Effect of Inoculant and Phosphorus on Growth and Yield of Chickpea (*Cicerarietinum*L)

Pratibha Sharma¹, Girish Pandey², Dheeraj Mishra³

¹Research Scholar, School of Agriculture ITM University Gwalior

²Department of Soil Science, School of Agriculture ITM University Gwalior

³Department of Extension Education, School of Agriculture ITM University Gwalior

Abstract: Chickpea is an important and rich source of legume protein which is commonly used among vegetarian diets. Present study was carried out during the year 2014-15 to elucidate the effect of inoculant and phosphorus on growth, yield and of chickpea variety. Results revealed that inoculation with Rhizobium and P_5 (75 kg $P_2 O_5 ha^{-1}$) was found significantly best for growth characters i.e. plant height, number of branches plant¹, canopy of plant, number of nodules and yieldcharacters i.e. Number of pods plant⁻¹, pod length, pod yield plot⁻¹, pod yield hectare⁻¹ and test weight. Maximum grain yield plot⁻¹ and grain yield ha⁻¹ was recorded in seed inoculated with Rhizobium. This increase in yield occurred due to an increase in growth and development of chickpea crop with inoculation and phosphorus application.

Keywords: Chickpea, inoculation, phosphorus, growth, yield.

1. Introduction

Chickpea (*CicerarietinumL.*) is one of the most important pulse crop and belongs to the family Leguminaceae. Because of high protein content, it is considered as an economical source of quality vegetable protein in human diet. It is grown especially in dry and rain-fed areas of the Indian subcontinents. There are two types of Chickpea, the large seeded more or less rounded, pale cream color are the Kabuli types which constitutes 15% of production and smaller seeded of irregular shapes with various color are deshi types.

India ranks first in the world in respect to the area of cultivation of chickpea. It is cultivated in about 8.22 million ha (m ha) with an average annual production of 7.70 million tones (mt) and productivity was 925 kg ha⁻¹ (Anonymous, 2013). Madhya Pradesh, Uttar Pradesh, Rajasthan, Karnataka, Bihar, Andhra Maharashtra, Pradesh. Chhattisgarh, Haryana, West Bengal are the major chickpea growing states in India. Among these states Madhya Pradesh is a leading state in India in terms of pulse production. State scenario of chickpea in the year 2013-14 was 35.25 lakh /ha. area and production, productivity was 47.59 m t / ha and 1350 kg /ha respectively.(Agriculture farmers Development Paper, Bhopal, M.P. 2013-14).

Nutritionally, it is very rich in about 21.1 % protein, 65.5 % carbohydrates, and good amount of fat. It is rich in about 0.76% of amino acids. Besides, it is rich source of Ca, Fe and vitamin – C and B (at green stage). It also contains a good amount of malic acid and citric acid which are very useful for stomach ailments and blood purification.

Being a leguminous crop it form a symbiotic association with bacteria of the genus *Rhizobium* which fix atmospheric nitrogen in soil and their by, enrich the soil fertility. Inoculation of legume seed with *Rhizobium* and phosphatic fertilizer increase the vigorous root growth, no. of active nodules, enrich the soil fertility and yield of the crop.

Chickpea being a leguminous crop, major part of nitrogen requirement can be met through inbuilt mechanism of atmospheric nitrogen. Besides nitrogen, phosphorus is the second most important plant nutrient and classed as a major plant nutrient. Nutritional imbalance and poor nodulation appears to be distinct ones, which can be effective in a single crop season. Growers have wrong notion that chickpea being a legume crop, doesn't need any nutrition and usually grow it on marginal land, without applying fertilizers. Application of phosphorus to legume crops improves grain yields considerably (Hussain 1983). Grain yield of chickpea was increased significantly with *Rhizobium* and phosphorus (Raut and Kohire 1991). The phosphorus requirement is greater for healthy crop growth with efficient root system and profuse nodulation.

Phosphorus also plays an important role in decreasing the adverse effect of excess nitrogen in increasing the no. of active nodules, rate of nitrogen fixation and yield of the chickpea. It also plays a key role in pod filling and ultimately enhances the grain yield (Gupta *et al* 1996). Therefore, phosphatic fertilizer with *Rhizobium* inoculation is a boon for enriching soil fertility efficient plant growth.

2. Materials and Methods

The experiment regarding the effect of rhizobium and different levels of phosphorus on growth, yield and quality of chickpea crop was conducted at the experimental farm,School of Agriculture, ITM University Gwalior during 2013-14 on soil having pH 7.8, organic matter 0.26, nitrogen210.0 ppm phosphorus12.6 ppm and 425 ppm potassium. The treatments were allocated in a randomized block design with factorial concept with three replicates having net plot size of 2.4 m X 4 m. Chickpea variety JG-74 was used for experiment. The experiment consists of the

Volume 7 Issue 2, February 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY treatments viz., without rhizobium and with rhizobium and phosphorus levels of 0 kg, 15 kg, 30 kg, 45 kg, 60 kg and 75 kg $P_2O_5\,ha^{-1}$

Seeds were inoculated before planting by adding rhizobium solution 10 ml and mixed to wet all seeds until all seeds were coated. Sowing date was at 16 November. The irrigation was every ten days. Planting space were 30 X 12 cm

Five randomly selected plants were uprooted at 50 % flowering stage from each plot to record active nodule. At harvest, data were collected on seed yield gplant⁻¹, number of grains pod⁻¹,seeds number plant⁻¹ as average of five randomly selected plants. Data on days to maturity, plant height, number. The collected data was analyzed by using statistical,

3. Result

The present investigation entitled "Effect of Rhizobium and phosphorus on growth of chickpea (Cicerarietinum.L)" elucidate the various aspects such asdetermine the effect of conjunctive use of Rhizobium and phosphorus on growth of chickpea. Results indicate that seed inoculation with Rhizobium found non-significant effect on plant population and different doses of phosphorus were also found nonsignificant at 15 DAS and at harvest in table 4.1.At 15 DAS, the plants raised from seed inoculated with Rhizobium showed significantly maximum plant height (9.86 cm) compare to non-inoculated (8.89 cm). The differences in plant height among various phosphorus levels were also significant but, the interactions between inoculated seed and phosphorus fertilizer were found to be non-significant. Maximum plant height was recorded in P₅ (9.91 cm) followed by P_4 (9.49 cm), P_3 (9.25 cm) and P_1 (9.30 cm), while, minimum plant height was recorded in P₀ (9.09 cm) followed by P_2 (9.20 cm).

Table-4.2 reveals that inoculation had significant effect on plant height at 30 DAS and the effect of phosphorus application on plant height was also found to be significant. Significantly, maximum plant height (16.84 cm) was attained by treatment P_5 where phosphorus was applied at the rate of 75 kg P_2O_5 ha⁻¹. It was followed by P_4 treatment (60 kg P_2O_5 ha⁻¹) and P_4 treatment (45 kg P_2O_5 ha⁻¹). Minimum plant height was observed in treatment P_1 (0 kg P_2O_5 ha⁻¹).

At 45 DAS, the plants raised from seed inoculated with *Rhizobium* showed significantly maximum plant height (22.01 cm) compare to non-inoculated (19.94 cm). The differences in plant height among various phosphorus levels were also significant but, the interactions between inoculated seed and phosphorus fertilizer were found to be non-significant. Maximum plant height was recorded in P₅ (23.66 cm) followed by P₄ (20.97 cm), P₁ (20.55 cm) and P₃ (20.44 cm), while, minimum plant height was recorded in P₀ (19.86 cm) followed by P₂ (20.34 cm).

It is evident from Table 4.2 that the both factors application level of phosphorus and Rhizobium influenced maximum plant height significantly at 60 DAS while, interaction of both factors (P x R) was not significantly effective for maximum plant height. Among the level of phosphorus, the maximum plant height 30.70 cm was recorded in P₅ (75 kg P_2O_5 ha⁻¹) followed by P₄ (28.31 cm), while, minimum plant height was recorded in P₀ (26.80 cm) which was found at par with P₂ (27.46 cm), P₁ (27.60 cm) and P₃ (20.44 cm). Among the Rhizobium, maximum height was recorded in seed inoculated with *Rhizobium* (39.30 cm) compare to non-inoculated (26.91 cm).

The data in Table 4.3 indicate that inoculation by Rhizobium had a pronounced effect on number of branches per plant (2.27 branches plant⁻¹) as compared to non-inoculated treatments (2.21 branches plant⁻¹). Similarly phosphorus levels number of branches per plant. Among the phosphorus doses, phosphorus level @ 75 kg P_2O_5 ha⁻¹ was found maximum branches per plant (2.35 branches plant⁻¹) followed by P_4 (2.27 branches plant⁻¹), P_1 (2.23 branches plant⁻¹) and P_3 (2.22 branches plant⁻¹), while, minimum number of branches was recorded in P_0 (2.18 branches plant⁻¹) followed by P_2 (2.21 branches plant⁻¹).

The data depicted in Table 4.3 reveals that the both factors application level of phosphorus and Rhizobium influenced canopy of plantsignificantly, interaction of both factors (P x R) was not significantly effective for maximum canopy of plant. Among the level of phosphorus, the maximum canopy of plant45.98 cm was recorded in P₅ (75 kg P₂O₅ ha⁻¹) followed by P₄ (44.12 cm), while, minimum canopy of plantwas recorded in P₀ (40.37 cm) which was found at par with P₁ (41.77 cm), P₂ (41.95 cm) and P₃ (42.24 cm). Among the Rhizobium, maximum canopy of plantwas recorded in seed inoculated with Rhizobium (44.97 cm) compare to non-inoculated (40.51 cm).

Table-4.3 shows that inoculation had significant effect on nodulation and the effect of phosphorus application on number of nodules was also found to be significant. Significantly, maximum nodules (43.76 nodules plant⁻¹) was observed in treatment P₅ where phosphorus was applied at the rate of 75 kg P₂O₅ ha⁻¹. It was followed by P₄ treatment (40.38 nodules plant⁻¹) and P₁ treatment (37.58 nodules plant⁻¹). Minimum number of nodules was observed in treatment P₀ (38.21 nodules plant^{-1).}

Table 4.1: Plant population on different treatments

Levels of	Plant population at 15 DAS	Plant population at harvest	
Phosphorus	Mean	Mean	
PO	236.17	221.00	
P1	244.00	228.00	
P2	240.00	224.33	
P3	240.00	224.33	
P4	235.67	220.17	
P5	238.67	223.17	
	PXR	PXR	
SEm±	4.61	4.31	

Volume 7 Issue 2, February 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR)		
ISSN (Online): 2319-7064		
Index Copernicus Value (2016): 79.57 Impact Factor (2015): 6.391		

	level of phosphorus and mizoblum			
	Plant height	Plant	Plant height	Plant height
Levels of	at 15 DAS	height at 30	at 45 DAS	at 60 DAS
phosphorus	(cm)	DAS (cm)	(cm)	(cm)
	MEAN	MEAN	MEAN	MEAN
P0	9.09	14.98	19.86	26.80
P1	9.30	15.81	20.55	27.75
P2	9.20	15.65	20.34	27.46
P3	9.25	15.73	20.44	27.60
P4	9.49	16.13	20.97	28.31
P5	9.91	16.84	23.66	30.70
Mean		14.98		
	P x R	P x R	P x R	P x R
	0.17	0.28	0.38	0.51

 Table 4.2: Plant height of chickpea influenced by different

 level of phosphorus and rhizobium

Table 4.3: Effect of Rhizobium and different level of phosphorus on Number of branches per plant, Canopy (cm) and No. of active nodules per plant of chickpea

and ites of delive nodules per plant of emerped			
Levels of phosphorus	Number of	Canopy	No. of active
	branches per plant	(cm)	Nodules per plant
	MEAN	MEAN	MEAN
PO	2.18	40.37	38.21
P1	2.23	41.77	39.58
P2	2.21	41.95	39.17
P3	2.22	42.24	39.37
P4	2.27	44.12	40.38
P5	2.35	45.98	43.76
Mean			38.21
	P x R	P x R	P x R
	0.040	1.41	0.72

Yield Attributes

Table-4.4 revealed that inoculation had significant effect on number of pods per plant and the effect of different level of phosphorus on number of pods per plant was also found to be significant, but interaction between both the factor was found non-significant. Significantly, maximum number of pods weight was attained by treatment P₅ (47.36 pods plant⁻¹) where phosphorus was applied at the rate of 75 kg P₂O₅ ha⁻¹. It was followed by P₄ treatment (45.45 pods plant⁻¹) and P₃ (43.51 pods plant⁻¹). Minimum number of pods was observed in treatment P₀ (41.59 pods plant⁻¹). Among the Rhizobium, maximum number of podswas recorded in seed inoculated with Rhizobium (46.32 pods plant⁻¹) compare to non-inoculated (41.72 pods plant⁻¹).

It is depicted from Table 4.4that the factor application level of phosphorus influenced length of pod significantly, however Rhizobium and interaction of both factors (P x R) were not significantly effective for length of pod. Significantly, maximum length of pod was recorded in treatment P_5 (1.046 cm) followed by P_4 treatment (1.033 cm) and P_3 (0.995 cm). Minimum length of pod was observed in treatment P_0 (0. 912 cm).

The data presented in Table 4.4 showed that the factor application level of phosphorus influenced number of grains per pod significantly, however Rhizobium and interaction of both factors (P x R) were not significantly effective for number of grains pod⁻¹. Significantly, maximum number of grains pod⁻¹ was recorded in treatment P₅ (1.328 grains/pod) which was at par with P₄ treatment (1.311 grains pod⁻¹) and P₃ (1.298 grains pod⁻¹). Minimum number of grains pod⁻¹

Table 4.4 revealed that inoculation had significant effect on 1000-seed weight and the effect of phosphorus application on seed weight was also found to be significant. Significantly, maximum 1000-seed weight was attained by treatment P_5 (182.11 g) where phosphorus was applied at the rate of 75 kg P_2O_5 ha⁻¹. It was followed by P_4 treatment (178.13 g) and P_3 (162.16 g). Minimum 1000-seed weight was observed in treatment P_0 (145.47 g). Among the Rhizobium, maximum 1000-seed weight was recorded in seed inoculated with Rhizobium (172.83 g) compare to non-inoculated (151.89 g).

The data depicted in Table 4.5 refers that the factor application level of phosphorus and Rhizobium significantly influenced grain yield per plot and grain yield per hectare, however interaction of both factors (P x R) were not significantly effective. Significantly, maximum grain yield plot⁻¹ and grain yield ha⁻¹ was recorded in treatment P₅ (2.031 kg plot⁻¹ and 21.16 q ha⁻¹, respectively) followed by P₄ treatment (1.962 kg plot⁻¹ and 20.43 q ha⁻¹, respectively) and P₃ (1.820 kg plot⁻¹ and 18.96 q ha⁻¹, respectively). Minimum grain yield plot⁻¹ and grain yield plot⁻¹ and 16.70 q ha⁻¹, respectively). Among the Rhizobium, maximum grain yield per plot and grain yield per hectare was recorded in seed inoculated with *Rhizobium* (1.930 kg plot⁻¹ and 20.10 q ha⁻¹, respectively) compare to non-inoculated (1.697 kg plot⁻¹ and 17.68 q ha⁻¹, respectively).

 Table 4.4: Impact of Rhizobium and different levels of phosphorus on yield attributing traits

F-	phosphorus on yield attributing traits				
Level of phosphorus	No of pods	Length of	No. of	Test weight	
	plant-1	Pods (cm)	grains pod-1	rest weight	
	MEAN	MEAN	MEAN	MEAN	
PO	41.59	0.91	1.19	145.58	
P1	43.03	0.98	1.25	149.21	
P2	43.21	0.99	1.27	156.96	
P3	43.51	0.99	1.30	162.12	
P4	45.45	1.03	1.31	177.97	
P5	47.36	1.05	1.33	182.12	
Mean					
	P x R	P x R	P x R	P x R	
	1.37	0.033	0.042	9.16	

 Table 4.5: Impact of Rhizobium and different levels of phosphorus on grain yield

phosphoras on grain fiera			
Levels of	Grain yield (kg plot ⁻¹)	Grain yield (q ha ⁻¹)	
Phosphorus	MEAN	MEAN	
P ₀	1.60	16.70	
P ₁	1.70	17.74	
P ₂	1.76	18.35	
P ₃	1.82	18.96	
P_4	1.96	20.43	
P ₅	2.03	21.16	
		16.70	
	P x R	P x R	
SEm±	0.11	1.09	

4. Conclusion

• On the basis of present investigation, it is concluded that the P₅ (75 kg P₂O₅ ha⁻¹) was found best in terms of growthcharacters.

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

- P_5 (75 kg P_2O_5 ha⁻¹) along with inoculation of Rhizobium were observed best for different growth parameters i.e. significantly maximum plant height, number of branches plant⁻¹, canopy of plant, number of nodules were recorded maximum in the treatment. It was also observed to promote the quality parameters i.e., protein content.
- Maximum grain yield ha⁻¹ was recorded in treatment P₅ (21.16 q ha⁻¹) and maximum grain yield plot⁻¹ and grain yield ha⁻¹ was recorded in seed inoculated with Rhizobium.
- Rhizobium had significant effect on net monetary returns and B:C ratio and the effect of phosphorus application on net monetary returns and B:C ratio was also found to be significant.

References

- [1] Anonymous(2013-14), Agriculture Farmers Development Paper, Bhopal, Madhya Pradesh
- [2] Ardeshana, R.B.; Modhavadia, M.M.; Khanpara, V.D. and Patel, J.C.(1993) .Response of greengram to nitrogen, phosphorus and Rhizobium inoculation. Indian J.Agron, 38 (3): 490-492.
- [3] Akhtar, M.A.and Z.A. Siddiqui.2009. Effects of phosphate solubilising microorganisms and Rhizobium sp. on the growth, nodulation Rhizobium sp. on growth, nodulation, yield and root rot disease complex of chickpea under field condition. African Journal of Biotechnology.8 (15): 3489-3496.Gupta, S.C. and S.L. Namdeo. (1996). Effect of Rhizobium strains on symbiotic traits and grain yield of chickpea. Indian J. Pulses Res. 9(1): 94-95.
- [4] Gupta, S.C. and S.L. Namdeo. (1996). Effect of Rhizobium strains on symbiotic traits and grain yield of chickpea. Indian J. Pulses Res. 9(1): 94-95.
- [5] Hussain, A. (1983).Isolation and identification of effective root nodule bacteria for important legumes of Pakistan.Pro, Rep. Dept. of Soil Sci. Univ. of Agric. Faisalabad, Pakistan.
- [6] Raut, K.G., Pedgaonkar, S.M. and Katare, R.A. (1992)
 Effect of Rhizobium culture treatment on nodulation, growth and yield of gram BDN-9-3.Res.Bult.Marathwada Agric.Univ., 16(2)3

Volume 7 Issue 2, February 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY