density, unfoamed density and the compressive 

strength of cellular concrete mixtures can be predicted much 

more accurately using the ANN method compared to 

existing parametric methods [4]. The predicted 

performances of SCC for different mixes are used [5].     

 

Recent days self compacting concrete (SCC) as new type of 

concrete, which flows under its own weight without need for 

any external compaction or vibration. SCC was first 

introduced in the late 1980’s by Japanese researchers, as 

highly workable concrete that can flow under its own weight 

through restricted sections without segregation and bleeding. 

[6].This saves the time, reduces overall cost, improves the 

quality of concrete, improves working environment and 

reduces the labours works [8]. In the production of SCC, 

several different approaches can be used.  In one method to 

achieve self-compacting property is to increase significantly 

the amount of fine materials.  Workability of SCC depends 

on a number of interrelating factors such as water cement 

ratio, aggregate to cement ratio, types of superplasticizers 

and its dosage, aggregate type and its grading. Due to its 

excellent workability, mechanical property and durability, 

SCC is extensively used in concreting projects. SCC has 

become an important research and application aspect of the 

high-performance concrete. In recent years, a number of 

research and application on self-compacting concrete have 

been carried out [9]. Compressive strength is the most 

important mechanical property of concrete, it is primarily 

used as quality control, in addition to its other important 

properties of concrete, including flexural strength, splitting 

tensile strength, and modulus of elasticity, which are directly 

related to compressive strength [10].  The several techniques 

based on either empirical methods or computational 
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modelings have been tested, and empirical methods based on 

multi-linear regression is commonly proposed to predict 

compressive strength [11].  

 

2. Artificial Neural Networks  
 

Artificial Neural Network (ANN) is a computational model 

that tries to simulate the structure and functions of biological 

neural networks of the central nervous system. Information 

that flows through the network affects the structure of the 

ANN because it is a neural network. ANN can be trained to 

solve certain problems in any different fields. In this way, 

identically constructed ANN can be used to the perform 

different tasks depending on the training received. Artificial 

Neural Networks are the powerful tool for the purpose of 

prediction and recognition of patterns. ANNs can also well 

suited for problem whose solutions require knowledge that is 

difficult to specify but for which there are enough data [12]. 

In addition to the processing elements called “neurons”, the 

neural networks comprise of the connections between the 

processing elements. The connections carry a weight. 

Weight coefficients are the key elements of every neural 

network. Weights are the connections between different 

layers that have much significance in working of the neural 

networks and the characterizing of a network. Start the 

network with one set of weight and run the network once, 

modify some or all the weights and run the network again 

and repeat the process until some predetermined goal is met. 

The back-propagation provides a computationally efficient 

method for changing the weights in a feed forward network, 

with differentiable activation units to learn a training set of 

input-output examples [13]. ANN methodology has been 

used for modeling a variety of problems and phenomenon 

encountered in the field of Civil Engineering problems.  

 

This present study is an effort to apply neural network-based 

system identification of techniques to predict the 

compressive strength of concrete based on the concrete mix 

proportions. For this study a computer program is developed 

using artificial neural network design toolbox in MATLAB 

from the Math Works [14]. Using this program, a neural 

network model with different hidden layers is constructed, 

trained, and tested using the available test data sets. The data 

used in ANN model are arranged in a format of nine input 

parameters that covers the cement content, fine aggregate 

content, coarse aggregate content, water cement ratio, rice 

husk ash, bagasse ash, superplastizer, quarry dust and water. 

The proposed ANN model predicts the 28
th

 to 180
th

 day’s 

compressive strength of concrete. The main objective of this 

study is to develop a neural network based model for 

predicting compressive strength of concrete of SCC mixes, 

with the experimentally obtained data.  

 

3. Materials and Methods 
 

Cement is the fine material which is used as a binding 

material.  Ordinary Portland cement 43 grade was used. It is 

confirming to the requirement of Indian standard 

specification IS: 8112-1989 [15]. The physical properties are 

given in Table 1. The tests on cement have been carried out 

as IS: 4031- 1999.  The sieve analysis of fine aggregate has 

been carried out as per IS 383-1970[17] and from that it is 

confirmed to grading zone-II and other properties of fine 

aggregate are shown in Table 2. The common coarse 

aggregates used are crushed stone and gravel. The 16 mm 

downsize coarse aggregate was tested as per IS 2386 (I, II, 

III) specifications and the properties are given in Table 2. It 

is confirming to the requirement of Indian standard 

specification IS: 383-1970 [17]. Quarry dust comprises the 

smaller aggregate particles, so it was sieved and quarry dust 

passing from 4.75mm IS sieve and retaining on 150 micron 

IS sieve is used for the replacement of fine aggregate. The 

sieve analysis of fine aggregate has been carried out as per 

IS 383-1970 [17] and from that it is confirmed to grading 

zone-II and other properties of fine aggregate are shown in 

Table 2.  The rice husk ash had greyish white colour. RHA 

passed through IS 90 micron sieve was used.  The specific 

gravity at 27
o
C is 2.18 and bulk density is 895 kg/m

3
 

determined as per IS 1727-1967 [16]. The bagasse ash is 

collected sugar factory was used in this study. The ash 

obtained in the factory was coarser and it was put to the ball 

mill to convert them into fine particles of size most likely to 

the cement particles. Bagasse ash has grayish white color. 

Bagasse ash was passed through IS 90 micron sieve and this 

was used for the research.   The specific gravity is 2.32 and 

bulk density is 1075 kg/m
3
 determined as per IS 1727-1967 

[16]. Admixtures mainly affect the flow behavior of the 

Self-compacting concrete. The admixture used here is Sika 

viscocrete 5231.   The properties of this admixture are 

Relative density at 25
0
C is 1.08, pH is 7.25 and bluish brown 

colour.  

 

Table 1: Properties of Ordinary Portland cement  
S.  

No. 

Physical test Results 

obtained 

Requirement 

IS: 8112-1989 

1 Fineness (%) 5.50 10 maximum 

2 Specific gravity 3.05 - 

3 

 

Vicat time of 

setting (minutes) 

Initial setting time 80 30 minimum 

Final setting time 325 600 maximum 

4 

 

Compressive 

Strength (MPa) 

3 day 24.00 23.00 minimum 

7 day 35.00 33.00minimum 

28 day 45.20 43.00 minimum 

 

Table 2: Physical Properties of Fine Aggregate, Quarry 

Dust and Coarse Aggregate   

Property 

Materials 

Fine  

Aggregate 

Quarry  

Dust 

Coarse  

Aggregate 

Bulk density 

Kg/m3 

Loose state 1552.00 1520.00 1465.00 

Rodded 

state 
1645.00 1615.00 1595.00 

Specific gravity 2.55 2.45 2.62 

Fineness modulus 2.97 2.88 6.90 

Surface Moisture (%) 1.45 2.35 Nil 

Water absorption (%) 1.53 2.80 0.15 

 

4. Mix proportions, Preparation and Casting of 

Test Specimens 
 

Several trial mixes are prepared by changing the volume 

ratio of fine aggregate, coarse aggregate, water/powder ratio 

and super plasticizer. On the basis of the test results  many 

trail mixes are conducted in the laboratory and final mix 

proportion which satisfies the fresh concrete properties as 

per EFNARC 2002 [7]  guidelines is selected for control 

concrete mix. The final mix proportion is the reference mix 

of SCC mixes with different replacement level of bagasse 
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ash, RHA and QD. For all the mixes coarse aggregate 

content is kept constant and are given in Table 3. These 

mixes are tested as per EFNARC [7] and satisfied their 

requirements. Aall the specimens were then cured in water 

until the specified date of testing [7].  The fresh concrete 

properties such as filling ability and passing ability (Slump 

flow test, SlumpflowT50 cm, J-ring test, V-funnel test, V-

funnel 5 minitues and L box) were carried out according to 

EFNARC [7]. Hardened concrete properties such as 

compressive strength were carried out according to IS 

specification [18]. 

 

Table 3: Mix proportion for SCC mixes  

Mix  

Notation 

Cement 

(kg/m3) 

BA 

(kg/m3) 

RHA 

(kg/m3) 

FA 

(kg/m3) 

QD 

(kg/m3) 

CA 

(kg/m3) 

W/c 

 ratio 

SP 

(%) 

MBR1 450 0 0.00 891.00 0.00 742.50 0.46 0.50 

MBR2 405 22.50 22.5 712.00 179.00 742.50 0.46 0.50 

MBR3 405 22.50 22.50 623.70 267.30 742.50 0.48 0.50 

MBR4 405 22.50 22.50 534.60 356.40 742.50 0.48 0.50 

MBR5 405 22.50 22.50 445.50 445.50 742.50 0.50 0.60 

MBR6 405 22.5 22.5 267.30 623.70 742.50 0.55 0.60 

MBR7 360 45.00 45.00 712.00 179.00 742.50 0.50 0.50 

MBR8 360 45.00 45.00 623.70 267.30 742.50 0.52 0.55 

MBR9 360 45.00 45.00 534.60 356.40 742.50 0.52 0.50 

MBR10 360 45.00 45.00 445.50 445.50 742.50 0.55 0.60 

MBR11 360 45.00 45.00 267.30 623.70 742.50 0.55 0.60 

MBR12 315 67.50 67.50 712.00 179.00 742.50 0.52 0.50 

MBR13 315 67.50 67.50 623.70 267.30 742.50 0.53 0.65 

MBR14 315 67.50 67.50 534.60 356.40 742.50 0.55 0.50 

MBR15 315 67.50 67.50 445.50 445.50 742.50 0.55 0.70 

MBR16 315 67.50 67.50 267.30 623.70 742.50 0.55 0.65 

 

5. Training of ANN Model 
 

In this study, multilayered feed forward neural network with 

a back propagation algorithm was adopted. The possible 

training parameters are number of iterations (epoch) learning 

rate, error goal and number of hidden layers. These 

parameters are varied until a good convergence of ANN 

training is obtained and there by fixing the optimal training 

parameters. The numbers of neurons in the input layer and 

output layer are determined based on the problem domain 

depending upon number of input variables and number of 

output or target variables. The number of hidden layers and 

neurons in hidden layer are fixed during the training process. 

Two different topologies 9-8-7 and 9-9-7 ANN architectures 

were built. The training and testing of the ANN models 

constituted with two different topologies. The basic 

parameters are considered in present study were cement, 

coarse aggregate, fine aggregate, quarry dust, water, bagasse 

ash, rice husk ash, superplastizer and w/c ratio and they were 

entered as input, while compressive strength  value was used 

as output, in the topology of model 9-8-7 and 9-9-7. The 

data were randomly divided into a training phase. In the 

present study 80% data generated was used for training and 

the remaining 20% data was used for testing the network.  

For the topology of model 9-8-7 and 9-9-7, the neurons of 

neighboring layers are fully interconnected by weights. 

Finally, the output layer neuron produces the network 

prediction as a result. Momentum rate and learning rate 

values were determined for both the topology models which 

were trained through iterations. The values of parameters 

used in topology of model 9-8-7 and 9-9-7 are given in 

Table 4 and are used to predict the compressive strength. 

The trained models were only tested with the input values 

and the results found were close to experiment results. 

 

Table 4 Parameter use to develop ANN architectures 
Network parameter Topology of 

model 9-8-7 

Topology 

Model 9-9-7 

Number of inputs 9 9 

Number of network output 7 7 

Network training function Levenberg-

Marquardt 

Levenberg-

Marquardt 

Network performance function Mean square 

error 

Mean square 

error 

Number of Hidden Layer 1 1 

Number of  hidden layer neurons 9 8 

Validation checks 6 6 

Learning Rate 0.50 0.50 

Iteration 217 106 

 

6. Results and Discussion  
 

Table 5: Details of Compressive Strength of SCC Mixes 
Mix  

Notation 

Experimental Compressive Strength  (MPa) 

7  

Day 

14 

 Day 

28  

Day 

56  

Day 

91 

 Day 

120 

 Day 

180 

 Day 

MBR1 28.17 29.55 42.17 45.96 47.78 48.09 50.09 

MBR2 27.11 29.78 36.95 42.73 44.04 45.02 47.13 

MBR3 27.15 28.51 32.83 35.11 39.07 41.00 42.32 

MBR4 26.58 32.01 37.17 42.85 43.02 44.07 45.95 

MBR5 27.86 33.28 40.92 43.45 45.86 47.00 48.47 

MBR6 27.15 31.10 38.98 41.00 41.68 43.22 44.30 

MBR7 22.02 28.92 35.2 37.23 38.09 40.27 41.23 

MBR8 19.42 22.82 26.52 28.91 33.89 34.58 38.11 

MBR9 21.84 22.65 25.17 28.56 33.20 34.42 37.76 

MBR10 19.40 22.01 25.93 29.12 32.87 33.21 35.68 

MBR11 18.80 20.27 24.93 28.71 30.29 32.67 35.42 

MBR12 17.26 19.02 25.60 27.30 28.93 31.30 32.93 

MBR13 16.38 18.71 23.20 24.53 26.56 29.82 31.86 

MBR14 16.08 18.00 21.93 23.29 24.67 25.69 27.82 

MBR15 14.33 15.93 18.95 20.70 22.00 22.98 24.57 

MBR16 12.35 14.78 17.26 20.22 22.41 22.73 24.30 

 

Table 6: Statistical performance for the Models for 

Compressive Strength of SCC Mixes  
Parameter Topology of the ANN Model 

9-8-7 9-9-7 

Training Testing Training Testing 

CC 0.9997 0.9997 0.9999 0.9999 

NRMSE 0.006325195 0.082551439 0.003057932 0.077771723 

AARE (%) 0.491440318 6.790348633 0.253777136 6.23400169 
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Figure 1: Training Curves for Prediction of Compressive Strength of SCC Mixes 

 

Table 7: Predicted Training and Testing Outputs of the 

Compressive Strength of SCC Mixes 

Topology of the ANN Model  9-8-7 

Training Output 

Mix  

Notation 

7  

Day 

14 

 Day 

28 

 Day 

56 

 Day 

91 

 Day 

120  

Day 

180  

Day 

MBR1 28.16 29.58 42.13 45.99 47.80 48.03 50.08 

MBR2 27.15 29.53 37.20 42.47 43.83 45.39 47.15 

MBR3 27.08 28.73 32.62 35.33 39.18 40.66 42.36 

MBR5 27.92 33.28 40.81 43.52 46.05 46.91 48.31 

MBR6 27.12 31.11 38.99 40.97 41.60 43.25 44.36 

MBR7 22.00 28.90 35.23 37.20 38.03 40.28 41.28 

MBR8 19.52 22.75 26.46 28.86 33.98 34.75 37.94 

MBR10 19.18 21.80 26.43 28.87 32.37 33.37 36.07 

MBR11 18.85 20.28 24.85 28.75 30.41 32.61 35.32 

MBR12 17.15 19.54 25.08 27.77 29.26 30.65 32.90 

MBR14 16.33 17.83 22.00 23.01 24.62 26.03 27.72 

MBR15 14.18 15.75 19.13 20.70 21.97 23.10 24.51 

MBR16 12.41 14.85 17.18 20.22 22.41 22.68 24.31 

Testing output 

MBR4 27.66 31.73 39.54 44.53 44.54 46.61 47.60 

MBR9 19.72 22.74 27.30 30.88 35.82 36.45 40.02 

MBR13 15.58 17.95 22.82 22.94 22.88 24.69 25.52 

Topology of the ANN Model  9-9-7 

Training Output 

MBR1 28.18 29.54 42.16 45.97 47.74 48.11 50.09 

MBR2 27.09 29.78 36.95 42.69 44.06 45.00 47.12 

MBR3 27.16 28.51 32.81 35.10 39.10 40.96 42.31 

MBR5 27.90 33.33 40.86 43.44 46.01 46.85 48.45 

MBR6 27.16 31.01 38.98 41.07 41.47 43.37 44.31 

MBR7 21.98 28.94 35.22 37.16 38.13 40.24 41.23 

MBR8 19.49 22.73 26.45 29.04 33.75 34.65 38.10 

MBR10 19.25 22.03 26.08 28.97 32.76 33.34 35.71 

MBR11 18.77 20.35 24.93 28.63 30.46 32.54 35.41 

MBR12 17.25 19.04 25.59 27.26 29.03 31.22 32.92 

MBR14 16.12 17.93 21.92 23.381 24.40 25.85 27.83 

MBR15 14.26 16.03 18.95 20.55 22.35 22.72 24.54 

MBR16 12.47 14.69 17.17 20.37 22.24 22.81 24.29 

Testing Output 

MBR4 30.44 32.97 39.21 40.34 42.70 44.90 46.11 

MBR9 20.68 21.60 25.17 26.17 30.75 32.24 36.99 

MBR13 14.29 19.36 23.74 26.06 25.33 25.69 24.94 

 

 

 

 

 

 

Table 8: Percentage Error between Actual and Predicted 

Compressive Strength of SCC mixes 
Topology of the ANN Model  9-8-7 

Training Output 

Mix  

Notation 

7  

Day 

14 

 Day 

28  

Day 

56 

 Day 

91  

Day 

120 

 Day 

180  

Day 

MBR1 0.01 0.11 0.07 0.06 0.05 0.10 0.00 

MBR2 0.16 0.83 0.69 0.58 0.46 0.84 0.04 

MBR3 0.24 0.799 0.63 0.64 0.29 0.81 0.09 

MBR5 0.22 0.029 0.25 0.18 0.42 0.18 0.32 

MBR6 0.08 0.04 0.05 0.06 0.18 0.08 0.14 

MBR7 0.06 0.06 0.10 0.06 0.14 0.04 0.12 

MBR8 0.53 0.29 0.21 0.17 0.27 0.51 0.44 

MBR10 1.10 0.92 1.95 0.84 1.51 0.49 1.09 

MBR11 0.26 0.05 0.30 0.17 0.42 0.17 0.26 

MBR12 0.61 2.78 2.02 1.73 1.17 2.06 0.08 

MBR14 1.57 1.03 0.35 1.19 0.19 1.33 0.33 

MBR15 1.01 1.10 0.96 0.00 0.09 0.52 0.20 

MBR16 0.49 0.47 0.45 0.00 0.03 0.20 0.07 

Testing output 

MBR4 4.09 0.84 6.38 3.94 3.55 5.76 3.60 

MBR9 9.68 0.43 8.47 8.15 7.89 5.91 5.99 

MBR13 4.87 4.02 1.60 6.47 13.82 17.17 19.87 

Topology of the ANN Model  9-9-7 

Training Output 

MBR1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MBR2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MBR3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MBR5 0.16 0.15 0.13 0.00 0.33 0.30 0.03 

MBR6 0.03 0.27 0.01 0.17 0.48 0.35 0.02 

MBR7 0.17 0.07 0.06 0.16 0.11 0.06 0.00 

MBR8 0.37 0.38 0.22 0.47 0.40 0.23 0.00 

MBR10 0.75 0.09 0.60 0.49 0.32 0.41 0.08 

MBR11 0.13 0.37 0.01 0.27 0.57 0.37 0.02 

MBR12 0.04 0.13 0.03 0.13 0.36 0.24 0.02 

MBR14 0.27 0.34 0.03 0.39 1.06 0.65 0.04 

MBR15 0.44 0.66 0.02 0.71 1.62 1.09 0.08 

MBR16 1.01 0.57 0.48 0.76 0.72 0.36 0.00 

Testing output 

MBR4 14.52 3.02 5.50 5.85 0.74 1.89 0.36 

MBR9 5.26 4.60 0.03 8.33 7.37 6.32 2.03 

MBR13 12.70 3.52 2.356 6.27 4.62 13.84 21.00 

 

Paper ID: ART2018560 DOI: 10.21275/ART2018560 318 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 7 Issue 3, March 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 

 

   
Figure 2: Comparison of the experimental and predicted compressive strength with training and testing results of 28, 91 and 

180 days for Topologies 9-8-7 and 9-9-7 

 

The results of compressive strength of cubes for 28 to 180 

days curing are given in Table 5. The optimum dataset of the 

representative concrete mix proportion is used for 

developing the ANN model to predict the compressive 

strength of concrete. ANN models with two topologies are 

used. During experiments, it is found that the LM back 

propagation is the best possible training function with 

correlation equal to or greater than 95% on an average. The 

results of predicted compressive strength of each simulation 

data are given in Table 7. The predictions of the best ANN 

model are graphically shown in Fig. 1. The statistical values 

such as normalized root-mean-square error (NRMSE), 

coefficient of correlation (CC), average absolute relative 

error (AARE) are given in Table 6 and are used to judge the 

performance of the neural network approach in predicting 

the strength. It is found that the values obtained from the 

training and testing in topology of model 9-8-7 and 9-9-7, 

were very closer to the experimental results. 

 

Fig. 1 shows the mean square error convergence history. The 

mean square error with regularization for the best validation 

performance occurred at 4.2529e-07 for 217 epoch. In Fig. 

1, the gradient at 217 epochs is 0.0609. The mean square 

error with regularization for the best validation performance 

occurred at 9.94e-08 for 106 epoch. In Fig. 1, the gradient at 

106 epochs is 0.0602. The visualization of the training graph 

shows smooth convergent appears for both topology 9-8-7 

and 9-9-7 as shown in Fig. 1. 
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From the Table 8, it is observed from the results of ANN 

with topology 9-8-7 in training and testing modes, the 

difference between the predicted and experimental  

compressive strength are varies in the range of  0.00 to 14.50 

% for 7day,  0.00 to 4.60 % for 14 day,  0.00 to 5.50 %  for 

28 day,  0.00  to 5.85 % for 56 day,  0.00 to 7.37 %  for 91 

day, 0.00 to 13.84 % for 120 day,  0.00 to 21.69 for 180 day 

respectively. Similarly for the topology 9-9-7 in training and 

testing modes, the difference between the predicted and 

experimental compressive strength are varies in the range of  

0.00 to 9.68 % for 7day,  0.00 to 4.02 %  for 14 day,  0.0 to 

8.47 % for 28 day,  0.00 to 8.15%  for 56 day,  0.0 to 13.82 

%  for 91 day,  0.00 to 17.17%   for 120 day,  0.00 to 19.87 

% for 180 day respectively. The prediction compressive 

strength of SCC mixes is determined from experimental 

data.  Fig. 2 shows the linear relationship between predicted 

and actual values for the model for both topologies 9-8-7 

and 9-9-7, the linear relationship shows that there is 

correlation between actual and predicted values. 

  

7. Conclusion 
 

1) An  empirically investigated the  different architectural 

parameters such as the number of hidden neurons, 

learning rate, performance goal, epochs for the fine 

tuning of neural network of the model. 

2) ANN model has been proposed to predict the 

compressive strength of concrete with the development 

of different topology of model. 

3) The visualization of the training graph shows smooth 

convergent which appears for both topology 9-8-7 and 9-

9-7. 

4) The average predicted / experimental compressive 

strength values are more closed. 

5) Both the topologies of models developed predicted 

compressive strength at various ages and the results in 

the form of correlation coefficient, normalized root-

mean-square error and average absolute relative error 

were found to be better for both models. 

6) Bagasse ash and rice husk ash is a by-product material, it 

is used as a cement replacing material which reduces the 

levels of CO2 emission by the cement industry. In 

addition its use resolves the disposal problems associated 

with it in the sugar industries and thus keeping the 

environment free from pollution.  
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