International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Fixed Point in Cone Banach Space

Buthainah A.A. Ahmed¹, Essraa A. Hasan²

Department of Mathematics -College of Science -University of Baghdad

Abstract: Let $(X, \|.\|_p)$ be a cone Banach space and T a self map on X. We say that T satisfy condition B if there exists $0 < \delta < 1$ and L > 0 such that $\|T_x - T_y\| < \delta \|x - y\| + L.u$ where $u \in \{\|x - Tx\|, \|y - Ty\|, \|x - Ty\|, \|y - Tx\|\}$ in this paper we have the existences and uniqueness theorems for a fixed point to

a map T that satisfy condition B. We also prove that under a certain condition every map T that satisfy condition B is continuous.

1. Introduction

Many authors study fixed point theorems for a mapping is a cone metric space satisfying different contraction condition for example Sh.Rezapour, R.Hamlbarani[4] prove fixed point theorem for contractive mapping. Must these theorem extended to a cone Banach space after some modification , Edral karapiner[2] prove fixed point theorem in cone Banach space while R.krishnakumar and D.Dharnodharan[3] prove fixed point theorem in cone Banach space by using Φ operator

The following definition and results will be needed in the sequel Let $\,E\,$ be a real Banach space .A subset $\,p\,$ of $\,E\,$ is called cone if

- (1) p is closed, nonempty and $p \neq \{0\}$
- (2) $a, b \in R, a, b \ge 0$ and $x, y \in p$ imply $ax + by \in p$
- (3) $p \cap (-p) = \{0\}$

Definition 1.1 [2] Let X be a vector space over \mathbb{R} , suppose the mapping $\|.\|_p: X \to E$ satisfies

- (1) $||x||_p > 0$ for all $x \in X$
- (2) $||x||_p = 0$ if and only if x = 0
- (3) $||x + y||_p \le ||x||_p + ||y||_p$ for all $x, y \in X$
- $(4) || kx ||_p = |k| ||x||_p$ for all $k \in \mathbb{R}$

then $\|.\|_p$ is called a cone norm on X and the pair $(X,\|.\|_p)$ is called a cone normed space .(CNS)

Definition 1.2 [2] Let $(X, ||.||_p)$ be a cone normed space $x \in X$ and $\{x_n\}_{n\geq 1}$ a sequence in X, then

- (1) $\{x_n\}_{n\geq 1}$ converge to x whenever for each $c\in E$ with 0=c there is natural number n such that $||x_n\to x||_p=c$ for all $n\in N$ it is denoted be $\lim_{n\to\infty}x_n=x$ or $x_n\to x$
- (2) $\{x_n\}_{n\geq 1}$ is a Cauchy sequence whenever for every $c\in E$ with 0=c there is a natural number n, such that $||x_n-x_m||_p=c$ for all $n,m\in N$

(3) $(X, ||.||_p)$ is complete cone normd space i.e. every Cauchy sequence is convergent complete cone normed space will be called cone Banach space.

Lemma 1.3 [1] Let (X.||.||) be a cone Banach space then the following properties are often used h_1) if $u \le v$ and v = w then u = w h_2) if $0 \le u = c$ for each $c \in intp$ then u = 0

2. Main Result

Defintion 2.1 Let (X, ||.||) be a cone Banach space a map $T: X \to X$ is said to be satisfy condition B if there exists $0 < \delta < 1$ and L > 0 such that for all $x, y \in X$ we have

$$||Tx-Ty|| < \delta ||x-y|| + Lu$$

when
 $u \in \{||x-Tx||, ||y-Ty||, ||x-Ty||, ||y-Tx||\}$

Lemma 2.2 Let (X, ||.||) be a cone Banach space $T: X \to X$ satisfy condition B if for some point x of the sequence $\{T^n x\}$ of picard iteration converge to point $z \in X$ then z is it's fixed point

Proof. by definition of condition B and the triangle inequality we get

$$||z-Tz|| \le ||z-T^{n+1}x|| + ||T^{n+1}x-Tz||$$

$$= ||z-T^{n+1}x|| + ||TT^nx-Tz||$$

$$\le ||z-T^{n+1}x|| + \delta ||T^nx-z|| + L.u$$
where
$$u \in \{||T^n-TT^nx|| \cdot ||z-Tz||, ||T^nx-Tz|| \cdot ||z-TT^nx||\}$$

let 0 = c, clearly at least one of the following four cases holds for infinitely many $n \in N$

(1)
$$||T^n x - z|| \le ||z - T^{n+1}x|| + \delta ||T^n x - z|| + L||T^n x - TT^n x||$$

 $\le ||z - T^{n+1}x|| + \delta ||T^n x - z|| + L||T^n x - z|| + L||z - T^{n+1}x||$
 $\le ||z - T^{n+1}x|| + (\delta + L) ||T^n x - z|| + L||-T^{n+1}x||$

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART201815 DOI: 10.21275/ART201815 460

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

$$\leq \| (1+L) \| z - T^{n+1} x \| + (\delta + L) \| T^{n} x - z \|$$

$$\| T^{n} x - z \| \leq \frac{(1+L)}{1 - (\delta + L)} \| z - T^{n+1} \|$$

$$\leq \frac{(1+L)}{1 - (\delta + L)} \cdot \frac{c}{1 - (\delta + L)} = c$$

(2)
$$||T^{n}x - z|| \le ||z - T^{n+1}x|| + \delta ||T^{n}x - z|| + l ||z - Tz||$$

 $||z - T^{n}x|| \le \frac{1}{\delta - L} ||z - T^{n+1}x|| = \frac{1}{\delta - L} \cdot \frac{c}{\frac{1}{\delta - L}} = c$

(3)
$$||T^n x - z|| \le ||z - T^{n+1}x|| + \delta ||T^n x - x|| + L ||z - TT^n x||$$

$$\leq (1+L) ||z-T^{n+1}x|| = \delta ||T^nx-z|| = \frac{(1+L)}{1-\delta} \cdot \frac{c}{\frac{(1+L)}{(1-\delta)}} = c$$

(4)
$$||T^n x - z|| \le ||z - T^{n+1} x|| + \delta ||T^n x - z|| + L ||T^n - Tz||$$

$$\leq ||z-T^{n+1}x|| + \delta ||T^nx-z|| + L||T^nx-z|| + L||z-Tz||$$

$$\leq ||z - T^{n+1}x|| + (\delta + L) ||T^n x - z|| + L ||z - Tz||$$

$$\leq \frac{1}{1 - (\delta + L)} ||z - T^{n+1}x|| + \frac{L}{1 - (\delta + L)} ||z - Tz||$$

$$= \frac{1}{1 - (\delta + L)} \cdot \frac{c}{2\frac{1}{1 - (\delta + L)}} + \frac{L}{1 - (\delta + L)} \cdot \frac{c}{2\frac{L}{1 - (\delta + L)}} = c$$

we have fined that all cases $||T^nx-x||=c$ for each interior point c of the cone P. By (h_2) , it wollow that $||T^n x - z|| = 0$ i.e $T^n x = z$

Now we give the main theorem that gave the condition which

granted existence and uniqueness of the fixed point for a map
$$||T^nx-T^{n-1}x|| \le \frac{\delta+2L}{1-L}||T^{n-1}x-T^{n-2}x||.....n \ge 2$$

indeed
$$||T^n x - T^{n-1} x|| \le \delta ||T^{n-1} x - T^{n-2} x|| + L.u$$

indeed
$$||T^n x - T^{n-1} x|| \le \delta ||T^{n-1} x - T^{n-2} x|| + L.\omega$$

 $u \in \{||T^{n-1}x - TT^{n-1}x||, ||T^{n-2}x - TT^{n-2}x||, ||T^{n-2}x - TT^{n-1}x||, ||T^{n-1}x - TT^{n-2}x||\}$

(1)
$$||T^n x - TT^{n-1} x|| \le \delta ||T^{n-1} x - T^{n-2} x|| + L ||T^{n-1} x - TT^{n-1} x||$$

$$\leq \delta \|T^{n-1}x - T^{n-2}x\| + L\|T^{n-1}x - T^{n}x\|$$

$$\leq \delta \|T^{n-1}x - T^{n-2}x\| + L\|T^{n-1}x - T^{n-2}x\| + L\|T^{n-2}x - T^{n}x\|$$

$$\leq (\delta + L) || T^{n-1}x - T^{n-2}x || + L || T^{n-2}x - T^{n} ||$$

$$\leq (\delta + L) || T^{n-1}x - T^{n-2}x || + L || T^{n-2}x - T^{n-1}x || + L || T^{n-1}x - T^{n}x ||$$

$$\leq (\delta + 2L) ||T^{n-1}x - T^{n-2}x|| + L||T^{n-1}x - T^n||$$

that satisfies condition B, but first we need the following lemma.

Lemma 2.3 Let (X.||.||) be a cone Banach space and

 $T: X \to X$ satisfying condition B, if $x \in X$ and let

 $x \neq Tx$ then $||T^2x - Tx|| < ||Tx - x||$

Proof. Let $x \in X$ and let $x \neq Tx$ then $||T^2x - Tx|| = ||TTx - Tx|| \le \delta ||Tx - x|| + Lu$

$$u \in \{ ||Tx - T^2x||, ||x - Tx||, ||Tx - Tx||, ||x - Tx|| \}$$
$$u \in \{ ||Tx - T^2x||, ||z - T^2x||, 0 \}$$

we will get the following possibilities

(1)
$$||T^2x - Tx|| \le \delta ||Tx - x|| + L.0$$

= $0 < ||Tx - x||$ because $x \ne Tx$

(2)
$$||T^2x - Tx|| \le \delta ||Tx - x|| + L||Tx - T^2x||$$

= $0 < ||Tx - x|| because x \ne Tx$

(3)
$$||T^2x - Tx|| \le \delta ||Tx - x|| + L||x - T^2x||$$

$$\leq \delta \| Tx - x \| + L \| x - Tx \| + L \| Tx_T^2 x \|$$

$$||T^2x - Tx|| \le \frac{\delta + L}{1_L} ||x - Tx|| < ||Tx - x||$$

because
$$\frac{\delta + L}{1 - L} < 1 \subset L \in (0, \frac{1}{3})$$
 and $\delta \in (0, \frac{1}{3})$ and $x \neq Tx$

Theorem 2.4 Suppose that (X, ||.||) is a cone Banach space with a cone P such that $intP \neq \phi$ and $T: X \to X$ that satisfy condition B then T has a unique fixed point

Proof. Let $x \in X$ we shall show that $\{Tx\}$ is a Cauchy sequence, but first we prove that

$$\Rightarrow ||T^{n-1}x - T^{n}x|| \le \frac{(\delta + 2L)}{(1 - L)} ||T^{n-1}x - T^{n-2}x||$$

$$\le w ||T^{n-1}xT^{n-2}||, w = \frac{\delta + 2L}{1 - L} \in (0, 1)$$

$$(2) ||T^{n}x - T^{n-1}x|| \le ||T^{n-1}x - T^{n-2}x|| + L||T^{n-2}x - TT^{n-2}x||$$

$$\leq \delta \|T^{n-1}x - T^{n-2}x\| + L\|T^{n-2}x - T^{n-1}x\|$$

$$\leq (\delta + L)\|T^{n-1}x - T^{n-2}x\|$$

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART201815 Paper ID: ART201815 461

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

then
$$(\delta + L) \le \frac{\delta + L}{1 - L} < \frac{\delta + 2L}{1 - L}$$

(3)
$$||T^n x - T^{n-1} x|| \le \delta ||T^{n-1} x - T^{n-2} x|| + L ||T^{n-2} x - TT^{n-1} x||$$

$$\leq \delta \|T^{n-1} - T^{n-2}x\| + L\|T^{n-2}x - T^{n}x\|$$

$$\leq \delta \|T^{n-1}x - T^{n-2}x\| + L\|T^{n-2}x - T^{n-1}x\| + L\|T^{n-1}x - T^{n}x\|$$

$$\leq (\delta + L)\|T^{n-1}x - T^{n-2}\| + L\|T^{n-1}x - T^{n}x\|$$

$$||T^{n-1}x-T^nx|| \le \frac{(\delta+L)}{1-L} ||T^{n-1}x-T^{n-2}x||$$

$$\leq w || T^{n-1}x - T^{n-2} ||, w \in \frac{\delta + L}{1 - L} \in (0, 1)$$

$$(4) \quad ||T^{n}x-T^{n-1}x|| \leq \delta \, ||T^{n-1}x-T^{n-2}x|| + L \, ||T^{n-1}x-T^{n-1}x||$$

$$\leq \delta ||T^{n-1}x - T^{n-2}x|| + L.0$$

then (2.1) is hold

Hence, in all the possible cases it follows that (2.1) holds, and so let

$$\Lambda = \max\{\delta + L, \frac{\delta + 2L}{1 - L}\}\$$

$$||T^{n}x-T^{n-1}x|| \le \Lambda ||T^{n-1}x-T^{n-2}|| = \frac{\delta+2L}{1-L} ||T^{n-1}x-T^{n-2}x|| \dots (2.2)$$

Byinductionandusing(2.1) and (2.2)

$$||T^n x - T^{n-1} x|| \le (\delta + L) ||T^{n-1} x - T^{n-2}|| \le ... \le (\delta + L)^{n-1} ||Tx - x|| ... (2.3)$$

Using the triangle inequality and (2.3) we get that for n>m

$$||T^{n}x - T^{m}x|| \le ||T^{n}x - T^{n-1}x|| + ||T^{n-1}x - T^{n-2}x|| + ... + ||T^{(n+1)}x + ||T^{n}x|| + |$$

since
$$\frac{(\delta + 2L)^m}{1 - L} || Tx - x || \to 0$$
 as $m, n \to \infty$ is

$$\frac{(\delta + 2L)^m}{1 - L} ||Tx - x|| = \text{ where } ||T^n x - T^m x|| = c \text{ for each}$$

we have proved that the sequence $\{T^n x\}$ is Cauchy sequence for the fixed $x \in X$ since the (X, ||.||) is complete, there exists a point $p \in X$ which is the limit of this sequence be lemma(2.2) we conclude that p is fixed point

Theorem 2.5 Let $T: X \to X$ satisfy condition B on a cone Banach space. If $intp \neq \phi$ then T is continues at its fixed point

Proof. Let z the unique fixed point and let $X_n \to z$ where $\{x_n\}$ is a sequence of point form the given cone Banach space to show that T is continues we must prove that $Tx_n \rightarrow Tz = z$ we have

$$||Tx_n - Tz|| \le \delta ||x_n - z|| + L.u$$

$$u \in \{ ||z_n - Tx_n||, ||z - Tz||, ||x_n - Tz||, ||z - Tx_n|| \}$$

= \{0, ||x_n - T_n||, ||x_n - z||, ||z - Tx_n|| \}

(1)
$$||Tx_n - Tz|| \le \delta ||x_n - z|| + L.0$$

$$\Rightarrow Tx_n = Tz \Rightarrow Tx_n \rightarrow Tz = z$$

(2)
$$||Tx_n - Tz|| \le \delta ||x_n - z|| + L ||x_n - z||$$

$$=(\delta+l)\frac{c}{(\delta+L)}=c$$

(3)
$$||Tx_n - Tz|| \le \delta ||x_n - z|| + L ||x_n - Tx_n||$$

$$\leq \delta \|x_n - z\| + L \|x_n - z\| + L \|Tx_n - z\|$$

$$\leq (\delta + L) || x_n - z || + L || x - Tx_n ||$$

$$\leq \frac{\delta + L}{1 - L} || x_n - z ||$$

$$\leq \frac{\delta + L}{1 - L} \cdot \frac{c}{\frac{\delta + L}{1 - L}} = c$$

$$T^{(u)}\chi \parallel Tx_n x \parallel Tz \parallel \leq \delta \parallel x_n - z \parallel + L \parallel Tx_n - z \parallel$$

$$= \delta \| x_n - z \| + L \| Tx_n - Tz \|$$

$$\Rightarrow ||Tx_n - Tz|| = 0$$

$$\Rightarrow Tx_n \rightarrow Tz = z$$

denote as usual by F(T) the set of fixed point of the mapping $T: X \to X$ it is said that the map T has property P if $F(T) = F(T^n)$ for each $n \in N$

References

- [1] Zoran Kadelburg, Stojan Radenovi C', and Vladimir Rako č evi c', Remarks on â€æquasi-contraction on a cone metric space―, Applied Mathematics Letters 22 (2009), no. 11, 1674–1679.
- [2] Erdal Karapınar, Fixed point theorems in cone banach spaces, Hindawi Publishing Corporation Fixed Point Theory and Applications 2009, 9.
- [3] R Krishnakumar and D Dhamodharan, Some fixed point theorems in cone banach spaces using ϕp operator, rn
- [4] Sh Rezapour and R Hamlbarani, Some notes on the paper $\hat{a} \in \alpha$ cone metric spaces and fixed point theorems of contractive mappingsâ€, Journal of Mathematical Analysis and Applications **345** (2008), no. 2, 719–724.

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART201815 Paper ID: ART201815 462