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Abstract: Influenza virus infection is one of the diseases that pose a global threat and causes seasonal outbreaks and pandemics. As a 

result, it is associated with a high rate morbidity and mortality worldwide despite the availability of vaccine and antiviral drugs.  To 

understand the transmission and control dynamics of this threatening infection, we formulated a six compartmental mathematical 

model, which incorporated vaccination and treatment parameters into the deterministic model that studies the behaviour of the 

infection. The mathematical analysis shows that the disease free and the endemic equilibrium point of the model exist. The model has 

disease free equilibrium point which is both locally and globally asymptotically stable whenever the basic reproduction number is less 

than unity (i.e. when 0 1)R   and unstable when 10 R . In the same way, the endemic equilibrium is also locally asymptotically 

stable. Numerical simulation was carried out by Maple 18 software using differential transformation method to investigate the effects of 

vaccine, recovery (due to body immunity), and treatment on the dynamics of the disease. Our results showed that increasing the rates of 

vaccination and recovery has a significant effect of reducing infection in both populations of the infected individuals and increases the 

recovered and susceptible populations. However, although treatment decreases infection in the symptomatic infected population, it has a 

negative effect of increasing infection among the asymptomatic infected individuals. This effect can be reversed by screening all 

individuals to know their infection status so that necessary measure will be taken. Also, our result show that vaccine wanes off after 

some time and so, it was recommended that influenza vaccines be taken periodically (annually, biennially or otherwise, depending on 

the expiry duration) for renewal sake in order to lower the rate at which vaccine wanes off.  
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1. Introduction 
 

Influenza (simply called Flu) is a contagious respiratory 

disease that is caused by influenza viruses that infect the 

nose, throat and lungs. It causes mild to severe illness and 

can sometimes lead to death 
[5]

. Influenza viruses are 

transmitted among humans in three ways: (1) direct contact 

with infected individuals; (2) contact with contaminated 

objects (i.e. fomites) such as toys, doorknobs, etc.; and (3) 

inhalation by virus-laden aerosols. 

 

People with influenza usually feel some/all of these signs 

and symptoms: fever/chills, cough, sore throat, 

running/stuffy nose, muscle/body aches, headache, 

fatigue/tiredness and vomiting and diarrhoea (in children). It 

should be noted that not everyone with flu have fever. The 

time from when a person is exposed to the virus to when 

symptoms begins is about 1 – 4 days, with an average of 

about 2 days 
[5]

. However, approximately 33% of people 

with influenza are asymptomatic 
[2]

. Most infected people 

recover within one to two weeks without requiring medical 

treatment. However, in the very young, the elderly, and 

those with other serious medical conditions, infection can 

lead to severe complication of underlying condition (like 

asthma, diabetes, heart disease, etc.); secondary bacterial 

infections (like pneumonia, bronchitis, sinus, ear infection 

etc.); and death 
[18]

. 

 

The influenza vaccine is recommended, to prevent influenza, 

by the WHO and the United states CDC to the high-risk 

group such as children, the elderly, health care workers and 

people with chronic illness, or are immuno-compromised 

(such as people with HIV/AIDS) among others. It can also 

be prevented by everybody preventive actions (such as 

staying away from people who are sick, covering coughs and 

sneezes and frequent hand washing) to help slow the spread 

of germs that cause respiratory (nose, throat and lungs) 

illness like flu 
[5]

. There are influenza antiviral drugs (such 

as Neuraminidase inhibitor, Oseltamivir, among others) that 

can be used to treat flu illness 
[5] [18]

.  

 

Influenza virus infections are associated with considerable 

morbidity and mortality worldwide. In the US alone, despite 

the availability of vaccine and antiviral drugs, influenza 

causes approximately 200,000 serious infections that require 

hospitalization and 36,000 deaths each year. Influenza 

pandemics and epidemics which mostly occur annually in 

the fall or winter pose threats (such as missed work, cost of 

hospitalisation and medical treatment and increased deaths) 

to the human population 
[18]

. As a result, it is important to 

understand to detail, the dynamics of this disease.  

 

A number of works has been done on the spread of multiple 

strains of the influenza virus with immunity 
[1], [13], [14]

; on 

modelling the dynamics with different age groups
 [3], [6], [11], 

[15]
. In the present study, we formulate a new model to get a 

better insight into the dynamical transmission and control of 

influenza infection.  

 

The rest of this work is organized as follows: Section 2 gives 

a full description of the model and shows a domain where 

the model is epidemiologically well posed. Section 3 

provides the existence of equilibria including a derivation of 

the basic reproduction number and stability analysis of the 

equilibria. In Section 4, we perform numerical simulations 
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of the model with graphical illustrations and their 

discussion, and give concluding remark in Section 5. 

 

2. Model Formulation 
 

To study the transmission and control of influenza virus 

infection in humans, we formulate a model which divides 

the total human population size at time t, denoted by N(t), 

into susceptible humans S(t), Vaccinated humans V(t), 

Exposed humans E(t), Asymptomatic infected humans IA(t), 

Symptomatic infected humans IS(t) and Recovered humans 

T(t). Hence, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )     A sN t S t V t E t I t I t T t . 

 

The transmission and control of influenza Virus among 

human is governed by some basic epidemiological 

parameters. Susceptible individuals are recruited into the 

human population either by birth or immigration at a rate π, 

out of which a fraction ν is vaccinated and the remaining 

fraction (1–ν) receives no vaccine. The vaccine wanes off at 

a rate ω and individuals of the vaccinated return to 

susceptible. When an infected individual, either 

asymptomatic or symptomatic, comes in contact with a 

susceptible human, the virus is passed unto the human and 

the person moves to the exposed class E(t) at a rate β1 and β2 

respectively (the model did not include the transmissions 

from virus laden aerosols). 

 

The human natural and disease-induced death rates are 

denoted respectively as 𝜇 and 𝛿. The average exposure 

period is 
1
/ρ, after which a fraction 𝜀 of ρE(t) shows no 

symptom. Other parameters are as given in table 2.1. 

The figure 2.1 below shows the dynamics of the model with 

the inflow and outflow on each compartment of the model.             

Figure 2.1: The diagrammatic representation for the 

dynamics of influenza virus infection 

The model is formulated as a system of coupled ordinary 

differential equation as: 
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 (2.1) 

together with the initial conditions: 

0 0 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) .A A S SS t S V t V E t E I t I I t I T t T        

 

2.1Existence and Uniqueness of Solution 

 

THEOREM 2.1 
[8]

:  Let 
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(2.2)  

 

 

  

Suppose D is the region in (n+1)-dimensional space (one 

dimension for t and n dimensions for the vector x). If the 

partial derivatives nji
x

f

j

i ,...,2,1,, 




 

are continuous 

in  ,,:),( 00 bxxatttxD 
 

then there is a constant 0  such that there exists a 

unique continuous vector solution )](),...,(),([ 21 txtxtxx n  

in the interval  0tt
 

 

 

 

Paper ID: ART20174129 DOI: 10.21275/ART20174129 226 

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 7 Issue 3, March 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 2.1: Description of Variables and parameters used in 

the model 

State   Variables  and  Description 

Parameters 

Values Sources 

S(t) Number of individuals susceptible to 

influenza infection at  time t 

  

V(t) Number of individuals vaccinated 

against influenza infection at time t 

  

E(t) Number of individuals exposed to 

influenza infection at time t 

  

IA(t) Number of asymptomatic infected 

individuals at  time t 

  

IS(t) Number of symptomatic infected 

individuals at  time t 

  

T(t) Number of recovered individuals at  

time t 

  

N Total human population   

π Recruitment term of the susceptible 

individuals 

0.01547 Assumed 

ν Per capita rate of vaccination 0.4 Estimated 

ω Per capita rate of vaccine wanes off 0.01 Estimated 

β1 Rate of transmission from contact 

between susceptible and 

asymptomatic infected individuals 

0.30 Assumed 

β2 Rate of transmission from contact 

between susceptible and 

symptomatic infected individuals 

0.25 [10] 

ρ Per capita rates of progression from 

the exposed state to the infected 

states 

1/2.6 = 

0.385 

[9] 

𝜀 Fraction of the  exposed individuals 

that are migrated to symptomatic 

infected 

0.33 Estimated 

𝛿 Disease-induced death rate 0.0005/day [10] 

𝜇 Natural death rate 0.009493 Assumed 

γ Natural recovery rate of the infected 

individuals 

½(1/7+
1/14) Estimated 

τ Per capita recovery rate due to 

treatment of influenza 

1/2.4 = 

0.417 

[9] 

 

THEOREM 2.2: Let  
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   (2.3) 
  
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Then equation (2.3) has a unique solution. 

Proof: 

We find the partial derivatives, evaluated at the origin thus: 
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Hence, following Derrick and Grossman 
[8]

 of theorem 2.1 

above, the problem (2.3) has a unique solution and so the 

model (2.1) is both epidemiologically feasible and 

mathematically well posed. 

 

3. Mathematical Analysis of the Model 
 

In this section we carry out qualitative analysis of the model 

(2.1) to investigate existence and stability of the steady 

states. 

 

3.1 Existence of Equilibrium Points 

 

Let   , , , , ,A SE S V E I I T
     

  represent any arbitrary 
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3.1.1 Disease-free Equilibrium Points, R0 

Disease-free equilibrium points are steady-state solutions in 

the absence of influenza virus infection (i.e. IA = IS = 0). 

Thus, the disease-free equilibrium point, E0, for the 

influenza virus model (2.1) when IA = IS = 0 yields: 

0 1 , , 0, 0, 0, 0E
  

    
   

  


    
(2.5) 

 

3.1.2 Endemic Equilibrium Point, Ee 

In addition to the disease-free equilibrium point E0, we shall 

show that the model (2.1) has an endemic equilibrium point, 

Ee. The endemic equilibrium point is a positive steady state 

solution where the disease persists in the population (i.e. if 

IA ≠ IS ≠ 0). Therefore, solving the system (2.4) 

simultaneously gives the endemic equilibrium defined by: 

 , , , , , ;e A SE S V E I I T
     

    (2.6) 

where  

 

 
with  

 
( )( )( )

1
( ) (1 )( )

1 (1 )( )
( )

C

      
           


   

          

          


            

   
 

       

. 

 

3.2 Derivation of Basic Reproduction Number, R0  

 

An important notion in epidemiological models is the basic 

reproduction number, usually denoted by R0. It is a threshold 

value that is often used to measure the spread of a disease. It 

is defined as the number of secondary infections in humans 

that arise as a result of a single infected individual being 

introduced in a fully susceptible population. When R0 < 1, it 

implies that on average an infectious individual infects less 

than one person throughout his/her infectious period and in 

this case the disease is wiped out. On the other hand, when 

R0 > 1, then on average every infectious individual infects 

more than one individual during his/her infectious period 

and the disease persists in the population.  

 

The derivation of basic reproduction number is essential in 

order to assess the local stability of the system (2.1). 

 

To do this, we employ the method of next generation matrix 

described by Driessche and Watmough 
[17]

.We have the 

transmission and transition matrices to be given respectively 

as 
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The Jacobian matrices for ℱ and 𝒱 at DFE (E0) are evaluated 

as follows: 

 

F=Dℱ 
0

|E

1 20 1 1

0 0 0

0 0 0

    
       

     
 
 
 
 
 

  
 

     

 
andV=D

0

0 0

| 0

(1 ) 0

E

 
 

    
      

 

   

     

 

1 2 1 2

1

1 . 1 .(1 ) 1 1

( )( ) ( )( ) ( ) ( )

. 0 0 0

0 0 0

F V

      
      

           

                 


        
                           

            
 

  
 
 
 
 
 

Now, the basic reproduction number, which equals ρ(F.V
-1

), 

is obtained as the spectra radius (i.e. the dominant 

eigenvalue) of the product F.V
-1

 thus: 

1 2
0

1
(1 )

.
( )

R

 
  

     
      


 

    

         
  (2.7) 

 

This quantity gives the basic reproduction number. 

 

3.3 Local Stability of Disease-free Equilibrium Point 

 

Theorem 3.1: 

If 1 2

1
(1 )

. 1
( ) ( ) ( )

 
  

      
       


 

    

         
; 

and if R0 < 1, then the disease-free equilibrium is locally 

asymptotically stable. Otherwise, it is unstable.  

 

Proof: The stability of the disease-free equilibrium is 

determined by the eigenvalues of the Jacobian matrix of the 

full system (2.1), evaluated at the disease-free equilibrium 

point, given by 

0

1 2

1 2

0 1 1 0

0 ( ) 0 0 0 0

0 0 ( ) 1 1 0

0 0 ( ) 0 0

0 0 (1 ) 0 ( ) 0

0 0 0

EJ

  
   

     

 

  
   

     

   

     

   

    
          

     
 

  
 
    

          
     

 
   

 
     

    

. 

 

The eigen values of this Jacobian matrix are obtained to be 

1 2 3, ( ), ;              

together with the roots of the cubic equation 

 3 2

1 2

1 2

( ) ( ) ( )

1
(1 )

( )( ) 1 .
( ) ( ) ( )

1
(1 )

1 .
( )

          


 

    
       

         


 

    

         

        

   
    

                        
    

  
   

        
      



0



 

   3 2

0( ) ( ) ( ) ( )( ) 1 1 0R R                  
                         

(2.8)
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Where  

R
*
= 1 2

1
(1 )

.
( ) ( ) ( )


 

    

         

 
  

    
 

       

, 

and R0 is as defined in (2.7). 

 

Now, if R
*
 < 1; and if R0 < 1, then by Descartes’ rule of 

sign, there exists no positive root (i.e. all the roots are 

negative or complex with negative real parts). Hence the 

disease-free equilibrium is locally asymptotically stable. 

Otherwise, it is unstable. 

 

3.4 Global Stability of Disease-free Equilibrium Point 

 

Here, we explored the global asymptotic stability (GAS) 

property of the disease-free equilibrium point for the 

influenza model. 

 

Theorem 3.2: 

If R0 < 1, then the disease-free equilibrium point of the 

system (2.1) is globally asymptotically stable. Otherwise, it 

is unstable.  

 

Proof: This proof is based on the use of comparison theorem 
[12]

 using the comparison method. Thus we have: 

 A
A i A

S S
S

dE

dt E E
dI

F V I F I
dt

I I
dI

dt

 
 

    
           
        

 
 
 

 

where F – V  is defined as  

 

J can be rewritten in the form J  = M – D, where 

 
 

 

1 20 1 1
0 0

0 0 , 0 0 .

(1 ) 0 0 0 0

M D

  
 

       

   

     

    
       

        
        
        

 
 

 

D is a diagonal matrix with positive diagonal elements and 

therefore it is a non-singular matrix, while M is the 

remainder. The eigenvalue of J  have negative real parts iff 

the spectra radius (i.e. the dominant eigenvalue) of the 

matrix MD
–1 

 < 1 
[7]

, where  

   
1 2

1

0 1 1

0 0

(1 )
0 0

MD

  
 

            



 

 

 



    
       

          
 

  
 

 
 
  

 

The eigen values of MD
–1

, obtained
 
by setting |M D

–1
 – �I| 

= 0, where I is a 3 x 3 identity matrix, is given as the roots of 

the cubic equation: 

1 2

3

2 1 2

1
1 2,3

1 1
(1 )

0
( ) ( )

1
(1 )

0
( )

1
(1

0
( )

Or

 
   

     
  

            


 

    
 

         


 

   
 

     

   
      

        
      

  
   

          
       

  

 
  

      
  

2
0

)
.R



   

 
  

     

Obviously, the leading eigenvalue 0 1R    if R0 < 1. In 

other words, the spectra radius of MD
–1 

 < 1, if R0 < 1. 

Therefore, all the eigenvalue of J  have negative real parts.  

 

Hence, the disease-free equilibrium point of the system (2.1) 

is globally asymptotically stable if R0 < 1, and unstable if 

otherwise. This completes the proof. 

 

 

3.5. Stability of Endemic Equilibrium Point, Ee 

 

Theorem 3.3: The endemic equilibrium, E0 is locally 

asymptotically stable.  

 

Proof: The stability of the endemic equilibrium is 

determined by the eigenvalues of the Jacobian matrix of the 

full system (2.1), evaluated at the endemic equilibrium 

point, given by 
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1 2
1 2

1 2
1 2

(1 )
0 0

0 ( ) 0 0 0 0

(1 )
0 ( ) 0

0 0 ( ) 0 0

0 0 (1 ) 0 ( ) 0

0 0 0 )

eE

C S S

C S SJ

  
    

      

 

  
    

      

   

     

   

 

 

   
       

       
 

  
 
  

    
      

 
   

 
     

 
   

where S
*
 is as defined in (2.6). 

This gives an eigenvalue 1 ( );     others being the roots of the polynomial equation:  

5 4 3 2

4 3 2 1 0 0;a a a a a              (2.9) 

Where   1 2

4

(1 )
( ) ( ) ( ) ( ) ,a C

  
               

      

  
            
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 
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      
      
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 
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 
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2
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  
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      

  
     
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      

 
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   

      

  
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      



              
        

   

 

  
          

      
  

                        
      

 

1 1

2 2

2 2
2 2

(1 ) ( ) (1 ) ( )( )( ) ;
(1 ) (1 )

C S C

 

                     
   

       



   
    

               
 

   
           

and S
*
 is as defined in (2.6). 

 

Obviously, from the polynomial equation (2.9), there is no 

sign change, and so by Descartes’ rule of sign, there exists 

no positive root (i.e. all the roots are negative or complex 

with negative real parts). Hence the endemic equilibrium is 

locally asymptotically stable. 

 

Numerical Results and Discussion 
 

The numerical simulation for the model was carried out by 

Maple 18 software using differential transformation method 

to show the effects of vaccination, recovery and treatment 

rates on the dynamics of influenza virus disease. 

(0) 500, (0) 175, (0) 250, (0) 100, (0) 150, (0) 200.A SS V E I I T     

 

4.1 Presentation of Results 

 

The results are given in Figures 4.1 – 4.16 to illustrate the 

system’s behaviour for different values of the model’s 

parameters. 

 
Figure 4.1: The behaviour of vaccinated population for 

varied values of vaccination rate, . 

 

 
Figure 4.2: The behaviour of asymptomatic infected 

population for varied values of vaccination rate, ν 

 
Figure 4.3: The behaviour of symptomatic infected 

population for varied values of vaccination rate, 
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Figure 4.5: The behaviour of asymptomatic infected 

population for varied values of recovery rate, γ 

 

 
Figure 4.7: The behaviour of recovered population for 

varied values of recovery rate, γ 

 
Figure 4.4: The behaviour of vaccinated population for 

varied values of vaccine wanes off rate, ω 

 

 
Figure 4.6: The behaviour of symptomatic infected 

population for varied values of recovery rate, γ 

 

 
Figure 4.8: The behaviour of the susceptible population for 

varied values of recovery rate, γ 

 

 
Figure 4.9: The behaviour of asymptomatic infected 

population for varied values of treatment rate, τ  
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Figure 4.11: The behaviour of recovered population for 

varied values of treatment rate, 

 
Figure 4.10: The behaviour of symptomatic infected 

population for varied values of treatment rate, τ 

 
Figure 4.12: The behaviour of susceptible population for 

varied values of treatment rate, τ  

 

4.2 Discussion of Results 

 

Figure 4.1 to figure 4.3 illustrate the effect of administering 

influenza vaccine at birth on the populations. From figure 

4.1, we observed that increasing the vaccination rate, ν, 

increases the vaccinated population, which in turn lowers the 

population of both asymptomatic and symptomatic infected 

populations. This can be seen as shown in figures 4.2 and 

4.3 respectively. However from figure 4.4, which is the plot 

of vaccinated population against time for varied values of 

the rate of vaccine wane-off (ω), it was seen that the 

vaccinated population decreases as ω increases. This will in 

turn has the effect of increasing influenza infection in the 

population and hence the need for more medical research in 

order to increase the efficacy and/or expiry duration of 

influenza vaccines. Also, while such research is on-going, 

influenza vaccines should be retaken for renewal sake and 

should not be once in a lifetime. In these ways, the rate at 

which vaccines wane off will be greatly lowered, and the 

infection will be lowered in the population as well. 

 

Also, from figures 4.5 and 4.6, the plots of asymptomatic 

and symptomatic infected population respectively against 

time for varied values of the recovery rate γ, we observed a 

declining infection as the recovery rate, γ, increases. This 

recovery is due to the body immunity of the infected 

individuals. Figure 4.7 is the plot of recovered population 

against time when recovery rate is varied and it shows that 

the recovered population increases as γ increases. From 

figure 4.8, which is the plot of susceptible population against 

time when recovery rate is varied, it was shown that the 

susceptible population increases as γ increases. 

 

Furthermore, we investigated the effect of treatment on the 

dynamics of influenza virus infection. Figure 4.9 shows the 

behaviour of the asymptomatic infected population for 

varied values of treatment rate, τ, and it shows that there is 

increase in the number of asymptomatic infected individuals 

per time. This can attributed to the fact that this group of 

individuals are not treated since their infection status is not 

known, in addition to the fact that they are also able to 

transmit the infection even though they show no symptom of 

the infection. So they contribute to an increase infection in 

the population. Figure 4.10 shows that there is a decline in 

infection in the symptomatic infected population as the rate 

of treatment increases. From figure 4.11, which is the plot of 

the recovered population against time for varied values of 

the treatment rate, τ, it was observed that there was an 

increase in the population of the recovered individuals as τ 

increases.  

 

5. Conclusion 
 

In this paper, we have formulated and analysed a 

compartmental model for influenza virus control among 

humans. The total human population was divided into six 

compartments: susceptible, vaccinated, exposed, 

asymptomatic infected, symptomatic infected and recovered 

sub-populations. We established a region where the model is 

epidemiologically feasible and mathematically well-posed. 

The existence and stability of a disease-free equilibrium 

point as well as the endemic equilibrium point were 

determined.  

 

The numerical simulations were performed to see the effects 

of vaccine, recovery (due to body immunity), and treatment 

on the dynamics of the disease. Our results showed that 

increasing the rates of vaccination and recovery has a 

significant effect of reducing infection in both populations of 

the infected individuals and increases the recovered and 

susceptible populations. However, although treatment 

decreases infection in the symptomatic infected population, 

it has a negative effect of increasing infection among the 

asymptomatic infected individuals. This effect can be 

reversed if screening programmes are organized for all 

individuals irrespective of whether they show symptoms or 

not. This will help in knowing the infection status of all 

individuals and as such, necessary measure will be taken.  
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In order to lower the rate at which vaccines wane off, it is 

recommended that influenza vaccines be taken periodically 

(annually, biennially or otherwise, depending on the expiry 

duration) for renewal sake, and it should be administered to 

a higher proportion of individual. It was proposed by the 

CDC’s Advisory Committee on Immunization Practices 

(ACIP) that priorities should be given to young people aged 

6months to 25years, who are the most efficient at 

transmitting influenza viruses 
[4]

. However, in administering 

vaccines, a wide range of ages from 5 months to 65 years 

should be considered 
[15]

. These control measures will 

greatly reduce the transmission of the influenza virus 

infection. However, efforts should be intensified in 

developing improved vaccines with higher efficacy and 

longer expiry duration for influenza virus disease as this 

would facilitate the stimulation of the immune system in 

producing antibodies against influenza virus infection.   
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