Isolation and Identification of Aeromonas hydrophila, Pathogen of Farmed Tilapia (Oreochromis niloticus) in Region Agneby-Tiassa in côte d’Ivoire

Affoue Edwige KOUASSI1, Moussa CISSE4, Marina Koussemon2, Allassane OUATTARA1, Germain GORENE1

1Département des Pêches et Aquaculture, Laboratoire d’Environnement et de Biologie Aquatique, 02 BP 801 Abidjan 02, Côte d’Ivoire, Université Nangui Abrogoua, Côte d’Ivoire
2Département des Sciences et Techniques des Aliments, Laboratoire de Microbiologie et Sécurité Alimentaire, 02 BP 801 Abidjan 02, Côte d’Ivoire, Université Nangui Abrogoua, Côte d’Ivoire

Abstract: The pathogen responsible of mortality of farmed tilapia fish in region Agneby-Tiassa in Côte d’Ivoire was investigated. A total of 76 dead fish or showing clinical signs of disease were collected from a private farm in said region. The analyses of samples consisted to isolation of Aeromonas hydrophila, biochemical characterization and molecular detection of virulence gene by PCR. Eleven biotypic profiles of A. hydrophila were differentiated in the use or not of lysine decarboxylase, mannitol, rhamnose, gelatin and by fermentation or not of lactose. Biotypes B1 to B4 recorded in the skin, were characterized by positive lysine decarboxylase, positive gelatin, positive mannitol and negative rhamnose. Biotype B10 was showed a negative lysine decarboxylase in the liver of tilapia. Biotypes B5 to B7 of the kidney were differentiated in positive mannitol and positive lysine decarboxylase. The PCR reaction revealed the presence of aerA and hlyA virulence genes in isolated A. hydrophila strains. The biochemical and molecular characterizations allowed to know and to highlight the high virulent of the isolated germ. Hence the interest of the treatment of tilapia production basins against this pathogen.

Keywords: Oreochromis niloticus, Aeromonas hydrophila, virulence, Côte d’Ivoire

1. Introduction

Bacterial diseases in cultured fish were considered as the main problem of aquaculture system in Côte d’Ivoire. Fish farms have been facing great problems due to bacterial fish diseases that cause severe damage and mortality in Côte d’Ivoire [1]. Aeromonas species are opportunistic pathogens in fish and humans [2]. These bacteria were long considered as opportunistic pathogens for human but they are currently recognized as emerging pathogens [3]. Indeed, Aeromonas species are responsible for wide range of human diseases that vary in severity from a self-limiting gastroenteritis to potentially fatal septicemia and traveler’s diarrheea, in addition to extra intestinal symptoms such as meningitis, endocarditis and osteomyelitis with a high mortality rate in immune compromised person [4], [5]. Aeromonashydrophila is responsible for the « Aeromonas septicemia » disease and was involved in massive mortality of farmed fish and in the freshwater [6]. The bacterium is widely distributed in aquaculture and it has been shown to infect diseases in warm water fish including tilapia [7]. MotileAeromonas septicemia (MAS) is a more dramatic bacterial disease affecting various species of fish and shellfish, feral as well as farmed in both fresh and seawater and cause a serious problem for the fish farming industry in Côte d’Ivoire as well as in other countries [8], [9]. A. hydrophila has ability to grow at refrigerated temperature so it considered as food borne pathogen of emerging importance [10]. There are many extracellular proteins produced by A. hydrophila which were associated with pathogenicity and environmental adaptability. The main virulence factors that have effect on pathogenicity of Aeromonas species are enterotoxins, aerolysin and hemolysin in addition to other factors such as adhesin and mucinase production[11]. Aerolysin and hemolysin genes are responsible for haemolytic toxins (aerolysin and hemolysin) production of A. hydrophila[12]. Aerolysin gene is recorded to be the putative virulence gene produced by some strains of A. hydrophila, which produced an extracellular, soluble, hydrophilic protein exhibiting both hemolytic and cytolytic properties [13]. Aerolysin is a cytolytic pore-forming toxin (PFT) which creates unregulated pores in the membrane of targeted cells. The mature toxin binds to eukaryotic cells and aggregates to form holes (Approximately 3 nm in diameter) leading to the destruction of the membrane permeability barrier and osmotic lysis[14]. Our study aimed to isolate and identify A. hydrophila of diseased farmed tilapia region Agneby-Tiassa, in addition to target its most virulence genes. In this region, fish mortality in aquaculture systems is a common and timely phenomenon. The importance of virulence genes study is to detect the potential pathogenicity of the organism for prevention of infection.

2. Materials and Methods

Field investigation and collection of fish
The study was conducted in a private farm in region Agneby-Tiassa in Côte d’Ivoire. A total of 76 tilapia (39.9±0.2 g ; 13.7±4.1 cm) showing clinical signs of disease were collected. Fish sample were placed in sterile bag and put in the glass. The farm contained twenty eight stocking ponds each with an average area and depth of 1500 m² and
70 cm respectively with a good water exchange system. Tilapia was stocked at a high density of about 2000 fishes per 1000 square meter. The infected fish were brought to the Fish Disease Laboratory of the Department of Aquaculture, Nangui Abrogoua University for bacterial analysis. Water samples were also taken from the ponds for the determination of water quality parameters (temperature, pH, dissolved oxygen).

Bacteriological analysis

Nile tilapia was carefully examined by direct observation before and after dissection for possible clinical signs or symptoms of disease.

About 5 g skin and gill (each) and 1 g of liver or kidney were weighed, aseptically removed and homogenized using a pestle and mortar for 2 min. The homogenate was enriched in 45 mL and 9 mL soy trypticase broth (BioRad, France), respectively, and incubated at 37 °C for 24 h according to Sakar et al.[15].

After incubation, an aliquot (0.1 mL) of the enrichment was inoculated in Aeromonas agar (Sigma Aldrich, India) containing ampicillin (30 mg/L) and incubated at 37 °C for 24 h. Five presumptive *A. hydrophila* colonies per box which were dark green opaque with dark center were selected for further identification. Biochemical tests used for identification included Gram’s staining, motility, oxidase, lactose, oxidation/fermentation, esculin hydrolysis and O/129 sensitivity. The capacity of *A. hydrophila* to grow at different concentrations of NaCl (0%, 2% and 6%) was also performed in brain heart infusion broth. All strains were confirmed using Galery API 20 E (BioMérieux, France).

Molecular detection of virulence genes of *A. hydrophila*

Genomic DNA from *A. hydrophila* strains was extracted using the method according to Gevers et al.[16] with slight modification. The detection of virulence genes was performed using a pair of primers H1 and H2 to amplify 597 bp hlyA geneand A1 and A2 to amplify 416 bp aerA gene based on Aslani and Hamzeh method [17]. The sequences of all primers used in this study were manufactured by Integrated DNA Technologies (Table 1).

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Sequences (3'-5')</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hlyA</td>
<td>H1</td>
<td>GGC/GGTGGCCGGAGATGCGAG</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>GGGCCGGCCGGAGGACGACG</td>
<td></td>
</tr>
<tr>
<td>aerA</td>
<td>A1</td>
<td>GCCTGAGCGGAAGGT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>CAGTCCCCACCCTTC</td>
<td>416</td>
</tr>
</tbody>
</table>

3. Results

Water quality of ponds and clinical signs of diseased fish

The temperature, pH and dissolved oxygen (DO) content of water collected from ponds were 24-28 °C, 6.9-7.9, and 3-6 mg/L, respectively. The disease signs of the Nile tilapia observed were hemorrhagic ulceration at the base of the fins and skin, tail rot, loss of scales. After dissection of the freshly dead fish, kidney, and liver were hemorrhagic, swollen and the presence of congested blood vessels were also noted (Figure 1).

Figure 1: Clinical signs of diseased farmed tilapia (*O. niloticus*). Swollen and blackish liver (white arrow), and Kidney (white arrow)

Biotypes of strains of *A. hydrophila* isolated

Morphologically the isolated colonies showed yellowish opaque, round, convex, smooth edged, and semi-translucent colonies on TSA plates. They were gram-negative, rod-shaped bacteria. The isolated colonies were recorded in kidney, liver and skin of every infected tilapia sample. In the analysis of biochemical characteristics, eleven biochemical profiles (B1 to B11) were obtained for *A. hydrophila* (Table 2). Biotypic profiles of *A. hydrophila* were differentiated in the use or not of lysine decarboxylase (LDC), mannitol (MAN), rhamnose (RHA), gelatin (GEL) and by fermentation or not of lactose. *A. hydrophila* strains were also showed good growth on the media containing 0% NaCl but no growth had found with 6% NaCl. Nevertheless, all strains were Gram-negative, motile, oxidase-positive, fermentative, and resistant to O/129 sensitivity test and they hydrolyzed esculin. Biotypes B1 to B4 recorded in the skin, were characterized by positive lysine decarboxylase, positive gelatin, positive mannitol and negative rhamnose. Biotype B10 was showed a negative lysine decarboxylase in the liver of tilapia. Biotypes B5 to B7 of the kidney were differentiated in positive mannitol and positive lysine decarboxylase.

| Table 2: Identified biotypes of *A. hydrophila* isolated from tilapia |
|--------------------------|--------------------------|--------------------------|--------------------------|
| Identified biotypes of *A. hydrophila* | Skin | Kidney | Liver |
| Gram stain | BG |
| Motility | + | + | + | + | + | + | + | + |
| Oxydase | + | + | + | + | + | + | + | + |
| Lactose | - | + | - | + | - | + | - | + |
| O/129 sensitivity | R | R | R | R | R | R | R | R |
| Esculin hydrolysis | F | F | F | F | F | F | F | F |
| NaCl 0% | + | + | + | + | + | + | + | + |
| NaCl 2% | - | - | - | - | - | - | - | - |
| NaCl 6% | - | - | - | - | - | - | - | - |
| LDC | + | + | + | + | + | + | + | + |
| GIT | + | + | + | + | + | + | + | + |
| VP | - | - | - | - | - | - | - | - |
| GEL | + | + | + | + | + | + | + | + |
| MAN | + | + | + | + | + | + | + | + |
| INO | - | - | - | - | - | - | - | - |
| SOR | - | - | - | - | - | - | - | - |
| RHA | - | - | - | - | - | - | - | - |
| ARA | + | + | + | + | + | + | + | + |
Virulence genes detected in strains of A. hydrophila

A total of two A. hydrophila strains (B2 and B10) out of the tested 11 strains carried aerA gene (Figure 2). The DNA bands of two others A. hydrophila strains (B3 and B7) of PCR amplified indicated that these strains harbor the hlyA gene (Figure 3). None of these virulence genes were observed in the seven others strains of A. hydrophila.

![Figure 2: Electrophores of aerA gene of Aeromonas hydrophila](image)

M : DNA size marker (1kb +); Lane 3 : Positive control for A. hydrophila; Lane 4, 6 : Positive strains (B2 and B10) of A. hydrophila

![Figure 3: Electrophores of hlyA gene of Aeromonas hydrophila](image)

M : DNA size marker (1kb +); Lane 3 : Positive control for A. hydrophila; Lane 4, 6 : Positive strains (B3 and B7) of A. hydrophila

4. Discussion

Clinical signs associated with the Aeromonad infection observed in the present study were hemorrhagic ulceration at the base of the fins and skin, tail rot, loss of scales. Internally, the kidney and liver were hemorrhagic and swollen. Consistent with the current findings, hemorrhagic septicemia was also reported in fish Chanoschanos due to A. hydrophila infection especially when fish are under stress [18,19], [20] and [21] have stated that the opportunistic pathogen (such as A. hydrophila) causes infection only when the host resistance has been lowered by environmental stress factors, such as high organic load, overcrowding, and sub-lethal oxygen levels. Therefore, an extremely high stocking density of the fish (about 2000 fishes per 1000 square meter) observed in the current investigation may be a major risk factor of the disease sensitivity. In addition, the low water depth (70 cm in average) in the ponds with sudden increase of temperature (from 24°C to 28°C) could be other contributing factors for the infection. Palumbo et al [22] observed a broad temperature band (20°C to 35°C) in which all strains of A. hydrophila grew optimally.

The morphological and biochemical investigations revealed the presence of A. hydrophila isolated from tilapia samples. Strains of A. hydrophila was Gram-negative rod, motile, oxidative, fermentative, O/129 resistance and comparable to that recorded by Woo and Bruno [23], Sabur [24], Cantas et al [25]. All strains of A. hydrophilawere positive esculin hydrolysis. The results were agreement with those of Erdem et al [26] who also found a positive result from esculin hydrolysis test for A. hydrophila strains. A. hydrophila strains were also showed good growth on the media containing 0% NaCl but no growth had found with 6% NaCl.Popoff [27] indicated that motile Aeromonas do not grow in nutrient broth containing 5% NaCl. Ten strains A. hydrophila obtained in this study were identical to those reported by Obi et al [28] who identified strains with lysine decarboxylase (LDC) positive. Several strains A. hydrophila with negative LDC were also reported [29, 30].

A total of two A. hydrophila strains out of the tested 11 strains carried aerA gene indicating the virulence of the bacterium Wong et al [31] and Zhu et al [32] reported that strains of A. hydrophila involving aerolysin genes were very virulent. The primary toxin haemolysins produced by some Aeromonas species is termed “aerolysin”, a heat-labile-haemolysin and it possesses both hemolytic and enterotoxic activity which expressed by many strains of A. hydrophila [33]. Ullmann et al [34] used PCR method for diagnostic purposes of cytotoxin-encoding genes of aerolysin (aerA) and haemolysin (hlyA). Buckley [35] explained the mechanism of action of aerolysin gene, he revealed that A. hydrophila exported autolysins as a protein which was activated by proteinase the activated autolysin blinded to the erythrocytes membrane so called hole forming toxin aerolysin. In the current study, the hlyA gene was found in two others strains of A. hydrophila carried this gene. Sarkar et al [36] revealed that the presence of hemolysin gene in strains of A. hydrophila showed that it is the virulent strains and as a result infection in human by contacts during handling of fish. Secondary contamination also may be due to catching, handling and etc. and may also contribute for its distribution.

5. Conclusions

To best of our knowledge, we showed the initial evidence of the presence of A. hydrophila in farmed tilapia fish in region Agney-Tiaessa in Côte d’Ivoire.A. hydrophila could be one of the major pathogens of tilapia farming in Côte d’Ivoire. Our current findings contribute to the fight this pathogen in tilapia production basins. However, further studies are needed to demonstrate serological characterization of the organism.
References

Volume 7 Issue 3, March 2018
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

