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Abstract: A deterministic mathematical model for malaria is considered under different level of sanitation strategy. The malaria 

disease free equilibrium point is locally asymptotically stable when the reproduction number is less than unity and unstable when 

reproduction number is greater than unity. The Comparison theorem is used to establish the global stability of the disease free 

equilibrium. A bifurcation analysis of the model was performed by applying the Centre manifold theory.  Sensitivity indices of the basic 

reproductive number ‘𝑹𝒎’ to the parameters in the model was calculated. The study reveals that increase in sanitation level results in 

decrease in number of mosquito bites and transmission rate of malaria. To  illustrate  the  analytical  results,  numerical  simulations  

using  a  set  parameter values were provided. 
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1. Introduction 
 

Malaria is one of the most deadly diseases of our time. 

Malaria was first discovered centuries ago by the Chinese in 

2700 BC [1]. However it was in the 1800’s when Ross made 

his ground breaking discoveries that led to our understanding 

of the mechanism behind malaria infections. The parasitic 

disease malaria is transmitted to the Human through a biting 

from an infected female Anopheles mosquito [2]. Malaria is 

caused by the protozoan parasites called plasmodium. There 

are four species of the plasmodium parasites, namely 

plasmodium falciparum, plasmodium ovale, plasmodium 

vivax and plasmodium malariae, of the four species, 

plasmodium falciparum is the most virulent, lethal and 

responsible for the majority of morbidity and mortality due 

to malaria [3].  

 

The most common first symptoms of malaria are headache, 

aching muscles, stomach ache and weak or lack of energy. 

After a day or so the body temperature may rise (up to 40℃) 

and the patient may have fever, shivers, severe headache, 

diarrhoea, loss of appetite, nausea, vomiting, back pain and 

increased sweating [4]. The individuals most vulnerable to 

malaria are children under the age of 5 years. This is 

attributed to their weaker immunity. Aside from children, 

pregnant women are also heavily affected, with resultant 

effects on maternal health and birth outcomes [5] 

 

Li-Ming Cai et al [6], replaced the standard incidence with 

the mass action incidence in their study of malaria model 

with partial immunity to reinfection and indeed shows that 

their model exhibits a backward bifurcation. Buonomo et al 

[7] further gives a deep insight to backward bifurcation in 

their study. The main reason why it is important to 

investigate the occurrence of bifurcations is that they play a 

vital and relevant role in disease control and eradication. 

Recent studies by [8] shows that a necessary condition for 

disease eradication is that the basic reproductive number 𝑅0 

must be less than unity. However, when a backward 

bifurcation occurs, an endemic equilibrium may also co-

exist for 𝑅0 < 1. This means that the occurrence of a 

backward bifurcation have important public health 

implications. It is not sufficient to reduce 𝑅0 below 1 to 

eliminate the disease but 𝑅0 must be further reduced below a 

certain critical value 𝑅𝑐  to guarantee total elimination and 

avoid endemic situations. The bifurcation analysis is based 

on the use of centre manifold theory [9, 10, 11]. 

 

In [12], the analysis did not consider sanitation as a way of 

reducing the transmission of malaria infection. We think 

such a feature is worth to be investigated. For this reason, in 

this paper we aim to incorporate the sanitation function and 

also derive conditions for which the system exhibit forward 

or backward bifurcation through the bifurcation method 

introduced in [9]. 

 

The paper is organized as follows: in Section 2 we give the 

model description and model formulation. In Section 3, we 

obtain the equilibrium points and provide the local and 

global stabilities of the disease free. In Section 4, the 

bifurcation analysis is performed. In Section 5 the 

bifurcation analysis was studied. In Section 6 the effect of 

sanitation on malaria transmission was discussed and the 

Sensitivity analysis is performed in section 7. Section 8, 

present numerical verification which were not consider in 

[1]. Discussion of result and concluding remarks are 

presented in Section 8. 

 

2. Mathematical Formulation and Model 

Description 
 

Oluyo and Adeniyi [12], studied the following model in (1) 

on malaria-pneumonia co-infection with mass action 

incidence following the modification of the work of Lawi et 

al [13]. 

 

The model in [12] subdivides the total human population of 

interest into sub population depending on the malaria or 

pneumonia status of individuals.   The classes consist of 

Susceptibles (S) representing the number of individuals who 

are at risk of acquiring malaria or pneumonia or both 

diseases, Infectives (I) representing infectious individuals 
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with malaria or pneumonia or both infections capable of 

transmitting infection to susceptible mosquitoes.  

 
In the present work, great attention would be focused on 

malaria transmission dynamics. Thus, if 

If 𝐼𝑝 𝑡 = 𝐼𝑚𝑝  𝑡 = 0 in (1), then 

 

𝑆
′ 𝑡 = 𝛬 − 𝛼𝛽𝑚 𝐼𝑣𝑆 − 𝜇𝑆 + 𝜋𝐼𝑚

𝐼𝑚
′ 𝑡 = 𝛼𝛽𝑚 𝐼𝑣𝑆 −  𝜎𝑚 + 𝜋 + 𝜇 𝐼𝑚

𝑆𝑣
′ 𝑡 = 𝛬𝑣 − 𝛼𝛽𝑣𝐼𝑚𝑆𝑣 − 𝜇𝑣𝑆𝑣

𝐼𝑣
′ 𝑡 = 𝛼𝛽𝑣𝐼𝑚𝑆𝑣 − 𝜇𝑣𝐼𝑣  

 
 

 
 

(2) 

 

One intervention strategy recommended controlling malaria 

transmission, transmission in [12] was One intervention 

strategy recommended controlling for malaria is either 

through treatment using anti-malaria drugs or using 

preventive measures like sleeping under the Bed Treated 

Nets, Insecticides spray. Sanitation function was introduced 

in [14] and how these functions affect the endemicity of 

infection.  Based on the above submission, the model in (1) 

is further extended to include the exposed classes for malaria 

and the sanitation function for malaria. Thus, the improved 

model for malaria only transmission now reads: 

 
Where: 

Sh: Susceptible class of human population 

Im: Human population infectious with malaria 

𝑆𝑣: Susceptible class of vector population 

𝐼𝑣 :  Infectious class of the vector population 

𝛬 : Constant per capita recruitment rate into 

       susceptible human population 

𝛬𝑣  :Constant per capita recruitment rate into 

       susceptible vector population  

𝜇  : Natural death rate of human population 

𝜇𝑣  : Natural death rate of vector population 

𝜎𝑚  : Malaria induced mortality rate 

𝜋: Rate of recovery from malaria to the susceptible  

      Class 

𝛼  : Number of bites per human per mosquito 

𝛽𝑚  : Transmission rate of malaria in human 

𝛽𝑣   : Rate at which a mosquito become infected  

        with malaria from any infected human 

 

2.1 Model Assumptions 

 

The assumptions for our model follow from [13] with this 

addition: this model assumes a homogeneous mixing of 

individuals in the population where all individuals have 

equal likelihood of catching the infection if they come into 

effective contact with infectious mosquitoes and that 

transmission of the infection occurs with a mass action 

incidence rate.  

 

2.2 Model Analysis 

 

2.2.1 The Dynamics of the Human and Vector 

Population  

The total human population at any time 𝑡 is denoted by 

𝑁(𝑡). The total human population is subdivided into sub-

population namely; Susceptible 𝑆(𝑡) who are not yet 

infected but can be infected by malaria, individuals Exposed 

𝐸𝑚  𝑡 to malaria and Infectious 𝐼𝑚 (𝑡) with malaria. 

 

Thus, 

𝑁 𝑡 = 𝑆 𝑡 + 𝐸𝑚  𝑡 + 𝐼𝑚  𝑡   3a)  

 

By differentiating equation (3𝑎) with respect to time 𝑡 to 

get  

𝑁
′ 𝑡 = 𝛬 − 𝜇𝑁 𝑡 − 𝜎𝑚 𝐼𝑚      (3b) 

 

Now, if we assume that the malaria induce death is small or 

negligible i.e 𝜎𝑚 ≅ 0 in equation (3𝑏) gives 

𝑁
′ 𝑡 = 𝛬 − 𝜇𝑁 𝑡   (3c) 

 

The solution of (3c) is 

𝑁 𝑡 =
𝛬
𝜇

+ 𝑐1𝑒
−𝜇 𝑡  

𝑐1 is a constant of integration. In the course of time i.e as 

𝑡 → ∞, the carrying capacity of the human population will 

reach a constant value  

𝑁 𝑡 =
𝛬

𝜇
= 1 (say)                    (3d) 

 

Similar reasoning gives 

𝑁𝑣 𝑡 =
𝛬𝑣
𝜇𝑣

+ 𝑐2𝑒
−𝜇𝑣𝑡  

𝑐2 is a constant of integration. In the course of time i.e as 

𝑡 → ∞, the carrying capacity of the vector  population will 

reach a constant value 

𝑁𝑣 𝑡 =
𝛬𝑣

𝜇𝑣
= 1 (say)      (3e) 

 

2.2.2 Positivity and Boundedness of Solutions 

For the system of equations (3) to be epidemiologically 

meaningful, it is important to prove that all soltion with non-

negative initial conditions will remain non-negative. We 

prove by the following theorem: 

 

Theorem 1: If 𝑆(0), 𝐸𝑚  0 ,𝐼𝑚 (0), 𝑆𝑣(0), 𝐸𝑣 0  and 𝐼𝑣(0) 

are non-negative, then so are 𝑆(𝑡), 𝐸𝑚  𝑡 ,𝐼𝑚 (𝑡), 𝑆𝑣(𝑡), 

𝐸𝑣 𝑡  and 𝐼𝑣(𝑡) for all 𝑡 > 0. Moreover, 

lim𝑡→∞ 𝑁(𝑡) ≤
𝛬

𝜇
   ,    lim𝑡→∞ 𝑁𝑣(𝑡) ≤

𝛬𝑣

𝜇𝑣
  (4a) 

Furthermore, if  

𝑁(0) ≤
𝛬

𝜇
  then 𝑁(𝑡) ≤

𝛬

𝜇
   and   𝑁𝑣(0) ≤

𝛬𝑣

𝜇𝑣
,   

Then 

 𝑁𝑣(𝑡) ≤
𝛬𝑣

𝜇𝑣
, then the region 𝛤 = 𝛤𝑣 ⊂ ℛ+

6 with  

 
is positively invariant. 
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It follows from theorem 1 that it is sufficient to consider the 

dynamics of system (3) in 𝛤. In this region the model 

system (3) can be considered to be epidemiologically well-

posed [15]. 

 

3.  The Equilibria 
 

The equilibriums of system (3) are determined by solving 

the resulting equation obtained by equating the derivatives 

of system (3) to zero and setting  

 𝐸𝑚 = 𝐸𝑚
∗,𝐼𝑚 = 𝐼𝑚

∗, 𝐼𝑣 = 𝐼𝑣
∗, , 𝑆𝑣 = 𝑆𝑣

∗,  𝑆 = 𝑆
∗, 𝐸𝑣 =

𝐸𝑣
∗    (4b) 

Thus we have 

𝐴𝐼𝑚
∗3 + 𝐵𝐼𝑚

∗2 + 𝐶𝐼𝑚
∗ = 0  (5a) 

Where  

𝐴 = 𝑘𝑣𝛼
3𝛽 𝐻 𝛽𝑣

2𝛬𝑣𝜋 𝜋 + 𝜎𝑚 + 𝜇 + 𝑘𝑚  −

 𝜋 + 𝑘𝑚 + 𝜇  𝜋 + 𝜎𝑚 + 𝜇 𝛼
3𝛽 𝐻 𝛽𝑣

2𝑘𝑣𝛬𝑣 −

 𝜋 + 𝑘𝑚 + 𝜇  𝜋 + 𝜎𝑚 + 𝜇 𝜇𝜇𝑣 𝑘𝑣 + 𝜇𝑣 𝛼
2𝛽𝑣

2
  

𝐵 = 𝑘𝑚𝑘𝑣𝛼
3𝛽 𝐻 𝛽𝑣

2𝛬𝑣𝛬
+ 𝑘𝑣𝛼

2𝛽 𝐻 𝛽𝑣𝛬𝑣𝜇𝑣𝜋 𝜋 + 𝜎𝑚 + 𝜇
+ 𝑘𝑚  
− 𝜇𝑣 𝜋 + 𝑘𝑚 + 𝜇  𝜋 + 𝜎𝑚
+ 𝜇 𝛼

2𝛽 𝐻 𝛽𝑣𝑘𝑣
− 2 𝜋 + 𝑘𝑚 + 𝜇  𝜋 + 𝜎𝑚
+ 𝜇 𝜇𝜇𝑣

2𝛼𝛽𝑣 𝑘𝑣 + 𝜇𝑣  
𝐶 = 𝑘𝑚𝑘𝑣𝛼

2𝛽 𝐻 𝛽𝑣𝛬𝑣𝛬𝜇𝑣 − 𝜇𝑣
3 𝜋 + 𝑘𝑚 + 𝜇  𝜋 +

𝜎𝑚+𝜇𝜇𝑘𝑣+𝜇𝑣  

Equation (5a) admits 

𝐼𝑚
∗ = 0  or 𝐴𝐼𝑚

∗2 + 𝐵𝐼𝑚
∗ + 𝐶 = 0 

𝐼𝑚
∗ = 0  admits the disease free equilibrium  denoted 

by 𝑀0 i.e.  

𝑀0 =  𝑆0
∗,𝐸𝑚0

∗, 𝐼𝑚0
∗
, 𝑆𝑣0

∗,𝐸𝑣0
∗, 𝐼𝑣0

∗ 

= (1,0,0,1,0,0) 

The malaria endemic equilibrium is obtained by considering 

the real positive solution of the equation 

𝐴𝐼𝑚
∗2 + 𝐵𝐼𝑚

∗ + 𝐶 = 0           (5b) 

 

There is an observation that the constant 𝐶 in equation (5b) 

above is always negative then equation (5b) will have two 

positive real roots  𝐼𝑚1
∗ and 𝐼𝑚2

∗ if 𝐴 < 0 and 𝐵 > 0 by 

Descartes’ rule of signs. Therefore, the endemic equilibrium 

points namely: 

𝑀1
∗ = (𝑆1

∗,𝐸𝑚1
∗, 𝐼𝑚1

∗, 𝑆𝑣1
∗,𝐸𝑣1

∗, 𝐼𝑣1
∗)  and  𝑀2

∗ =
(𝑆2

∗,𝐸𝑚2
∗, 𝐼𝑚2

∗, 𝑆𝑣2
∗,𝐸𝑣2

∗, 𝐼𝑣2
∗)  emerges. 

 

3.1 The Basic Reproduction Number 𝐑𝟎 

 

Diekmann et al. [16] defined the basic reproduction number 

denoted by 𝑹𝟎as the average number of secondary 

infections caused by an infectious individual during his or 

her entire period of infectiousness.  

 

The basic reproduction number 𝑹𝟎is computed using the 

next generation matrix approach a s  d e s c r i b e d  by 

Heffernan et al [17]. We introduce the matrices  

𝐹 =  

0 0 0
0 0 0
0
0

𝛼𝛽𝑣
0

0
0

    

𝛼𝛽 𝐻 

0
0
0

 ;  

𝑉

=  

 𝑘𝑚 + 𝜋 + 𝜇 0 0

0  𝜎𝑚 + 𝜋 + 𝜇 0

0
0

0
0

 𝑘𝑣 + 𝜇𝑣 

−𝑘𝑣

    

0
0
0
−𝜇𝑣

    

Where 𝐹 and 𝑉 are matrix of newly created infections and 

matrix of transferred of infections respectively. Then the 

next generation matrix denoted by 𝐺 is defined thus  
𝐺 = 𝐹𝑉−1

=

 

 
 

0
0

𝛼𝛽𝑣𝑘𝑚
 𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 

0

       

0
0
𝛼𝛽𝑣

 𝜎𝑚 + 𝜋 + 𝜇 

0

      

𝛼𝛽 𝐻 𝑘𝑣
𝜇𝑣 𝑘𝑣 + 𝜇𝑣 

0
0
0

      

𝛼𝛽 𝐻 

𝜇𝑣
0
0
0  

 
 

 

hus, the basic reproduction number for malaria denoted by 

𝑅𝑚  is  

𝑅𝑚 =  
𝛼2𝛽 𝐻 𝛽𝑣𝑘𝑚𝑘𝑣

𝜇𝑣 𝑘𝑣 + 𝜇𝑣  𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 
 

 

3.2 Local Stability of Malaria Free Equilibrium Only 

 

Theorem 2: The malaria free equilibrium 𝑀0 of system (3) 

is locally asymptotically stable if 𝑅𝑚 < 1 and unstable if 

𝑅𝑚 > 1. 

 

Proof: 

The Jacobian matrix of system (3) evaluated at 𝑀0 is 
𝐽 𝑀0 

=

 

 
 
 

−𝜇
0
0
0
0
0

      

𝜋
− 𝑘𝑚 + 𝜋 + 𝜇 

𝑘𝑚
0
0
0

       

𝜋
0

− 𝜎𝑚 + 𝜋 + 𝜇 

−𝛼𝛽𝑣
𝛼𝛽𝑣

0

      

0
0
0
−𝜇𝑣

0
0

      

0
0
0
0

− 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣

     

−𝛼𝛽 𝐻 

𝛼𝛽 𝐻 

0
0
0
−𝜇𝑣  

 
 
 

 

                                                (6) 

The characteristic equation of equation (6) is  

  −𝜇 − 𝜆  −𝜇𝑣 − 𝜆 𝑔 𝜆 = 0 

Where 

𝑔 𝜆 = 𝜆4 + 𝑔0𝜆
3 + 𝑔1𝜆

2 + 𝑔2𝜆 + 𝑔3  

𝑔0 =  𝑘𝑚 + 2𝜋 + 2𝜇 + 𝜎𝑚 + 2𝜇𝑣 + 𝑘𝑣 ,  

𝑔1 =   𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 +  𝑘𝑚 + 2𝜋 + 2𝜇 +

𝜎𝑚𝑘𝑣+𝜇𝑣+𝑔0𝜇𝑣,  

𝑔2 =  𝜇𝑣  𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 +  𝑘𝑚 + 2𝜋 +

2𝜇+𝜎𝑚𝑘𝑣+𝜇𝑣+𝑘𝑚+𝜋+𝜇𝜎𝑚+𝜋+𝜇𝑘𝑣+𝜇𝑣,  

𝑔3 = 𝜇𝑣 𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇  𝑘𝑣 + 𝜇𝑣 
− 𝛼2𝛽 𝐻 𝛽𝑣𝑘𝑚𝑘𝑣 

Clearly, 𝜆1 = −𝜇 , 𝜆2 = −𝜇𝑣 , while 𝜆3 , 𝜆4 , 𝜆5 and 𝜆6 are 

obtained from   𝑔 𝜆 = 0 (7) 

   Equation (7) will have four negative real roots if 

(By Descartes rule of signs) 

 
𝛼2𝛽 𝐻 𝛽𝑣𝑘𝑚 𝑘𝑣

𝜇𝑣 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇   𝑘𝑣+𝜇𝑣 
< 1 

 ∴  𝑅𝑚 < 1 

Hence, 𝑀0 is locally asymptotically stable if 𝑅𝑚 < 1. The 

result follows immediately that 𝑀0 is unstable if 𝑅𝑚 > 1. 

 

3.3 Global Stability of Malaria Free Equilibrium 

Theorem 3: The malaria free equilibrium 𝑀0 of system (3) 

is globally asymptotically stable if 𝑅𝑚 < 1 and unstable if 

𝑅𝑚 > 1. 
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Proof: 
The Comparison Theorem as implemented in [18] and [19] 

is employed here. The rate of change of the infected 

components of system (3) can be written as 

 

 
 
 
 
 
 

𝑑𝐸𝑚
𝑑𝑡
𝑑𝐼𝑚
𝑑𝑡
𝑑𝐸𝑣
𝑑𝑡
𝑑𝐼𝑣
𝑑𝑡  

 
 
 
 
 
 

=  𝐹 − 𝑉  

𝐸𝑚
I𝑚
𝐸𝑣
𝐼𝑣

 − 𝐹𝑖  

𝐸𝑚
I𝑚
𝐸𝑣
𝐼𝑣

  

Where 𝐹,𝑉 and 𝐹𝑖  are as defined in section (3.1) 

Since at the disease free 𝐼𝑚 = 𝐼𝑣 = 0 →  0,0  as 𝑡 → ∞. 

Thus, 

 

 
 
 
 
 
 

𝑑𝐸𝑚
𝑑𝑡
𝑑𝐼𝑚
𝑑𝑡
𝑑𝐸𝑣
𝑑𝑡
𝑑𝐼𝑣
𝑑𝑡  

 
 
 
 
 
 

≤  

− 𝑘𝑚 + 𝜋 + 𝜇 0 0

−𝑘𝑚 − 𝜎𝑚 + 𝜋 + 𝜇 0

0
0

𝛼𝛽𝑣
0

− 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣

 

𝛼𝛽 𝐻 

0
0
−𝜇𝑣

  

 

𝐸𝑚
I𝑚
𝐸𝑣
𝐼𝑣

   

  =    𝐹 − 𝑉  

𝐸𝑚
I𝑚
𝐸𝑣
𝐼𝑣

       (8) 

    

According to [8] and [9], all eigenvalues of the matrix 

 𝐹 − 𝑉  have negative real parts i.e 

𝜆4 +   𝑘𝑚 + 𝜋 + 𝜇 +  𝜎𝑚 + 𝜋 + 𝜇 + 𝜇𝑣 +

𝑘𝑣+𝜇𝑣𝜆3+𝑘𝑚+𝜋+𝜇𝜎𝑚+𝜋+𝜇+𝜇𝑣𝑘𝑣+𝜇𝑣+𝑘𝑚+𝜋+𝜇
+𝜇𝑣𝜎𝑚+𝜋+𝜇+𝜇𝑣𝑘𝑚+𝜋+𝜇𝜆2+𝑘𝑣+𝜇𝑣𝑘𝑚+𝜋+𝜇+𝜇𝑣
𝜎𝑚+𝜋+𝜇+𝜇𝑣𝑘𝑚+𝜋+𝜇𝜎𝑚+𝜋+𝜇𝜆+𝜇𝑣𝑘𝑣+𝜇𝑣𝑘𝑚+𝜋
+𝜇𝜎𝑚+𝜋+𝜇1−𝑅𝑚2=0                                                            
(9) 

        

Equation (9) will have four negative roots if 𝑅𝑚 < 1 (By 

Descartes rule). It follows that the linearized differential 

inequality (8) is stable whenever  𝑅𝑚 < 1. Consequently, 

 𝐸𝑚 , 𝐼𝑚 ,𝐸𝑣 , 𝐼𝑣 →  0,0,0,0  as 𝑡 → ∞. Evaluating system 

(3) at 𝐸𝑚 = 𝐼𝑚 = 𝐸𝑣 = 𝐼𝑣 = 0 gives 𝑆 → 1, 𝑆𝑣 → 1 for 

𝑅𝑚 < 1.  

 

Hence, the diseases free point 𝑀0 is globally asymptotically 

stable if 𝑅𝑚 < 1. The result also follows that diseases free 

point 𝑀0 is unstable if 𝑅𝑚 > 1 

 

 

 

 

4. Local Asymptotic Stability of Malaria 

Endemic Equilibrium 
 

The Centre Manifold Theorem as used in [7] and [20] was 

used to analyse the local stability of malaria endemic 

equilibrium as stated below: 

 

The Centre Manifold Theorem [7] 

Consider a general system of ODEs with a parameter 𝟇  

𝑥 = 𝑓 𝑥,𝜙 ; 𝑓:𝑅𝑛 × 𝑅 → 𝑅𝑛 ; 𝑓 ∈ 𝐶2 𝑅𝑛 × 𝑅  (10) 

Without loss of generality, assume that 𝑥 = 0 is equilibrium 

for  

 

 Theorem 4:: Assume: 

(i) 𝐴 = 𝐷𝑥𝑓 0,0  is the linearization matrix of system 

(14) around the equilibrium 𝑥 = 0 with 𝜙 evaluated at 

𝑂. Zero is a simple eigenvalue of (10) and all other 

eigenvalues of (10) have negative real parts. 

(ii) Matrix 𝐴 has a (nonnegative) right eigenvector 𝑤 and 

a left eigenvector 𝑣 corresponding to the zero 

eigenvalue. Let 𝑓𝑚  denote the 𝑚𝑡 complements of  

𝑓 and  𝑎 =  𝑣𝑚𝑤𝑖𝑤𝑗
𝜕2𝑓𝑚  0,0 

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛
𝑚 ,𝑗 ,𝑖=1  ;  𝑏 =

 𝑣𝑚𝑤𝑖
𝜕2𝑓𝑚  0,0 

𝜕𝑥𝑖𝜕𝜙

𝑛
𝑚 ,𝑗 ,𝑖=1   

Then the local dynamics of system (10) around 𝑥 = 0 are 

totally determined by 𝑎 and 𝑏 

(a) , 𝑏 < 0. When 𝜙 < 0, with  𝜙 ≪ 1, 𝑥 = 0 is locally 

asymptotically stable and there exist a positive 

unstable equilibrium; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is 

unstable and there exist a negative and locally 

asymptotically stable equilibrium 
(b) , 𝑏 < 0. When 𝜙 < 0, with  𝜙 ≪ 1, 𝑥 = 0 is 

unstable; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is locally 

asymptotically stable and there exist a positive 

unstable equilibrium. 
(c) , 𝑏 < 0. When 𝜙 < 0, with  𝜙 ≪ 1, 𝑥 = 0 is 

unstable and there exist a locally asymptotically stable 

negative equilibrium; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is 

stable and a positive unstable equilibrium appears 
(d) , 𝑏 < 0. When 𝜙 changes from negative to positive, 

𝑥 = 0 changes its stability from stable to unstable. 

Correspondingly, an unstable equilibrium becomes 

positive and locally asymptotically stable. 
 

The proof of theorem 4 can be found in [22].  

  

The theorem A in appendix A is now applied to determine if 

the model system (3) exhibit a backward or forward 

bifurcation at 𝑅𝑚 = 1. 

 

Recall that  

𝑅𝑚 =  
𝛼2𝛽 𝐻 𝛽𝑣𝑘𝑚𝑘𝑣

𝜇𝑣 𝑘𝑣 + 𝜇𝑣  𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 
 

Let 𝛼 = 𝛼∗ be a bifurcation parameter and if we consider 

the case 𝑅𝑚 = 1 and solving for 𝛼 = 𝛼∗, then 

𝛼 = 𝛼∗ =  
𝜇𝑣 𝑘𝑣+𝜇𝑣  𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  

𝛽 𝐻 𝛽𝑣𝑘𝑚 𝑘𝑣
   (11) 
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It follows that the disease free equilibrium point 𝑀0 is 

locally stable when 𝛼 < 𝛼∗, whereas it loses its stability 

when 𝛼 > 𝛼∗,  
 

So, the critical value 𝛼 = 𝛼∗,  is a bifurcation value. 

 

The nature of the bifurcation involving the disease-free 

equilibrium 𝑀0 at 𝛼 = 𝛼∗ (or equivalently at 𝑅𝑚 = 1) is 

investigated as follows: 

 

 

Firstly, the Jacobian matrix of system (3) at point  𝑀0,𝛼∗  is determined i.e. 

𝐽 𝑀0 ,𝛼∗ =

 

 
 
 

−𝜇
0
0
0
0
0

      

𝜋
− 𝑘𝑚 + 𝜋 + 𝜇 

𝑘𝑚
0
0
0

       

𝜋
0

− 𝜎𝑚 + 𝜋 + 𝜇 

−𝛼∗𝛽𝑣
𝛼∗𝛽𝑣

0

      

0
0
0
−𝜇𝑣

0
0

      

0
0
0
0

− 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣

     

−𝛼∗𝛽 𝐻 

𝛼∗𝛽 𝐻 
0
0
0
−𝜇𝑣  

 
 
 

 

 

                  

The characteristic equation of (12) has a simple zero 

eigenvalue i.e.  

𝜆 −𝜇 − 𝜆  −𝜇𝑣 − 𝜆 𝐵 𝜆 = 0   (13)   

Where 

𝐵 𝜆 = 𝜆3 + 𝐵0𝜆
2 + 𝐵1𝜆 + 𝐵2  

𝐵0 =  𝜎𝑚 + 2𝜋 + 𝑘𝑣 + 𝑘𝑚 + 4𝜇𝑣 ,  
𝐵1 =  𝜋2 + 𝜋𝑘𝑚 + 2𝜋𝑘𝑣 + 6𝜋𝜋2 + 𝜋𝜎𝑚 + 𝑘𝑚𝑘𝑣

+ 3𝑘𝑚𝜇𝑣 + 𝑘𝑚𝜎𝑚 + 3𝑘𝑣𝜇𝑣 + 𝑘𝑣𝜎𝑚
+ 6𝜇𝑣

2 + 3𝜇𝑣𝜎𝑚   
𝐵2 = 𝜋2𝑘𝑣 + 2𝜋2𝜇𝑣 + 𝜋𝑘𝑚𝑘𝑣 + 2𝜋𝑘𝑚𝜇𝑣 + 4𝜋𝑘𝑣𝜇𝑣

+ 𝜋𝑘𝑣𝜎𝑚 + 6𝜋𝜇𝑣
2 + 2𝜋𝜇𝑣𝜎𝑚

+ 2𝑘𝑚𝑘𝑣𝜇𝑣 + 𝑘𝑚𝑘𝑣𝜎𝑚 + 3𝑘𝑚𝜇𝑣
2

+ 2𝑘𝑚𝜇𝑣𝜎𝑚 + 3𝑘𝑣𝜇𝑣
2 + 2𝑘𝑣𝜇𝑣𝜎𝑚

+ 4𝜇𝑣
3 + 3𝜇𝑣

2𝜎𝑚  
has the following eigenvalues 

𝜆1 = −𝜇 , 𝜆2 = −𝜇𝑣 ,  𝜆3 = 0 

while 𝜆4 , 𝜆5 , and 𝜆6 are obtained from        

𝐵 𝜆 = 0                        (14)   

      

Equation (14) will have three negative real roots since there 

are no changes in signs in 𝐵 𝜆   (By Descartes rule of 

signs). 

 

Thus, 𝜆3 = 0 is a simple zero eigenvalue and the other 

eigenvalues are real and negative, then the assumptions of 

theorem 4 is then verified. 

 

Furthermore, we obtain the right eigenvector associated with 

the zero eigenvalue 𝜆3 = 0 given by  

𝑤 =  𝑤1 ,𝑤2 ,𝑤3 ,𝑤4 ,𝑤5 ,𝑤6 
𝑇  , it follows that 

 

 

 
 
 

−𝜇
0
0
0
0
0

      

𝜋
− 𝑘𝑚 + 𝜋 + 𝜇 

𝑘𝑚
0
0
0

       

𝜋
0

− 𝜎𝑚 + 𝜋 + 𝜇 

−𝛼∗𝛽𝑣
𝛼∗𝛽𝑣

0

      

0
0
0
−𝜇𝑣

0
0

      

0
0
0
0

− 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣

     

−𝛼∗𝛽 𝐻 

𝛼∗𝛽 𝐻 

0
0
0
−𝜇𝑣  

 
 
 

 

  
 

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6 

  
 

=

 

  
 

0
0
0
0
0
0 

  
 

           (15) 

 

By solving the matrix equations (15) gives 

𝑤 =

 
 
𝛼∗2𝛽 𝐻 𝛽𝑣𝑘𝑚 𝑘𝑣−𝜋 𝑘𝑣+𝜇𝑣  𝜎𝑚+𝜋+𝜇+𝑘𝑚  

𝜇𝑣𝑘𝑚𝛼
∗𝛽𝑣

 𝑤5

,
 𝑘𝑣+𝜇𝑣  𝜎𝑚+𝜋+𝜇  

𝑘𝑚 𝛼
∗𝛽𝑣

𝑤5 ,
 𝑘𝑣+𝜇𝑣 

𝛼∗𝛽𝑣
𝑤5 ,−

 𝑘𝑣+𝜇𝑣 

𝜇𝑣
𝑤5 ,𝑤5 ,

𝑘𝑣

𝜇𝑣
𝑤5

 

𝑇

 

, 

where 𝑤5 > 0 is a free right eigenvector. 

Similarly, the left eigenvector associated with the zero 

eigenvalue 𝜆3 = 0 given by 𝑣 =  𝑣 1 , 𝑣 2, 𝑣 3, 𝑣 4,𝑣 5, 𝑣 6 , then 

 (12) 

 

 𝑣 1, 𝑣 2, 𝑣 3,𝑣 4, 𝑣 5, 𝑣 6 

 

 
 
 

−𝜇
0
0
0
0
0

  

𝜋
− 𝑘𝑚 + 𝜋 + 𝜇 

𝑘𝑚
0
0
0

 

𝜋
0

− 𝜎𝑚 + 𝜋 + 𝜇 

−𝛼∗𝛽𝑣
𝛼∗𝛽𝑣

0

   

0
0
0
−𝜇𝑣

0
0

0
0
0
0

− 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣

−𝛼∗𝛽 𝐻 

𝛼∗𝛽 𝐻 
0
0
0
−𝜇𝑣  

 
 
 

 

 

𝑣      =  0,
𝑘𝑚𝛼

∗𝛽𝑣
 𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 

𝑣 5,
𝛼∗𝛽𝑣

 𝜎𝑚 + 𝜋 + 𝜇 
𝑣 5, 0, 𝑣 5,

 𝑘𝑣 + 𝜇𝑣 

𝑘𝑣
𝑣 5  

where 𝑣 5 > 0 is a free left eigenvector. 

 

The Computation of the Coefficient 𝒂 and 𝒃 

The coefficients 

𝑎 =  𝑣 𝑚𝑤𝑖𝑤𝑗
𝜕2𝑓𝑚  𝑀0 ,𝛼∗ 

𝜕𝑥𝑖𝜕𝑥𝑗

6
𝑚 ,𝑖 ,𝑗=1 , 

 𝑏 =  𝑣 𝑚𝑤𝑖
𝜕2𝑓𝑚  𝑀0,𝛼∗ 

𝜕𝑥𝑖𝜕φ

6

𝑚 ,𝑖 ,𝑗=1

 

may be explicitly computed taking into account of system 

(3) and considering only the nonzero components of the left 

eigenvector 𝑣 ; it follows that 

 

Let 𝑆 = 𝑥1, 𝐸𝑚 = 𝑥2, 𝐼𝑚 = 𝑥3, 𝑆𝑣 = 𝑥4, 𝐸𝑣 = 𝑥5, 𝐼𝑣 = 𝑥6 

With 𝑥1 + 𝑥2 + 𝑥3 = 𝑁 𝑡 = 1  and 𝑥4 + 𝑥5 + 𝑥6 =
𝑁𝑣 𝑡 = 1 
 

Furthermore, we introduce the vector  

𝑋 =  𝑥1 , 𝑥2 , 𝑥3, 𝑥4 , 𝑥5 , 𝑥6 
𝑇  , and then the model in system 

(3) can now be written in the form 
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𝑑𝑋

𝑑𝑡
= 𝐹(𝑥) , where 𝐹 =  𝑓1, 𝑓2, 𝑓3, 𝑓4 

𝑇  

 

It implies that system (3) can be written in term of the 

New variables as 

  

𝑑𝑥1

𝑑𝑡
= 𝑓1 = 𝛬 − 𝛼𝛽𝑚𝑥6𝑥1 − 𝜇𝑥1 + 𝜋𝑥2 + 𝜋𝑥3

𝑑𝑥2

𝑑𝑡
= 𝑓2 = 𝛼𝛽𝑚𝑥4𝑥1 −  𝑘𝑚 + 𝜋 + 𝜇 𝑥2             

𝑑𝑥3

𝑑𝑡
= 𝑓3 = 𝑘𝑚𝑥2 −  𝜎𝑚 + 𝜋 + 𝜇 𝑥3                      

𝑑𝑥4

𝑑𝑡
= 𝑓4 = 𝛬𝑣 − 𝛼𝛽𝑣𝑥3𝑥4 − 𝜇𝑣𝑥4                          

𝑑𝑥5

𝑑𝑡
= 𝑓5 = 𝛼𝛽𝑣𝑥3𝑥4 −  𝑘𝑣 + 𝜇𝑣 𝑥5                        

𝑑𝑥6

𝑑𝑡
= 𝑓6 = 𝑘𝑣𝑥5 − 𝜇𝑣𝑥6                                              

 
 
 
 

 
 
 
 

(17)

                

𝑎 = 2𝑣 2𝑤1𝑤6

𝜕2𝑓2

𝜕𝑥1𝜕𝑥6

+ 2𝑣 5𝑤3𝑤4

𝜕2𝑓5

𝜕𝑥3𝜕𝑥4

 

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥4
= 𝛼∗𝛽 𝐻 , 

𝜕2𝑓4

𝜕𝑥2𝜕𝑥3
= 𝛼∗𝛽𝑣  

𝑎 = 2𝑣 2𝑤1𝑤6  𝛼∗𝛽 𝐻 + 2𝑣 5𝑤3𝑤4 𝛼∗𝛽𝑣  ,    

 𝑎 =
2 𝑘𝑣+𝜇𝑣 𝑣 5𝑤5

2

𝜇𝑣
 𝑅𝑚

2 − 𝑎0  

                                                    =

 

  
 

0
0
0
0
0
0 

  
 

(16) 

 

Where 

𝑎0 =  
𝜇𝑣 𝑘𝑣 + 𝜇𝑣  𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 + 𝜋 𝜎𝑚 + 𝜋 + 𝜇 + 𝑘𝑚𝑘𝑣 𝑘𝑣  𝛼∗𝛽 𝐻 

 𝑘𝑚 + 𝜋 + 𝜇  𝜎𝑚 + 𝜋 + 𝜇 
  

 

Thus, the following cases arise: 

(i) The coefficient 𝑎 is positive if 𝑅𝑚 >  𝑎0   

(ii) The coefficient 𝑎 is negative if 𝑅𝑚 <  𝑎0   

𝑏 = 𝑣 2𝑤6
𝜕2𝑓2

𝜕𝑥6𝜕𝛼
∗ + 𝑣 5𝑤3

𝜕2𝑓5

𝜕𝑥3𝜕𝛼
∗, 

𝑏 = 𝑣 2𝑤6𝛽 𝐻 + 𝑣 5𝑤3𝛽𝑣 , 

𝑏 =
 𝑘𝑣 + 𝜇𝑣 

𝛼∗
𝑣 5𝑤5 𝑅𝑚

2 + 1  

Thus, the coefficient 𝑏 is always positive. 

 

According to theorem A, it is the sign of the coefficient 𝑎 

that decides the local dynamics around the disease free 

equilibrium for 𝛼 = 𝛼∗.  
 

We conclude by applying theorem A that: 

(i)  If 𝑎 > 0 and 𝑏 > 0, a backward bifurcation occurs    (ii) 

If 𝑎 < 0 and 𝑏 > 0, a forward bifurcation occurs 

 

5. The Effect of Sanitation on Malaria Disease 

Transmission Dynamics 
 

The aim, objective and ultimate goal of a public health 

strategy is to change the transmission dynamics of a disease 

such that if an infected individual enters a community he/she 

will not trigger an epidemic in the community.  

 

Mathematically, it is reasonable to assume that if 𝑅𝑚 < 1, 

 then    
𝑑𝐼𝑚

𝑑𝑡
< 0    (18) 

For malaria, intervention can be in the following ways: 

(i) Treatment using anti-malaria drugs 

(ii) Reducing the rate of contact between susceptible 

individuals and infected mosquitoes and vice-versa. 

 

The latter can be achieved through sleeping under 

mosquitoes treated nets, clean environment (i.e maintaining 

high level of sanitation) etc.  

 

Model system (3) introduces the function 𝛽 𝐻  which 

defines the relationship between the transmission rate of 

malaria and sanitation is presented in three alternative forms 

as follows: 

𝛽 𝐻 = 𝛽𝑚𝑎𝑥 − 𝛾1𝐻               (19) 

𝛽 𝐻 = 𝛽𝑚𝑎𝑥 𝑒
−𝛾2𝐻   (20) 

𝛽 𝐻 =
𝛽𝑚𝑎𝑥

1+𝑒𝛾3 𝐻−𝐻0 
  (21) 

 

Figure 1 gives a graphical interpretations of 𝛽 𝐻 . The 

linear function in (19) predicts that malaria transmission is 

reduced proportionally to the improvement of sanitation 

conditions. The exponential function (20) predicts that a 

small improvement in hygiene or sanitation causes great 

impact on malaria transmission. Equation (21) is a sigmoidal 

curve predicts that low sanitation level has small effect on 

malaria transmission and high level of sanitation has great 

effect on malaria transmission, where 𝛾’s represent the 

expected reduction / increase in transmission rate of malaria 

as sanitation level 𝐻 increase / decrease. 

 

𝐻 is the sanitation level of the community and is defined to 

be 𝐻 ∈  0,1 , so that if 𝐻 = 0, then there is maximum 

transmission of malaria in the community and if 𝐻 = 1 

means there is access to maximum sanitation facilities in the 

community hence, minimum transmission rate of malaria is 

achieved. 

 
 

Using the functions defined in (19), (20) and (21), the 

required level of sanitation to prevent the outbreak and low 

transmission of malaria is defined.  

 

Thus if 𝑅𝑚 < 1 then the required level of sanitation to 

prevent the outbreak and low transmission of malaria using 

the linear, exponential and sigmoidal functions respectively 

are: 

𝐻 >
1

𝛾1
 𝛽𝑚𝑎𝑥 −

𝜇𝑣 𝑘𝑣+𝜇𝑣  𝜎𝑚+𝜋+𝜇   𝑘𝑚+𝜋+𝜇  

𝛼2𝛽𝑣𝑘𝑚 𝑘𝑣
    (22) 
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𝐻 >
1

𝛾2
+ ln  

𝛼2𝛽𝑚𝑎𝑥 𝛽𝑣𝑘𝑚 𝑘𝑣

𝜇𝑣 𝑘𝑣+𝜇𝑣  𝜎𝑚+𝜋+𝜇   𝑘𝑚+𝜋+𝜇  
        (23) 

𝐻 > 𝐻0 +
1

𝛾3
ln  

𝛼2𝛽𝑚𝑎𝑥 𝛽𝑣𝑘𝑚 𝑘𝑣

𝜇𝑣 𝑘𝑣+𝜇𝑣  𝜎𝑚+𝜋+𝜇   𝑘𝑚+𝜋+𝜇  
   (24) 

Where 𝐻0 is a critical threshold 

 

6. Sensitivity Analysis 
 

The sensitivity analysis of the parameters is investigated in 

order to determine the relation of model parameters to 

disease transmission. The sensitivity analysis is carried out 

by computing sensitivity indices of basic reproduction 

number 𝑅𝑚  which measures initial disease transmission 

using the approach of Arriola and Hyman [21]. The forward 

sensitivity index with respect to each of the parameter used 

in model (3) is presented below using the following formula 

𝑟𝑞
𝑅𝑚 =

𝜕𝑅𝑚

𝜕𝑞
×

𝑞

𝑅𝑚
 , 

where 𝑞 and 𝑅𝑚  represent the parameter and the 

reproduction number. Thus, the forward sensitivity index to 

key parameter under different level of sanitation functions 

is: 

 

Linear Function 
𝛼

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛼
= 1,

𝛽𝑚𝑎𝑥

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑚𝑎𝑥
=

1

2
 

𝛽𝑚𝑎𝑥

𝛽𝑚𝑎𝑥 −𝛾1𝐻
 < 1, 

𝛾1

𝑅𝑚
∙
𝜕𝑅𝑚
𝜕𝛾1

= −
1

2
 

𝛾1𝐻

𝛽𝑚𝑎𝑥 − 𝛾1𝐻
 < 1 

,
𝜇𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇𝑣
= −

1

2
 

2𝜇𝑣+𝑘𝑣

𝑘𝑣+𝜇𝑣
 < 1 

𝐻

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝐻
= −

1

2
 

𝛾1𝐻

𝛽𝑚𝑎𝑥 −𝛾1𝐻
 < 1,

𝛽𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑣
=

1

2
< 1,

𝑘𝑚

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑚
=

1

2
 

𝜋+𝜇

𝑘𝑚+𝜋+𝜇
 < 1,  

𝜎𝑚
𝑅𝑚

∙
𝜕𝑅𝑚
𝜕𝜎𝑚

= −
1

2
 

𝜎𝑚
𝜎𝑚 + 𝜋 + 𝜇

 < 1 

𝑘𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑣
=

1

2
 

𝜇𝑣

𝑘𝑣+𝜇𝑣
 < 1, 

𝜋

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜋
= −

𝜋

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  
 < 1, 

𝜇

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇
= −

𝜇

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  
 < 1,   

 

Exponential Function 
𝛼

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛼
= 1, 

𝛽𝑚𝑎𝑥

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑚𝑎𝑥
=

1

2
< 1,  

𝛾1

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛾1
= −

1

2
𝛾2𝐻 < 1,

𝐻

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝐻
= −

1

2
𝛾2𝐻 < 1  

𝛽𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑣
=

1

2
< 1, 

𝑘𝑚

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑚
=

1

2
 

𝜋+𝜇

𝑘𝑚+𝜋+𝜇
 < 1 

𝑘𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑣
=

1

2
 

𝜇𝑣

𝑘𝑣+𝜇𝑣
 < 1,

𝜇𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇𝑣
= −

1

2
 

2𝜇𝑣+𝑘𝑣

𝑘𝑣+𝜇𝑣
 < 1 

𝜋

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜋
= −

𝜋

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  
 < 1 , 

 
𝜇

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇
= −

𝜇

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚 +𝜋+𝜇  
 < 1,  

𝜎𝑚
𝑅𝑚

∙
𝜕𝑅𝑚
𝜕𝜎𝑚

= −
1

2
 

𝜎𝑚
𝜎𝑚 + 𝜋 + 𝜇

 < 1 

 

Sigmoidal Function 
𝛼

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛼
= 1, 

𝛽𝑚𝑎𝑥

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑚𝑎𝑥
=

1

2
< 1,  

𝛾1

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛾1
= −

1

2
 
𝛾3 𝐻−𝐻0 𝑒

𝛾3 𝐻−𝐻0 

1+𝑒𝛾3 𝐻−𝐻0 
 < 1,  

𝐻

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝐻
= −

1

2
 
𝐻𝛾3𝑒

𝛾3 𝐻−𝐻0 

1+𝑒𝛾3 𝐻−𝐻0 
 < 1 , 

𝛽𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝛽𝑣
=

1

2
< 1,     

𝑘𝑚

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑚
=

1

2
 

𝜋+𝜇

𝑘𝑚+𝜋+𝜇
 < 1,  

𝑘𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝑘𝑣
=

1

2
 

𝜇𝑣

𝑘𝑣+𝜇𝑣
 < 1, 

𝜋

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜋
= −

𝜋

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  
 < 1 , 

𝜇𝑣

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇𝑣
=

−
1

2
 

2𝜇𝑣+𝑘𝑣

𝑘𝑣+𝜇𝑣
 < 1,  

𝜇

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜇
= −

𝜇

2
 

𝜎𝑚+2𝜋+2𝜇+𝑘𝑚

 𝑘𝑚+𝜋+𝜇   𝜎𝑚+𝜋+𝜇  
 < 1 ,    

𝜎𝑚

𝑅𝑚
∙
𝜕𝑅𝑚

𝜕𝜎𝑚
=

−
1

2
 

𝜎𝑚

𝜎𝑚+𝜋+𝜇
 < 1  

 

The calculations of the sensitivity analysis using the linear, 

exponential and sigmoidal functions respectively shows that 

𝛼 is the most sensitive to 𝑅𝑚 . The result also reveals that 

𝜋, 𝛾1 , 𝛾2, 𝛾3 and 𝐻 have an inverse proportional relationship 

with 𝑅𝑚 . Although, sensitivity analysis of 𝜋 have an inverse 

proportional relationship with 𝑅𝑚 , this will only reduce 

malaria prevalence in the population but cannot guarantee 

total eradication of malaria disease for some individuals will 

not have adequate or no treatment, hence, we suggest that 

more effort should be concentrated by the public health 

workers and health policy makers at reducing 𝛼 the biting 

rates of the mosquitoes which can be achieved through 

improved sanitation and hygiene conditions, provision of 

mosquito treated nets and so on 

 

7. Numerical Simulations and Discussion of 

Results 
 

 
Figure 2: The graph of the total human population at 

parameter values 𝛬 = 0.1, 𝛾 = 1,𝐻 = 0.5, 𝜇𝑣𝑛 =
0.5, 𝜇𝑚𝑎𝑥 = 0.9,𝛼 = 0.1,𝜎𝑚 = 0.001,𝛽𝑚𝑎𝑥 = 0.2, 𝑘𝑚 =

0.001, 𝑘𝑣 = 0.1, 𝜇 = 0.002,𝜋 = 0.5,𝛬𝑣 = 0.1,𝛽𝑣 = 0.019 

and 𝑅0 < 1 

 
Figure 3: The graph of the total human population at 

parameter values 𝛬 = 0.1, 𝛾 = 1,𝐻 = 0.001, 𝜇𝑣𝑛 =
0.1, 𝜇𝑚𝑎𝑥 = 0.05,𝛼 = 0.8,𝜎𝑚 = 0.001,𝛽𝑚𝑎𝑥 = 0.2, 𝑘𝑚 =
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0.5, 𝑘𝑣 = 0.5, 𝜇 = 0.002,𝜋 = 0.05,𝛬𝑣 = 0.1,𝛽𝑣 = 0.2 and 

𝑅0 > 1 

 
Figure 4: The graph of the Susceptible human population 

against time at varying values of sanitation level 𝐻 with 

other parameter values fixed at 𝛬 = 0.1, 𝛾 = 1,𝐻 =
0.5, 𝜇𝑣𝑛 = 0.5, 𝜇𝑚𝑎𝑥 = 0.9,𝛼 = 0.1,𝜎𝑚 = 0.001,𝛽𝑚𝑎𝑥 =

0.2, 𝑘𝑚 = 0.001, 𝑘𝑣 = 0.1, 𝜇 = 0.002,𝜋 = 0.5,𝛬𝑣 =
0.1,𝛽𝑣 = 0.019 

 

 
Figure 5: The graph of the Exposed mosquito population 

against time at varying values of sanitation level 𝐻 with 

other parameter values fixed at 𝛬 = 0.1, 𝛾 = 1,𝐻 =
0.5, 𝜇𝑣𝑛 = 0.5, 𝜇𝑚𝑎𝑥 = 0.9,𝛼 = 0.1,𝜎𝑚 = 0.001,𝛽𝑚𝑎𝑥 =

0.2, 𝑘𝑚 = 0.001, 𝑘𝑣 = 0.1, 𝜇 = 0.002,𝜋 = 0.5,𝛬𝑣 =
0.1,𝛽𝑣 = 0.019 

 
Figure 6: The graph of the Infected mosquito population 

against time at varying values of sanitation level 𝐻 with 

other parameter values fixed at 𝛬 = 0.1, 𝛾 = 1,𝐻 =

0.5, 𝜇𝑣𝑛 = 0.5, 𝜇𝑚𝑎𝑥 = 0.9,𝛼 = 0.1,𝜎𝑚 = 0.001,𝛽𝑚𝑎𝑥 =
0.2, 𝑘𝑚 = 0.001, 𝑘𝑣 = 0.1, 𝜇 = 0.002,𝜋 = 0.5,𝛬𝑣 =

0.1,𝛽𝑣 = 0.019 

 
Figure 2 support our theoretical result that the total human 

population is stable if 𝑅0 < 1 under a high level of 

sanitation 𝐻 and become unstable if 𝑅0 > 1 when poor 

sanitation or no sanitation as depicted in figure 3. Increase 

in sanitation level 𝐻 bring about low level of transmission 

which result in the increase in number of susceptible 

individual as shown in figure 4. Furthermore, increase in the 

sanitation level result in significant reduction in the number 

of exposed and infected mosquitoes as seen in figure 5 and 

figure 6 respectively.  

 

8. Conclusion 
 

A rigorous mathematical analysis on the effect of sanitation 

on malaria transmission model has been carried out in this 

work. The local and global stabilities of the model 

investigated. The result revealed that the malaria model 

exhibit a backward bifurcation which suggests that malaria 

eradication does not only depend on reducing 𝑅𝑚 < 1 but 

other factors such as sanitation should be considered and 

sustained. The result of the sensitivity analysis gives a clear 

indication to public health workers and health policy makers 

that more effort should be concentrated at reducing biting 

rates of the mosquitoes 𝛼 through sanitation among other 

measures for a clean environment. 
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